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(b) At low temperatures, the density of states is given by A(ω)/N(0) = (|ω|/"), so that
the thermally averaged density of states

(
A(ω)
N(0)

)
= kBT

"
2
∫ ∞

0

x
(ex + 1)(e−x + 1)

= kBT
"

ln 4 (15.92)

grows linearly with temperature. Thus in a d-wave superconductor the inverse pen-
etration depth 1

λ2
L

∝ Q(T) will exhibit a linear dependence on temperature at low

temperatures, rather than the exponential dependence expected from a fully gapped
s-wave superconductor:

1 − λ2
L(0)

λ2
L(T)

∼ kBT
"

(kBT << ").

(Note that in a dirty d-wave superconductor the density of states is constant at low tem-
peratures, which leads to a quadratic temperature dependence of the inverse penetration
depth at the lowest temperatures.)

15.5 Superfluid 3He

15.5.1 Early history: theorists predict a new superfluid

As our second example of anisotropic pairing, we discuss the remarkable case of superfluid
3He. As the 1950s came to an end and the wider significance of the BCS pairing instability
was appreciated, the condensed-matter community began to realize that 3He might form
a BCS superfluid condensate, avoiding the mutual repulsion of the atoms by pairing in
a higher angular momentum channel. Four independent groups (Lev Pitaevksii [6] at the
Kapitza institute in Moscow; David Thouless at the Lawrence Radiation Laboratory, Uni-
versity of California, Berkeley [7]; Victor Emery and Andrew Sessler at the University of
California, Berkeley [8]; and the Gang of Four, Keith Brueckner and Toshio Soda at the
University of California, La Jolla, and Philip W. Anderson with Pierre Morel at Bell Labo-
ratories, New Jersey 4 [9, 10]) came up with the idea of anisotropic pairing. Although these
early papers examined both p- and d-wave pairs, each of them used bare nuclear interaction
parameters as input to the BCS theory, and on the basis of these calculations came to the
conclusion that the leading attractive channel was the l = 2, d-wave channel, predicting a
d-wave superfluid condensate would develop in 3He around Tc = 50−150 mK. The theory
community would later be vindicated in their prediction of anistropic superfluidity in 3He,
but at a much lower temperature and with a p-wave rather than a d-wave symmetry.

During the 1960s the theory of anisotropic superfluidity developed rapidly, providing the
framework for p-wave pairing that would ultimately be used to understand 3He. In 1961
Morel and Anderson [10] introduced the ground state of what would later be identified

4 Pierre Morel was officially a scientific attache at the French Embassy in New York City.
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as the “A” phase, while in 1963 Roger Balian at the Centre d’Etude Nucléaires, Saclay,
and Richard Werthamer at Bell Laboratories [11] discovered, an isotropic triplet paired
ground state that would later be identified as the “B” phase. Gradually, towards the end
of the 1960s, it became clear that the use of a bare interaction parameter as an input to
BCS theory needed to be corrected for many-body effects, particularly with ladder diagram
corrections to the pair scattering amplitude [12]. In a pioneering work, Walter Kohn at the
University of California, San Diego, and Joaquin Luttinger at Columbia University, New
York, [13] showed that, when many-body corrections to the Cooper channel interaction are
considered, the sharpness of the Fermi surface guarantees that Fermi liquids are inevitably
unstable to anisotropic pairing in some higher angular momentum channel. Using an input
delta-function potential, Kohn and Luttinger derived an approximate asymptotic formula
for Tc as a function of angular momentum l in 3He, given by

Tc(l) ∼ ϵF exp
{
− π2

(kFa)2 l4
}

, (15.93)

where l is the angular momentum of the pair, ϵF and kF are the Fermi energy and momen-
tum, respectively, and a is the diameter of the 3He atom. Curiously, Kohn and Luttinger
chose to illustrate this equation for l = 2, d-wave pairing, which for kFa ∼ 2 gives
Tc ∼ 10−17ϵF . Had they made the bold but uncontrolled insertion of l = 1, they would
have obtained Tc ∼ 0.05ϵF ∼ 50 mK, surely an indication that p-wave pairing is a stronger
candidate than d-wave! Then in 1967 D. Fay and A. Layzer, working at the Stevens Insti-
tute of Technology, New Jersey, made the critical observation [14] that in dilute neutral
fluids many-body effects, which tend to ferromagnetically enhance interactions, will also
generally lead to p-wave pairing.

