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fjσ → eiφj fjσ , Vj → eiφj Vj, λj → λj − iφ̇j(τ ). (17.57)

Read–Newns gauge transformation

It is often useful to use this invariance to choose a gauge in which Vj is real and gauge
neutral. We do this by absorbing the phase of the hybridization Vj = |Vj|eiφj into the
f -electron. Let us examine how the action at site j transforms when we redefine the f -
electrons to absorb this phase:

SK(j) =
∫ β

0
dτ

[
f †
jσ (∂τ + λj)fjσ +

( V̄j︷ ︸︸ ︷
|Vj|e−iφj c†

jσ fjσ +
Vj︷ ︸︸ ︷

|Vj|eiφj f †
jσ cjσ

)
+ N

|Vj|2
JK

− λjQ
]

fj→eiφj fj
−−−−−−→

∫ β

0
dτ

[

f †
jσ (∂τ + λj + iφ̇j)fjσ + |Vj|

(
c†

jσ fjσ + f †
jσ cjσ

)

+N
|Vj|2
JK

− λjQ

]

. (17.58)

In our starting model, the constraint field was constant, but in this radial gauge it has
acquired a time dependence derived from the precession of phase φ. If we define the
dynamical variable λj(τ ) = λj + iφ̇j, this becomes

SK(j) =
∫ β

0
dτ

[

f †
jσ [∂τ + λj(τ )]fjσ + |Vj|

(
c†

jσ fjσ + f †
jσ cjσ

)

+N
|Vj|2
JK

− λj(τ )Q

]

+

iQ'φj=i2πQn
︷ ︸︸ ︷

iQ
∫ β

0
dτ φ̇j . (17.59)

The remainder term comes from making the change of variables in the constraint term
λj = λj(τ ) − iφ̇j. Fortunately, this term is an exact integral, and since the change in the
phase of the hybridization is an integral multiple of 2π it adds an overall phase ei2πnQ = 1
to the path integral, and hence can be dropped. In this radial gauge, the Read–Newns path
integral becomes

Z =
∫

D[|V|, λ]
∫

D[ψ†, ψ] exp
[
−

S[|V|λ, ψ†,ψ]︷ ︸︸ ︷∫ β

0
(ψ†∂τψ + H[|V|, λ])

]

H[|V|, λ] =
∑

k

ϵkc†
kσ ckσ +

∑

j

[

|Vj|
(

c†
jσ fjσ + f †

jσ cjσ

)

+λj(nfj − Q) + N
|Vj|2

J

]

. (17.60)

Read–Newns path integral: radial gauge
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By absorbing the phase, the constraint field becomes a dynamical potential field, integrated
along the entire imaginary axis (see Example 17.2 for details). Subsequently, when we use
the radial gauge we will drop the modulus sign. The interesting feature about this Hamil-
tonian is that, with the real hybridization, the conduction and f -electrons now transform
under a single global U(1) gauge transformation, i.e. the f -electrons have become charged.
We will return to this issue in Sections 17.8 and18.6.

17.4.1 The effective action

We now develop the large-N expansion by calculating the effective action. We’ll begin
without fixing the gauge. The interior fermion integral in the path integral (17.60) defines
an effective action SE[V̄ , V , λ] by the relation

exp
[
−NSE[V̄ , V , λ]

]
≡ ZE[V̄ , V , λ] =

∫
D[ψ†, ψ] exp

[
−S[V̄ , V , λ, ψ†, ψ]

]
, (17.61)

where we have defined ZE = e−NSE . Using (17.56),

S =
∫ β

0
dτ

⎡

⎣
∑

k

c†
kσ (∂τ + ϵk) ckσ +

∑

j

(
f †
jσ (∂τ + λj)fjσ + (V̄jc

†
jσ fjσ + Vjf

†
jσ cjσ )

+N
V̄jVj

J
− λjQ

) ⎤

⎦ . (17.62)

The extensive growth of the effective action with N means that at large N the integration
in (17.56) is dominated by its stationary points:

Z =
∫

D[λ, V̄ , V] exp
[
−NSE[V̄ , Vλ]

]
≈ exp

[
−NSE[V̄ , V , λ]

]∣∣∣∣
saddle point

. (17.63)

If we identify NSE = − ln ZE, so that NδSE = −δZE/ZE, then, differentiating (17.61) with
respect to V̄j and λj, we see that the saddle-point conditions impose the self-consistent
relations

