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12.4 Coherent states and Grassman mathematics
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Table 12.2 Grassman calculus.

Algebra c1cp = —cpcq Anticommute with fermions and other Grassman
numbers
cb = be, c1/A/ = —lﬁc Commute with bosons, anticommute with fermi
operators
Functions fle,cl =fy + &fi +fic + fiacce Since ¢ = 0, truncate at linear order in each variable
Calculus of = —fl — fi2c Differentiation
of =f1 +fi2c

/dcsac /dcl=8C1:0
/dcc:f)cc:l

Completeness (clc) = e Overcomplete basis
/ dEdce_Eclc) (cl=1 Completeness relation
Tr{A] = f dedce= (—¢lA|c) Trace formula

cl...cr) _ ’3(c1,...cr) =l
£1...6 )  |0¢1,...&)

Jacobian (inverse of bosonic Jacobian)

Change of variable J (

Gaussian integrals f l_[dgjdcje—[‘_f'A'E—f'C—E'j] — detA x e[J-A_l-j]
J

Notice the formal parallel with the overlap of bosonic coherent states. To derive the
completeness relation, we start with the identity

f dedee™ "™ = Spm (n,m=0,1). (12.104)

Then, by writing ¢* = (n|c), ¢ = (c|m), we see that the overlap between the eigenstates
|n) of definite particle number is given by

Sum = (nlm) = /dZ’dce_Ec(nlc) (c|m) = (n| /dEdce_Ec [c)(c| |m), (12.105)

from which it follows that

/dadc|c>(a|e—'7‘f — 10)(0] + [1)(1] = 1. (12.106)

completeness relation

Alternatively, we may write

> eyl =1,
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where

Z = / dcdce ¢ (12.107)
c, c

is the measure for fermionic coherent states. The exponential factor e~ = 1/(c|c)
provides the normalizing factor to take account of the overcompleteness.

Matrix elements between coherent states are easy to evaluate. If an operator A[éT, ¢l is
normal ordered, then, since the coherent states are eigenvectors of the quantum fields, it
follows that

(Z’|fl|c) = (¢|c)A[e, c] = €“Ale, c]. (12.108)
That is,

(©lA|c) = ¢“ x c-number formed by replacing A[¢', &] — A[Z, c]. (12.109)

This wonderful feature of coherent states enables us, at a swoop, to convert normal-ordered
operators into c-numbers.

The last result we need is the trace of A. We might guess that the appropriate
expression is

Trd = (¢|Alc).
c,c

This is almost right, but in fact it turns out that the anticommuting properties of the
Grassmans force us to introduce a minus sign into this expression:

TrA =) (—clAlc) = /dadce—50<—z~|£1|c>, (12.110)
c,c
Grassman trace formula

which, we shall shortly see, gives rise to the antisymmetric boundary conditions of
fermionic fields. To prove the above result, we rewrite (12.105) as

Sum = (n|m) = fdadce—EC(—a|m><n|c>, (12.111)

where the minus sign arises from anticommuting ¢ and ¢. We can now rewrite the trace as

TrA =Y (mlA|n)8um
= " [ dedee? (el mialn) ol

- f dédce % (—¢|A|c). (12.112)

We shall make extensive use of the completeness and trace formulae (12.106) and (12.110)
in developing the path integral. Both expressions are simply generalized to many fields ¢;



Appendix 12B  Grassman differentiation and integration

so that (12.194) factorizes into a radial and an angular integral:

Smn

1 _ 2.
y— ! dbdbl;”l_?me_bb = —1 /OO 2rdr™Me™ x / i —d¢ elPn—m)
vn!'m! 2mi vn'm! Jo 0 2w ’

(12.195)
where we have substituted (n|b) = ﬁbn and (b|lm) = \/%l_om. The angular integral van-

ishes unless n = m. Changing variables 7> — x, 2rdr = dx, in the first integral, we then
obtain
8””1 * n, —x
Lim = — dxx"e™ = S, (12.196)
n! 0
proving the orthogonality relation. Now since &,,,, = (n|m), we can write the orthogonality
relation (12.194) as

dbdb _: - dbdb _: _
(nlm) = / ﬁe—“’(nwxmm) = (n| ( / ﬁe—“’w)(w) |m).