It was not until 1972 that Douglas Osheroff, Robert Richardson, and David Lee at Cor-
nell University finally discovered superfluidity in 3He, developing at 2.65 mK [15] (see
Figure 15.7). From the anomalies in the NMR response, this team was able to identify two
phases: a high-temperature A phase and a low-temperature B phase in which most of the
magnetic response disappeared. By carefully analyzing the detailed NMR measurements
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carried out on these phases, Anthony Leggett, working at Sussex University [16], was
able to show [17–19] that the pair symmetry of the A phase is triplet and probably cor-
responds to the Anderson–Morel state (now called the Anderson–Brinkman–Morel state).
The pair symmetry of the B phase was later identified with the isotropic and fully gapped
Balian–Werthamer state [20].

Curiously, although the early 3He theorists predicted the wrong pair symmetry for
3He, their efforts were not in vain, for d-wave pairing was realized seven years later
in superconductors, with the discovery of the first anisotropic superconductor, CeCuSi2,
by Frank Steglich at Cologne University [21]. We now know many examples of d-wave
superconductors, including the high-temperature cuprate superconductors.

15.5.2 Formulation of a model

The beauty of 3He is that its isotropy provides us with a model system. The Fermi surface
is perfectly spherical and in this case the pairing interaction between the quasiparticles
depends only on the relative angle between the initial and final pair momenta k and k′,
i.e. Vk,k′ = V(cos θk,k′ ). This implies that the pairing interaction can be decomposed as a
multipole expansion involving Legendre polynomials:

Vk,k′ =
∑

l

(2l + 1)VlPl(k̂ · k̂
′
). (15.94)

This is reminiscent of the multipole expansion of Fermi liquid interactions (6.38). Using
the orthogonality relation

∫ dc
2 Pl(c)Pl′ (c) = δl,l′/(2l + 1), the parameters Vl are given by

Vl =
∫ 1

−1

d cos θ

2
Pl(cos θ )V(cos θ ) l ∈

{
even (singlet)
odd (triplet).

(15.95)

These are the higher angular momentum analogues of the BCS s-wave interaction para-
meter. Now the parity of the Legendre polynomials alternates with l, Pl = (−1)l (Pl(−x) =
(−1)lPl(x)), so the even l define singlet pair potentials while the odd l define triplet (S = 1)
pair potentials.

Using the relationship (2l + 1)Pl(k̂ · k̂
′
) = 4π

∑l
m=−l Y∗

lm(k̂)Ylm(k̂
′
), we can factorize

the anisotropic BCS interaction in the form

Vk,k′ =
∑

l,m

Vl y∗
lm(k̂)ylm(k̂

′
), (15.96)

where we have used the notation ylm =
√

4πYlm to denote spherical harmonics normalized
to give unit norm when averaged over the sphere

∫ d(
4π y∗

lmylm = δl,l′δm,m′ . This is the same
kind of factorized interaction encountered in the previous section, and we can treat it in the
same way. For 3He, the hard-core repulsion between the atoms rules out an s-wave insta-
bility5 and it is the p-wave (l = 1) triplet (S = 1) channel that takes over. Approximating
V1 = −g/V and ignoring all other channels, then

5 Curiously, in optical atom traps in which the atomic interactions among highly dilute fermions can be tuned
through a Feshbach resonance, it is possible to produce an attractive s-wave interaction, so a conventional BCS
instability does occur.
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Vk,k′ = − g
V

3 cos(k · k′) = −3g
V

(k̂ak̂′
a), (15.97)

where k̂a = ka/kF and the sum over the repeated index a = 1, 2, 3 is implied. The BCS
Hamiltonian for a triplet superfluid is then [11]

HBCS =
∑

kσ

ϵkc†
kσ ckσ − 3g0

V

∑

k,k′∈ 1
2 BZ

(*⃗†
k k̂ℓ) · (k̂′

ℓ*⃗k′ )

*⃗k = c−kα

(
−iσ2σ⃗

)

αβ

ckβ

*⃗†
k = c†

kα

(
σ⃗ iσ2

)

αβ

c†
−kβ . (15.98)

Notice that there are now three triplet channels (*⃗k ≡ *a
k , a = 1, 2, 3) and three orbital

channels (k̂l, l = x, y, z) in which the pairing takes place. The summation over momentum
in the interaction takes place over one-half the Brillouin zone.