δNSE

δV̄j(τ )
= 1

ZE

∫
D[ψ†, ψ]

δS/δV̄j(τ )
︷ ︸︸ ︷(

c†
jσ (τ )fjσ (τ ) + NVj(τ )

J

)
e−S = ⟨c†

jσ fjσ ⟩(τ ) + N
J

Vj(τ ) = 0

δNSE

δλj(τ )
= 1

ZE

∫
D[ψ†, ψ]

(
nf (j, τ ) − Q

)
e−S = ⟨nf (j, τ )⟩ − Q = 0, (17.64)

where repeated spin indices imply summation. The second equation in (17.64) is the
satisfaction of the constraint, on the average. The first relation, which can be written
Vj = − J

N ⟨c†
jσ fjσ ⟩, is recognized as the mean-field self-consistency associated with the

Hubbard–Stratonovich factorization. We can denote this self-consistency by the Feynman
diagram



17.4 The Read–Newns path integral 675

V ,j =
J
N

c†jσ f jσ

indicating that the condensation of the boson V is self-consistently induced by an anoma-
lous hybridization. Fortunately, we will not have to solve these equations by explicitly
calculating the expectation values; instead, as we found in previous chapters (see Section
13.3), they are implicity imposed by finding the stationary point of the action.

In practice, we shall seek static solutions, using the radial gauge to absorb the phase
of the hybridization, so that V̄j(τ ) = Vj(τ ) = |Vj|, λj(τ ) = λj. In this case the saddle-
point partition function ZE[V , λ] is simply the partition function of the static mean-field
Hamiltonian HMF = H[V , λ], ZE = Tre−βHMF . Now we may write the action in the form

S =
∫ β

0
dτ

⎡

⎣
∑

σ

ψ†
σ (∂τ + h) ψσ +

∑

j

(

N
V2

j

J
− λjQ

)⎤

⎦ , (17.65)

where the matrix h[V , λ] is a mean-field Hamiltonian, read off from (17.56). For instance,
in a tight-binding representation,

H[V , λ] =
∑

i,j,σ

(
c†

iσ , f †
iσ

)
h[V ,λ]︷ ︸︸ ︷[

(tij − µδij) V̄jδij

Vjδij λjδij

] (
cjσ

fjσ

)
+

∑

j

(

N
|Vj|2

J
− λjQ

)

, (17.66)

where the tij are the hopping matrix elements obtained by Fourier transforming ϵk =∑
Rij

(t(Rij) − µδij)e−ik·Rij .
Since the action is Gaussian in the Fermi fields, the Fermi integral can be carried out

using (12.142) in terms of the determinant of the action:
∫

D[ψ†, ψ] exp

[

−
∫ β

0
dτ

∑

σ

ψ†
σ

(
∂τ + h

)
ψσ

]

=
(
det

[
∂τ + h

])N

= exp
[
N ln det

[
∂τ + h

]]

= exp
[
NTrln

[
∂τ + h

]]
, (17.67)

where the power N derives from the N identical integrals over each spin component of ψσ .
In the last line, we have replaced ln det → Tr ln. Thus

NSE[V , λ] = N

⎡

⎣−Tr ln
(

∂τ + h
)

+
∑

j

∫ β

0
dτ

(
|Vj|2

J
− λjq

)⎤

⎦ . (17.68)

Since ZE = e−βFMF = e−NSE , where FMF is the mean-field free energy, it follows that

FMF[V , λ] = 1
β

SE[V , λ] = −N
β

Tr ln
(

∂τ + h[V , λ]
)

+
∑

j

(
N|Vj|2

J
− λjQ

)

. (17.69)
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If we switch to the frequency domain, replacing ∂τ → −iωn by a Matsubara frequency,
we may also write

FMF = −NT
∑

iωn

Tr ln
[
−G−1(iωn)

]
+

∑

j

(
N|Vj|2

J
− λjQ

)

G−1 = (iωn − h[V , λ]), (17.70)

where we have identified G−1 = (iωn − h[V , λ]) with the inverse Green’s function.
Sometimes, it’s convenient to re-express SE in terms of the eigenvalues Eζ of the Hamil-
tonian. If we diagonalize the Hamiltonian, so that h → Eζ δζζ ′ , then Tr ln(−iωn + h) =∑

ζ ln(Eζ −iωn). We can also do the Matsubara sum, under which −T
∑

iωn
ln(Eζ −iωn) →

−T ln(1 + e−βEζ ), so that the free energy can also be written

FE[V , λ] = −NT
∑

ζ

ln
(

1 + e−βEζ

)
+

∑

j

(
N|Vj|2

J
− λjQ

)

. (17.71)

Equations (17.70) and (17.71) are complementary: the former reflects the path-integral
approach, the latter a more conventional mean-field approach. Let us now apply them to
the Kondo impurity and lattice models.