Since this holds for all states |n) and |m), it follows that the quantity in brackets is the unit
operator:

. dbdb _j, - - dbdb |b) (b .
1 = / Ee—bbw) (b| :/ i % = % |b) (b|. Completeness relation (12.197)

Appendix12B  Grassman differentiation and integration

Differentiation is defined to have the normal linear properties of the differential operator.
We denote
d

0
0o =—, 0z=—, 12.198
e =50 0e= o2 ( )
so that
dcc = 0z¢ = 1. (12.199)
If we have a function
F@¢) = fo + fic + &fi + fiaie, (12.200)
then differentiation from the left-hand side gives
df =fi — fial
%f = fi +fizc, (12.201)

where the minus sign in the first expression occurs because the d operator must anticom-
mute with c. But how do we define integration? This proves to be much easier for Grassman
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variables than for regular c-numbers. The great sparseness of the space of functions dra-
matically restricts the number of linear operations we can apply to functions, forcing
differentiation and integration to become the same operation:

/dc = 0, /dE = 0;. (12.202)

/dEE: 1, /dcc: 1, /dE:/dc:O. (12.203)

In other words,

Appendix 12C  Grassman calculus: change of variables
I

Suppose we change variables, writing

=A . (12.204)
Cr &r

where A is a c-number matrix. Then we would like to know how to evaluate the Jacobian
for this transformation, which is defined so that

fdcl---dc,[...]sz(c‘"'C>dsl---dg,[...]. (12.205)
£k

Now since integration and differentiation are identical for Grassman variables, we can
evaluate the fermionic Jacobian using the chain rule for differentiation, as follows:

87’
dey---deyl...]= —m ...
/q erlol = g
a d 9"
:Ej( 5P SP’) L..1, (12.206)
7 \ dci dcy ) 9&p, - -- 0&p,
where P = (}} I:) is a permutation of the sequence (1 ---r). But we can order the
| oo Py

differentiation in the second term, picking up a factor (—1)”, where P is the signature of
the permutation, to obtain

_ N _qyp (e 98p, r
/dcl...dc,[...]—XP:( 1) <8c1 8cr>3§1"'3gr[“.]

—det[A—‘]a—r[ ]
B 0E -+ 98,

= f detfA~11dg; - - - d&q[.. ], (12.207)




Appendix 12D Grassman calculus: Gaussian integrals

where we have recognized the prefactor as the determinant of the inverse transformation
&€ = A~ !c. From this result, we can read off the Jacobian of the transformation as

J (01 . ..cr> _ detA]! = ‘8(c1,...cr)

§1...& 91, &)

which is precisely the inverse of the bosonic Jacobian. This has important implications

for supersymmetric field theories, where the Jacobians of the bosons and fermions pre-

cisely cancel. For our purposes, however, the most important point is that, for a unitary
transformation, the Jacobian is unity.

—1
, (12.208)

Appendix 12D  Grassman calculus: Gaussian integrals

The basic Gaussian integral is simply
dedce_“Ec = /d&dc(l —acc) = a. (12.209)
If we now introduce a set of N variables, then
/ [ [dejdcjexp—| > " ajcie; | =] | oy (12.210)
J J J

Suppose we now carry out a unitary transformation, for which the Jacobian is unity. Then,
since

C:U%-, Z‘:éUTa

the integral becomes
[ T exoi— 461 = [ o
J J
where A;j =), Ul.TlalUlj is the matrix with eigenvalues ¢;. It follows that

/ [ [ d&idsjexpl—& - A - £] = detA. (12.211)
j

Finally, by shifting the variables & — & + A~!j, where j is an arbitrary vector, we find that

Z1j] = f [1déds expl—G -A-&+-& +&-j)) = detAexp[j-A7"-jl. (12.212)
J

This is the basic Gaussian integral for Grassman variables. Notice that, using the result
In detA = Tr InA, it is possible to take the logarithm of both sides to obtain

Sjl = —InZ[j] = —TrlnA —j-A"".]. (12.213)
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The main use of this integral is for evaluating the path integral for free-field theories. In
this case, the matrix A — —G~! becomes the inverse propagator for the fermions, and
&, — Y (iwy,) is the Fourier component of the Fermi field at Matsubara frequency iw,,.