15.5.3 Gap equation

If we carry out a Hubbard–Stratonovich transformation, we get

HMFT =
∑

kσ

ϵkc†
kσ ckσ +

∑

k∈ 1
2 BZ

[
*⃗†

k · ("⃗l) k̂l + H.c.
]

+ V
3g0

("⃗∗
l · "⃗l). (15.99)

The three vectors "⃗l (l = x, y, z) define a three-dimensional matrix "a
l ≡ ("⃗l)a which

links the spin and orbital degrees of freedom. If we denote "⃗k = ∑
l=x,y,z "⃗lk̂l, then, since

∫ d(k̂
4π k̂lk̂m = 1

3δlm, it follows that

"a
l = ("⃗l)a = 3

∫ d(k̂

4π
("⃗k)ak̂l. (15.100)

Thus we can write

V
3g0

("⃗∗
l · "⃗l) = 3V

g0

∫ d(k̂

4π

d(k̂′

4π
"⃗k · "⃗k′ (k̂ · k̂′) ≡ −

∫

k̂,k̂′
"⃗∗

kV−1
k,k′"⃗k′ , (15.101)

where we have identified V−1
k,k′ ≡ − V

g0
(3k̂ · k̂′) and denoted

∫
k̂ =

∫ d(k̂
4π . The mean-field

Hamiltonian is then

HMFT =
∑

kσ

ϵkc†
kσ ckσ +

∑

k∈ 1
2 BZ

(
*⃗†

k · "⃗k + H.c.
)

+ 3V
g0

∫ d(k̂

4π

d(k̂′

4π
"⃗k · "⃗k′ (k̂ · k̂′).

(15.102)

Now, to diagonalize this mean-field theory we need to cast it into spinors. Triplet pairing
mixes up and down electrons, which obliges us to use a four-component spinor called a
Balian–Werthamer spinor [11] after its inventors:
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ψk ≡
(

ck

iσ2c†
−k

)

≡

⎛

⎜⎜⎜⎝

ck↑
ck↓

c†
−k↓

−c†
−k↑

⎞

⎟⎟⎟⎠
. Balian–Werthamer spinor (15.103)

The upper two entries are the destruction operators for particles of momentum k, while the
lower two,

(
ak↑
ak↓

)
≡

(
c†
−k↓

−c†
−k↑

)

, (15.104)

are the destruction operators for holes of momentum k. Hole-destruction operators are
the time reversal (denoted by the operator θ ) of the corresponding particle-creation opera-
tors, and the minus sign in the lower entry appears on time reversal of a down-spin state,
a†

k↓ = θck↓θ−1 = −c−k↑.6 Notice how the iσ2 that appears in the triplet pair opera-
tors is now neatly absorbed into the spinor. Moreoever, the BW spinor obeys canonical
anticommutation rules:

{ψkα , ψ†
k′β} = δk,k′δαβ .

Of course, we have doubled the number of components in the spinor, so we must now
restrict the momentum to one-half of momentum space, k ∈ 1

2 BZ. The payoff is that we
now have a rotationally invariant representation in which the spin operator is defined in
terms of block-diagonal Pauli matrices:

σ⃗4 ≡ 1 ⊗ σ⃗ =
(

σ⃗

σ⃗

)
, (15.105)

while the Nambu matrices are now block matrices:

τ⃗4 ≡ τ⃗ ⊗ 1 =
{(

1
1

)
,
( −i1

i1

)
,
(

1
−1

)}
. (15.106)