Example 17.3 This example shows in detail how to derive the measure of the Read–Newns
path integral. The initial Kondo lattice path integral involves static constraint fields λj,
integrated over a finite range of the imaginary axis: λj ∈ [0, i2πT], as follows:

Z =
∏

j

∫ 2π iT

0

dλj

2π iT

∫
D[V , ψ] exp

[
−

∫ β

0
(ψ̄∂τψ + H[V , λ])

]
. (17.72)

By inserting the identity
∫

D[gj] = 1 into the Kondo path integral, where D[gj] denotes
the integration over the entire orbit of gauge transformations gj(τ ) = eiφj(τ ), show that λj is
promoted to a dynamical variable λ′

j(τ ) = λj + iφ̇j(τ ), integrated over the entire imaginary
axis.

Solution

If we insert the identity
∏

j
∫

D[gj] = 1 into the path integral, it becomes

Z =
∫

D[λ, g, V , ψ]e−S[λ,V ,ψ]. (17.73)

At this point, g is just a dummy variable. We need to (a) carry out a gauge transforma-
tion to absorb g into the fields, and (b) rewrite the measure of integration in terms of the
transformed fields.
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(a) Change of variables.
The first step is to show that the action is unchanged by the gauge transformation

fj(τ ) = eiφj(τ )f ′
j (τ ), Vj(τ ) = eiφj(τ )V ′

j (τ ). (17.74)

Under this transformation, the Hamiltonian is unchanged but the f -Berry phase term
(see (12.132)) acquires an additional iφ̇j term from the time dependence of gj(τ ) =
eiφj(τ ), as follows:

f †(∂τ + λj)f −→ f ′†e−iφj (∂τ + λj)eiφj f ′ = f ′†(∂j + λj + iφ̇j)f ′
j . (17.75)

To absorb this term we must also transform the λj field, introducing the dynamical
variable λ′

j(τ ) = λj + iφ̇j(τ ). Subtly, under the transformation the constraint term adds
a phase shift to the action:

S[V , λ, ψ] =
∫ β

0
dτ

∑

j

[
f ′
j

†(∂τ + λ′
j)f

′
j − (λ′

j − iφ̇j)Q
]

+ · · ·

= S[V ′, λ′, ψ ′] + iQ
∑

j

∫ β

0
dτ φ̇j. (17.76)

Now Q
∫ β

0 dτ φ̇j = Q'φj is determined by the change in φj between τ = 0 and τ = β.
Since gj = eiφj is periodic in time, 'φj is an integer multiple Mj of 2π , and since Q is
an integer, the phase shift is a multiple of 2π , leaving e−S invariant:

exp (−S[V , λ, ψ]) = exp

⎛

⎝−S[V ′, λ′, ψ ′] − 2π i
∑

j

(QMj)

⎞

⎠ = exp
(
−S[V ′, λ′, ψ ′]

)
.

(17.77)
(b) Change of measure.

Since the gauge transformation is unitary, the measure for the hybridization and f -
electron fields is unchanged (phase factors cancel):

∏

τ

dV̄j(τ )dVj(τ ) =
∏

τ

dV̄ ′
j (τ )dV ′

j (τ ),
∏

τ

df †
j (τ )dfj(τ ) =

∏

τ

df ′†
j (τ )df ′

j (τ ).

(17.78)

Next, we show that the remaining measure D[λ, g] = D[λ′], with a flat measure of
integration over the dynamical variable λ′

j(τ ) = λj + iφ̇j. Since φj(β) = φj(0) + 2πMj

is periodic up to a multiple of 2π , we may write

φj(τ ) = 2πTMjτ + φ̃j(τ ), (17.79)

which describes a path for gj(τ ) = eiφj(τ ) that wraps Mj times around the origin. The
second term is a periodic function of τ that can be decomposed into its Matsubara
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Fourier components, φ̃j(τ ) = ∑
n φ̃n(j)e−iνnτ . The original measure for integrating

over the static λj and gj is

D[λj, gj] =
∑

Mj

∫ 2π iT

0
dλj

∏

τ

dφ̃j(τ )

=
∑

Mj

∫ 2π iT

0
dλj

∏

n

dφ̃n(j), (17.80)

where, in the last line, the measure for the integration over φ̃j has been replaced by the
integration over its Matsubara Fourier components.