In this notation, the BCS Hamiltonian can be succinctly rewritten as

HMFT =
∑

k∈ 1
2 BZ

ψ†
khkψk + 3V

g0

∫ d(k̂

4π

d(k̂′

4π
"⃗k · "⃗k′ (k̂ · k̂′)

hk =
(

ϵk "⃗k · σ⃗

"⃗∗
k · σ⃗ −ϵk

)

≡ ϵkτ3 + ("⃗k · σ⃗ )τ+ + ("⃗∗
k · σ⃗ )τ−, (15.107)

where τ± = 1
2 (τ1 ± iτ2). It is common to denote the direction of the gap function in spin

space by the complex d-vector d⃗k,

"⃗k = "d⃗k, (15.108)

which is normalized so that its angular average over the Fermi surface is unity:
∫

d(k

4π
|d⃗k|2 = 1. (15.109)

6 You can also verify that the diagonal and off-diagonal matrix elements of the spin operator are the same for
particles and for holes, so that h†

kσ⃗hk = c−k(iσ2)σ⃗ (−iσ2)c−k = c†
−kσ⃗c−k, where the last step follows

because σ⃗T = −σ2σ⃗ σ2.
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The d-vector is an emergent property of the Fermi surface, and the textures it gives rise to
in momentum space define the state of the condensate.

If we take the determinant of ω − hk by multiplying out its two-dimensional block
diagonals, we find

det(ω − hk) = det
[
(ω2 − ϵ2

k)1 − ("⃗∗
k · σ⃗ )("⃗k · σ⃗ )

]

= det
[
(ω2 − ϵ2

k)1 − "2(|d⃗k|2 + id⃗∗
k × d⃗k · σ⃗ )

]

= det
[
(ω2 − ϵ2

k)1 − "2(|d⃗k|2 + 2d⃗1k × d⃗2k · σ⃗ )
]

, (15.110)

where we have used the identity σ aσ b = δab + iϵabcσ c on the second line and decomposed
d⃗k = d⃗1k − id⃗2k into its real and imaginary parts on the last line. The quasiparticle energies
determined by pairing matrix hk are then

Ek± =
√

ϵ2
k + "2(|d⃗k|2 ± 2|d⃗1k × d⃗2k|).

There are in fact two superfluid phases of 3He, and, in both, d⃗1k and d⃗2k are parallel, and
the gap functions take the form

"⃗k = " ×
{

k̂xx̂ + k̂yŷ + k̂zẑ BW or B phase√
3
2 (k̂x + iky)ẑ . ABM or A phase

(15.111)

The BW or B phase is named after Balian and Werhammer. In this phase the d-vector points
radially outwards from the Fermi sea, forming a topological “hedgehog” configuration (see
Figure 15.8(a)) with a uniform gap and quasiparticle energy given simply by

Ek =
√

ϵ2
k + "2. B phase

The B phase, with a full gap, dominates the phase diagram. The ABM or A-phase, named
after its discoverers, Anderson, Brinkman, and Morel, develops in a small sliver of the
phase diagram under pressures of about 2 MPa (see Figure 15.7(b)). This phase involves
pairing in a single triplet orbital channel with a uniform (“z”) direction of the d-vector;
now the magnitude of the gap is momentum-dependent:

∆ (θ) = ∆ ∆ (θ) = ∆ sin θ

d(κ)^

d(κ)^

B phase A phase!Fig. 15.8 Showing the gap structure and d-vector orientation for the B and A phases of superfluid 3He.
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"⃗k =
√

3
2
" sin θeiφ ẑ. A phase

This function vanishes at the poles, giving rise to a quasiparticle excitation spectrum

Ek =
√

ϵ2
k + 3

2
"2 sin2 θ . A phase

The derivation of the mean-field equations for these two solutions is simplified by the
observation that, for both of them, the potential energy term is

3V
g0

∫ d(k̂

4π

d(k̂′

4π
"⃗k · "⃗k′ (k̂ · k̂′) = V

g0
"2.

The free energy of the mean-field theory then takes precisely the same form as in BCS
theory:

FMFT = −2T
∑

k

ln
(

2 cosh
βEk

2

)
+ V

g0
"2.

If we differentiate with respect to "2 we obtain the gap equation:

1
g0N(0)

=
∫ 1

−1

d cos θ

2

∫ ωD

−ωD

dϵ
"(θ )2/"2

√
ϵ2 + "(θ )2

tanh

[√
ϵ2 + "(θ )2

2

]

.

According to this analysis, the A and B phases have identical mean-field transition tem-
peratures. However, at lower temperatures the B phase wins out because its fully gapped
Fermi surface gives rise to a lower free energy.

Example 15.6 Consider a single triplet Cooper pair described by the state

|*⟩ = 1√
2

(
d̂ · *⃗†

k

)
|0⟩ = 1√

2
d̂ ·

(
c†

kσ⃗ iσ2c†
−k

)
|0⟩,

where d̂ is a real unit vector.

(a) Show that

S⃗|*⟩ = i√
2

(d̂ × *⃗
†
k)|0⟩

and use this to prove that the spin of the state is S = 1, i.e.

S2|*⟩ = 2|*⟩, (15.112)

while the component of the spin in the direction of the d-vector vanishes:

(d̂ · S⃗)|*⟩ = 0 (15.113)

and the expectation value of the magnetic moment is zero, i.e. ⟨*|S⃗|*⟩ = 0.
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(b) Show that the expectation value is

⟨*|SaSb|*⟩ = δab − d̂ad̂b, (15.114)

so that ⟨S2⟩ = S(S + 1) = 2, corresponding to a spin-quadrupole with a fluctuating
moment in the plane perpendicular to the d-vector.

Solution

(a) The effective spin operator for this state only involves momenta ±k, so we may use S⃗ =
1
2 [c†

kσ⃗ck+c†
−kσ⃗c−k]. To determine the action of the spin operator on the triplet pair, we

need to commute it past the triplet pair operator onto the vacuum. The commutator is
[
Sa, (*⃗†

k)
b] =

[(
c†

kσ ack + c†
−kσ ac−k

)
,
(

c†
kσ biσ2c†

−k

)]

= c†
k

(
σ aσ biσ2 + σ biσ2(σ a)T

)
c†
−k,

where the first and second terms derive from the positive and negative momentum
components of the spin operator. Using σ2(σ a)T = −σ aσ2 we obtain

[
Sa, (*⃗†

k)b
]

= 1
2

c†
k

[
σ a, σ b

]
iσ2c†

−k = iϵabcc†
kσ ciσ2c†

−k (15.115)

or [
Sa, d̂ ·

(
c†

kσ⃗ iσ2c†
−k

)]
= iϵabcdb

(
c†

kσ ciσ2c†
−k

)
= i(d̂ × *⃗†

k)a, (15.116)

and hence

S⃗|*⟩ = 1√
2

[S⃗,
(
d̂ · *⃗†

k
)
]|0⟩ = i√

2

(
d̂ × *⃗†

k

)
|0⟩. (15.117)

Using (15.115 ), we have

Sa(*⃗†
k)b|0⟩ = iϵabc(*⃗†

k)c|0⟩, (15.118)

so that

S2(*⃗†
k)b|0⟩ = SaSa(*⃗†

k)b|0⟩
= iϵabcSa(*⃗†

k)c|0⟩

=
2δbd︷ ︸︸ ︷

iϵabciϵacd(*⃗†
k)d|0⟩ = 2(*⃗†

k)b|0⟩, (15.119)

so, writing this in vector notation,

S2*⃗†
k|0⟩ = 2*⃗†

k|0⟩. (15.120)

Hence S2|*⟩ = S2(d̂ · *⃗†
k)|0⟩ = 2|*⟩, corresponding to a spin of 1.

If we evaluate the expectation value of the moment, we get

⟨*|S⃗|*⟩ = 1
2
⟨0|(d̂∗ · *⃗k)(d̂ × *⃗†

k)|0⟩ = id̂ × d̂∗. (15.121)
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In our case d̂ is real, so that ⟨S⃗⟩ = 0. Note, however, that if d̂ = d̂1 + id̂2 is complex,
then ⟨S⃗⟩ = 2d̂1 × d̂2, so that if d̂1 and d̂2 are not parallel, the Cooper pair state carries
a net magnetic moment.