Now the dynamical variable λ′
j(τ ) = λj + i ˙̃θj = λj + 2π iTMj + i ˙̃φj(τ ) has a Fourier

series

λ′
j(τ ) =

∑

n

λ′
n(j)e−iνnτ , (17.81)

where λ′
0(j) = λj + 2π iTMj and λ′

n(j) = i(−iνn)θ̃n(j) = νnφ̃n(j). When we integrate
over λj, the range of the λ′

0(j) = λj + 2π iTMj runs from 2π iTMj to 2π iT(Mj + 1)
along the imaginary axis, so that when we sum over all Mj, λ′

0(j) runs over the entire
imaginary axis (see figure below).

It follows that the combination
∑

Mj

∫ 2π iT(Mj+1)

2π iTMj

dλ′
0(j) ≡

∫ i∞

−i∞
dλ′

0(j) (17.82)

gives an unconstrained integral over the static part λ′
0(j) of λ′

j(τ ).
For n ̸= 0, the Fourier coefficients λ′

n(j) = νnφ̃n(j) are directly proportional, so, up
to a normalization, their measures are equal, so that

∏

n

dφ̃n(j) = N −1dφ0(j)
∏

n ̸=0

dλ′
n(j),

where N is a normalizing factor
∏

n = ∏
n ̸=0 νn that we shall drop. Thus, by integrat-

ing over all possible φ̃j, we integrate over all finite frequency Fourier components of
λ′

j(τ ).
Combining the static and dynamical parts of the measure, it follows that

D[λj, gj] ≡ D[λ′
j] =

∏

j

dφ0(j)
∏

n

dλ′
n(j),
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and since D[V , ψ] = D[V ′, ψ ′],

D[g, λ, V , ψ] = D[φ0]D[λ′, V ′, ψ ′], (17.83)

where the measure for the dynamical field λ′ is flat and D[φ0] = ∏
j dφ0(j) is the

integral over the static phases φ0(j). Since the action is independent of φ0, we can drop
the overall integral over the static phases, enabling us to replace D[φ0] → 1 and write

D[g, λ, V , ψ] ≡ D[λ′, V ′, ψ ′]. (17.84)

17.5 Mean-field theory of the Kondo impurity

17.5.1 The impurity effective action

The large-N mean-field theory of the Kondo effect maps the original Hamiltonian onto a
self-consistently determined resonant level model, which we will write in the form

HMF =
∑

σ

(
· · · c†

kσ · · · , f †
σ

)
⎛

⎜⎜⎝
ϵkδk,k′ V̄

V λ

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

...

ck′σ
...

fσ

⎞

⎟⎟⎟⎟⎠
+ NV2

J
− λQ. (17.85)

In Section 16.4.2 we learned that the single resonance described by this model is located
at an energy λ, with a hybridization width ' = πρV2 (see (16.19)). By minimizing the
free energy of this system, we need to figure out how λ and ' are related to the Kondo
coupling constant. Let us first evaluate the free energy of the resonance. We can read off h
from (17.85), so from (17.70), the mean-field free energy is given by

FMF = −TN
∑

n

ln det

⎛

⎜⎜⎝
(ϵk − iωn)δk,k′ V̄

V λ − iωn

⎞

⎟⎟⎠ +
(

NV2

J
− λQ

)
. (17.86)

Using the result det
(

D C
B A

)
= det D det

[
A − BD−1C

]
, we can integrate out the

conduction electrons to write

FMF = −TN
∑

n

ln

[

−iωn + λ +
∑

k

|V|2
iωn − ϵk

]

+
(

NV2

J
− λQ

)
+ FC, (17.87)

where FC = −TN
∑

k,n ln(ϵk−iωn) is the conduction electron free energy. Using the large-

bandwidth approximation,
∑

k
|V|2

iωn−ϵk
= −i'sgn(ωn) ≡ 'n (see (16.29)), this becomes

FMF[V , λ] = −N
β

∑

n

ln
[
−iωn + λ + i'n

]
eiωn0+ + N

( |V|2
JK

− λQ
)

+ FC. (17.88)
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(a) Z

−D D

(b)

−D D

Z

!Fig. 17.7 Contour used in evaluating free energy: (a) undistorted contour; (b) contour distorted to run around branch cut in the
f -electron Green’s function.