(b) Taking the result (15.117), we have

⟨*|SaSb|*⟩ = 1
2
ϵapqϵbrsdpdr

2δqs
︷ ︸︸ ︷
⟨0|

(
*⃗k

)q (
*⃗†

k

)s
|0⟩ = ϵapqϵbrq

=
(
δabδpr − δarδpb

)
dpdr

= δab − dadb, (15.122)

so the moment fluctuations of the pair lie in the plane perpendicular to the d-vector.

Example 15.7 Derive the BCS pair wavefunction for the B phase of 3He.

Solution

By analogy with the case of singlet pairing, we expect the ground state to be a coherent
state of a triplet pair,

|*⟩ = exp
[
1†

T

]
|0⟩, (15.123)

where

1†
T = 1

2

∑

k

φk(k̂ · *⃗†
k) (15.124)

creates a triplet pair and φk = φ−k is an even function of momentum. The factor of 1
2 is

included as a normalization that takes account of the fact that *†
k is only independent in

one-half of momentum space.
Now the ground state is annihilated by the quasiparticle destruction operators. For the

triplet B phase we write the quasiparticle-creation operators as

a†
k = ψ†

k ·
(

uk
vk

)
= c†

kσ ukσ + c̃kσ vkσ , (15.125)

where c̃kα = c−kβ [−iσ2]βα and the ukσ and vkσ are two-component spinors. For the B
phase, we can take the mean-field Hamilonian to be

HMFT =
∑

k∈ 1
2 BZ

ψ†
khkψk, hk =

(
ϵk "(k̂ · σ⃗ )

"(k̂ · σ⃗ ) −ϵk

)

. (15.126)

Now since [H, ak] = Ekak, it follows that
(

ϵk "(k̂ · σ⃗ )
"(k̂ · σ⃗ ) −ϵk

)(
uk
vk

)
= Ek

(
uk
vk

)
. (15.127)

(Notice that, if we choose a spin quantization axis parallel to k̂, then this eigenvalue
equation is identical to singlet pairing.)
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Now we must find the condensate that is annihilated by the quasiparticle operators:

ak = (u†
k, v†

k) · ψk = u†
kσ ckσ + v†

kσ c̃†
kσ . (15.128)

To commute the quasiparticle operator with the pair creation operator, we note that

[ak, c†
k′σ ] = u†

kσ δk,k′ , (15.129)

so that

[ak, 1†
T ] = 1

2

⎡

⎣ak,
∑

k′
φk′c†

k′ (k̂′ · σ⃗ )iσ2c†
−k′

⎤

⎦

= 1
2
φk

[
u†

k(k̂ · σ⃗ )iσ2c†
−k + c†

−k(k̂ · σ⃗ )iσ2(u†
k)T

]

= 1
2
φk

⎡

⎢⎢⎣u†
k(k̂ · σ⃗ )iσ2c†

−k + u†
k

(k̂·σ⃗ )iσ2︷ ︸︸ ︷
−iσ2(k̂ · σ⃗ T ) c†

−k

⎤

⎥⎥⎦

= φk

[
u†

k(k̂ · σ⃗ )c̃†
−k

]
, (15.130)

where we have used σ2σ⃗
T = −σ⃗ σ2 and the fact that φk = φ−k. Now by (15.127),

u†
k(k̂ · σ⃗ ) = (Ek + ϵk)

"
v†

k, (15.131)

so that
|uk|
|vk| = (Ek + ϵk)

"
, (15.132)

enabling the commutator of the quasiparticle operator with the pair creation operator to be
written in the compact form

[αk, 1†
T ] = |uk|

|vk|φk(v†
kc̃†

−k). (15.133)