We now carry out the Matsubara summation by the standard method, replacing
−T

∑
n F(iωn) →

∮ dz
2π i f (z)F[z], where the contour runs counterclockwise around the

poles in the Fermi function (Figure 17.7(a)). Now the logarithm contains a branch cut along
the real axis, where 'n = 'sgn(Im z) jumps from i' below the real axis to −i' above it.
If we introduce a finite bandwidth D, this branch cut runs from z = −D to z = +D.

Distorting the contour to run clockwise around this branch cut (Figure 17.7(b)) we obtain

FMF[V , λ] = N
∫ D

−D

dω

2π i
f (ω) (ln [−ω + λ − i'] − ln [−ω + λ + i'])

+ N
( |V|2

JK
− λQ

)
+ FC

= −N
∫ D

−D
dωf (ω)

δf (ω)/π
︷ ︸︸ ︷(

1
π

Im ln [λ + i' − ω]
)

+N
( |V|2

JK
− λQ

)
+ FC,

(17.89)

where we have made the identification δ(ω) = Im ln [λ + i' − ω] = tan−1
(

'
λ−ω

)
as the

scattering phase shift of the impurity (see (16.33)). We then obtain

FMF[V , λ] = −N
∫ D

−D
dω

(
δf (ω)

π

)
f (ω) + N

( |V|2
JK

− λQ
)

+ FC. (17.90)

We can give this result a simple interpretation: the effect of the resonant phase shift changes
the allowed momenta of the radial partial-wave states, which in turn causes the one-particle
eigenstates of the continuum to move by a fraction δf /π of the energy-level spacing 'ϵ

according to the relation (see (16.205)) ϵ̃k = ϵk − δ(ϵk)
π 'ϵ, where k labels the eigenstates.

The corresponding change in the free energy of the continuum is then
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'F =
∑

k

∂

∂ϵk

(
−T ln

[
1 + e−βϵk

]) [
−δf (ϵk)

π
'ϵ

]
= −

∑

k

f (ϵk)
δ(ϵk)
π

'ϵ

≡ −
∫

dϵ
δf (ϵ)
π

f (ϵ), (17.91)

where we have replaced the discrete summation by an integral. The first term in (17.90) is
precisely this shift in the continuum free energy.

Example 17.4

(a) Diagonalize the impurity resonant level Hamiltonian

HMF =
∑

kσ

ϵkc†
kσ ckσ +

∑

kσ

V[c†
kσ fσ + f †

σ ckσ ] + λ
∑

σ

nf σ (17.92)

and compute the scattering phase shift of the resonant level.
(b) Show that injection of an f -state into the continuum induces a resonant correction to

the total the density of states:

ρ → ρ∗(E) = ρ + 1
π

'

(E − λ)2 + '2 . (17.93)

Solution

(a) To diagonalize the Hamiltonian, we write it in the form

H =
∑

γ σ

Eγ a†
γ σ aγ σ , (17.94)

where the quasiparticle operators aγ are related to the original operators via the
one-particle eigenstates, a†

γ σ = ∑
k c†

kσ ⟨k|γ ⟩ + f †
σ ⟨f |γ ⟩ ≡ ∑

k αkc†
kσ + βf †

σ .
Now if we denote the amplitudes of the one-particle eigenstates |γ ⟩ by ⟨η|γ ⟩ ≡
(· · · ⟨k′|γ ⟩ · · · , ⟨f |γ ⟩), then since hηη′ ⟨η′|γ ⟩ = ⟨η|H|γ ⟩ = Eγ ⟨η|γ ⟩ it follows that
the amplitudes ⟨η|γ ⟩ must satisfy the eigenvalue equation

h ·

⎛

⎜⎜⎜⎜⎝

...

αk
...

β

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝
ϵkδk,k′ V̄

V λ

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

...

αk′
...

β

⎞

⎟⎟⎟⎟⎠
= Eγ

⎛

⎜⎜⎜⎜⎝

...

αk
...

β

⎞

⎟⎟⎟⎟⎠
(17.95)

or

ϵkαk + Vβ = Eγ αk

V
∑

k′
αk′ + λβ = Eγ β. (17.96)

(If you like, you can rederive this by expanding the quasiparticle operators on both
sides of (17.94) in terms of the conduction and f -electron fields, carrying out the com-
mutator and then comparing coefficients of c†

kσ and f †
σ (see Example 14.3).) Solving

for αk using the first equation, and substituting into the second, we obtain
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(E)

(b)(a)

π

δ

π /2

E

ω

y

−4 −3
2 3

 −1
0 1

−2k =

new bound state!Fig. 17.8 (a) Graphical solution of the equation y = λ + ∑
k

V2
y−ϵk

, for eight equally spaced conduction electron energies for
a resonance located atλ = 0 (arrow). Notice how the injection of a bound state at y = 0 displaces electron band
states away from the Fermi surface, increasing the number of eigenstates by one. (b) Energy dependence of the
scattering phase shift.

Eγ − λ −
∑

k

V2

Eγ − ϵk
= 0. (17.97)

We can recognize this solution as a pole of the f -Green’s function, Gf (Eγ )−1 = 0 (see
(16.23) and (16.25)).

The solutions of the eigenvalue equation (17.97) are illustrated graphically in
Figure 17.8. Suppose the energies of the conduction sea are given by the 2M discrete
values

ϵk =
(

k + 1
2

)
'ϵ (k ∈ {−M, . . . M − 1}), (17.98)

distributed symmetrically above and below the Fermi energy. Consider the particle–
hole case when the f -state is exactly half-filled, i.e. when λ = 0. From the diagram, we
see that one solution to the eigenvalue equation corresponds to Eγ = 0, i.e. the original
2M band-electron energies have been displaced to both lower and higher energies,
forming a band of 2M + 1 eigenvalues: the resonance has injected one new eigenstate
into the band. Each new eigenvalue is shifted infinitesimally relative to the original
conduction electron energies, according to

Eγ = ϵγ − 'ϵ
δ(Eγ )

π
, (17.99)

where δ(Eγ ) ∈ [0, π ] is the resonant scattering phase shift.
Let us now determine the dependence of δ[E] on the conduction electron energy.

Substituting the phase shift into the eigenvalue equation (17.97), we obtain

Eγ = λ +
γ+M∑

n=γ+1−M

V2

'ϵ(n − δγ

π )
→ λ + '

π

∞∑

n=−∞

1

(n − δγ

π )
. (17.100)

Here we have identified ρ ≡ 1
'ϵ as the conduction electron density of states, writing

' = πV2/'ϵ = πV2ρ as the resonance level width. We have also taken the liberty of
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extending the bounds of the summation to infinity. Using contour integration methods,
recognizing that cot z has poles at z = πn of strength one,

∞∑

n=−∞

π

(πn − δγ )
= ∑

n

!

poles z=πn

dz
2π i

πcot z
z − δγ

= −
!

pole at z=δγ

dz
2π i

πcot z
z − δγ

= −π cot δ(Eγ ). (17.101)

Using this result, (17.100) becomes

Eγ = λ − ' cot δ[Eγ ] ⇒ tan δ[Eγ ] = '

λ − Eγ
. (17.102)

(b) From (17.99) we deduce that

dϵ

dE
= 1 + 'ϵ

π

dδ(E)
dE

= 1 + 1
πρ

dδ(E)
dE

, (17.103)

where ρ = 1/'ϵ is the density of states in the continuum. The new density of states
ρ∗(E) is given by ρ∗(E)dE = ρdϵ, so that

ρ∗(E) = ρ(0)
dϵ

dE
= ρ + ρi(E), (17.104)

where

ρi(E) = 1
π

dδ(E)
dE

= 1
π

'2

(E − λ)2 + '2 (17.105)

corresponds to the enhancement of the conduction electron density of the states due to
injection of the resonant bound state.

17.5.2 Minimization of free energy

With the results from the previous section, let us now calculate the free energy and mini-
mize it to self-consistently evaluate λ and '. The shift in the free energy due to the Kondo
effect is then

'F = −N
∫ D

−D

dϵ

π
f (ϵ)Im ln[ξ − ϵ] − λQ + N'

πJρ
, (17.106)

where we have introduced the complex number ξ = λ + i' whose real and imaginary
parts represent the position and width of the resonant level, respectively. This integral can
be done at finite temperature, but for simplicity let us carry it out at T = 0, when the Fermi
function becomes a step function, f (x) = θ (−x). This gives

'E = N
π

Im
[

(ξ − ϵ) ln
[
ξ − ϵ

e

]]ϵ=0

ϵ=−D
− λQ + N'

πJρ

= N
π

Im
[
ξ ln

[
ξ

eD

]
− D ln

[
D
e

]]
− λQ + N'

πJρ
, (17.107)
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!Fig. 17.9 Illustrating the mean-field solution to the impurity Kondo model. (a) Showing how the real and imaginary parts of
the resonant level position ξ = λ + i' lie on a circle of radius TK , with a phase shift δ = πq = πnf/N.
(b) Showing the corresponding f density of statesρf (ω) for a range of different occupancies.

where we have expanded (ξ + D) ln
[

D+ξ
e

]
→ D ln

[D
e

]
+ ξ ln D to obtain the second line.

We can further simplify this expression by noting that

− λQ + N'

πJρ
= −N

π
Im

[
ξ ln

[
e− 1

ρJ +iπq
]]

, (17.108)

where q = Q/N, so that

'E = N
π

Im
[
ξ ln

[
ξ

eTKeiπq

]]
, (17.109)

where we have dropped the constant term and introduced the Kondo temperature TK =
De− 1

Jρ . The stationary point ∂E/∂ξ = 0 is given by (see Figure 17.9)

ξ = λ + i' = TKeiπq
{

TK =
√

λ2 + '2

tan(πq) = '
λ .

(17.110)

Notice the following:

• The phase shift δ = πq is the same in each spin scattering channel, reflecting the singlet
nature of the ground state. The relationship between the filling of the resonance and the
phase shift Q = ∑

σ
δσ
π = N δ

π is Friedel’s sum rule.
• The energy is stationary with respect to small variations in λ and '. It is only a local

minimum once the condition ∂E/∂λ = 0 ≡ (⟨n̂f ⟩ − Q) is imposed, which gives λ =
' cot(πq) and hence

'E = N
π

[
' ln

[
'

eTK sin πq

]]
. (17.111)

Plotted as a function of V , this is the classic “Mexican hat” potential, with a minimum
where ∂E/∂V = 0 at ' = πρ|V|2 = TK sin πq (Figure 17.9).
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• According to (17.104), the enhancement of the density of states at the Fermi energy is

ρ∗(0) = ρ + '

π ('2 + λ2)

= ρ + sin2(πq)
πTK

(17.112)

per spin channel. When the temperature is changed or a magnetic field is introduced, one
can neglect changes in ' and λ, since the free energy is stationary. This implies that, in
the large-N limit, the susceptibility and linear specific heat are those of a non-interacting
resonance of width '. The change in linear specific heat 'CV = 'γ T and the change
in the paramagnetic susceptibility 'χ are given by

'γ =
[

Nπ2k2
B

3

]

ρi(0) =
[

Nπ2k2
B

3

]
sin2(πq)

πTK

'χ =
[

N
j(j + 1)(gµB)2

3

]
ρi(0) =

[
N

j( j + 1)(gµB)2

3

]
sin2(πq)

πTK
. (17.113)

Notice how it is the Kondo temperature that determines the size of these two quantities.
The dimensionless Wilson ratio of these two quantities is

W =
[

(πkB)2

(gµB)2j(j + 1)

]
'χ

'γ
= 1.

At finite N, fluctuations in the mean-field theory can no longer be ignored. These
fluctuations induce interactions among the quasiparticles, and the Wilson ratio becomes

W = 1

1 − 1
N

.

The dimensionless Wilson ratios of a large variety of heavy-electron materials lie
remarkably close to this value.

17.6 Mean-field theory of the Kondo lattice

17.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single-impurity problem to the lattice. The virtue of
the large-N method is that, while approximate, it can be readily scaled up to the lattice.
We’ll now recompute the effective action for the lattice, using equation (17.70). Let us
assume that the hybridization and constraint fields at the saddle point are uniform, with
Vj = V and λj = λ at every site. In fact, even if we start with a Vj = Ve−iφj with a
different phase at each site, we can always absorb the phase φj using the Read–Newns
gauge transformation (17.57) to absorb the additional phase onto the f -electron field. We