As in the case of singlet pairing, if we choose

φk = − |vk|
|uk| (15.134)

then

[αk, 1†
T ] = −v†

k · c̃†
−k, (15.135)

and since c̃k commutes with 1†
T , it follows that

[αk, (1†
T )n] = −n(1†

T )n−1v†
kc̃k, (15.136)

so that

[αk, exp[1†
T ]] = − exp[1†

T ]v†
kc̃k. (15.137)

This means that

αk exp[1†
T ] = exp[1†

T ]αk − exp[1†
T ]v†

kc̃k = exp[1†
T ]u†

k · ck, (15.138)
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so that αk annihilates the coherent state:

αk exp[1†
T ]|0⟩ = exp[1†

T ]u†
k · ck|0⟩ = 0, (15.139)

proving that

|*⟩ = exp
[
−1

2

∑ |vk|
|uk| (k̂ · *⃗

†
k)

]
|0⟩ (15.140)

is the ground state.
Note that we have to be careful in reducing this to the usual multiplicative BCS form,

for the square of the triplet pair operator is not zero. If one splits the sum over momentum
space into two parts, kz > 0 and kz < 0, then the Cooper pair operator can be written as

1†
T =

∑

kz>0

φkc†
k

(
k̂ · σ⃗ + 1

2

)

c̃−k +
∑

kz<0

φkc†
k

(
k̂ · σ⃗ − 1

2

)

c̃−k

=
∑

k

φkc†
k

(
k̂ · σ⃗ + sgn(kz)

2

)

c̃−k. (15.141)

The additional singlet term that has been added and subtracted from the upper and lower
halves of momentum space cancel with each other. Now the terms inside the pair operators
are projection operators, and the squares of these operators do vanish. We can now expand
the coherent triplet paired state as a BCS product, as follows:

|*⟩ =
∏

k

(

|uk| − |vk|c†
k

(
k̂ · σ⃗ + sgn(kz)

2

)

c̃−k

)

|0⟩. (15.142)

Example 15.8

(a) Show that the Nambu Green’s function for 3HeB is given by

G(k) = [iωn − ϵkτ3 − ("⃗k · σ⃗ )τ1]−1 = iωn + ϵkτ3 + ("⃗k · σ⃗ )τ1

(iωn)2 − E2
k

.

(b) Calculate the magnetic susceptibility of the B phase of 3He. Show that the ground-state
condensate has a finite Pauli susceptibility equal to 2/3 of the normal state.

Solution

(a) As in the case of singlet pairing, we can write the propagator as G(k) = − 1
∂τ +hk

. Let
us start with the imaginary-time propagator, which we will write

G(k, τ ) = −⟨Tψk(τ )ψ†
k(0)⟩ (15.143)

or, written out explicitly, Gαβ (k, τ ) = −⟨Tψkα(τ )ψ†
kβ (0)⟩, where ψkα is a Balian–

Werthamer spinor. The expectation values are to be evaluated with the mean-field
Hamiltonian H = ∑

k∈ 1
2 BZ ψ†

khkψk, where
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hk = ϵkτ3 + ("⃗k · σ⃗ )τ1. (15.144)

When we take account of the time-ordering, the equation of motion for G is

∂τG(k, τ ) = −δ(τ )⟨{ψk, ψ†
k}⟩ − ⟨T(∂τψk(τ ))ψ†

k(0)⟩
= −δ(τ )1 − ⟨T[H, ψk(τ )]ψ†

k(0)⟩
= −δ(τ )1 − hkG(k, τ ), (15.145)

where we have used ψk(τ ) = eHτψke−Hτ and ∂τψk(τ ) = [H, ψk(τ )] = −hkψk. It
follows that

(∂τ + hk)G(k, τ ) = −δ(τ )1 (15.146)

or G(k, τ ) = −1/[∂τ + hk]. Fourier transforming this expression in time (G(k, τ ) →
G(k, iωn), ∂τ → −iωn), it follows that (−iωn + hk)G(k) = −1, or

G(k, iωn) = 1

iωn − ϵkτ3 − ("⃗k · σ⃗ )τ1
= iωn + ϵkτ3 + ("⃗k · σ⃗ )τ1

(iωn)2 − E2
k

, (15.147)

where, for 3He-B, we can take "k = "k̂ , so that ("⃗k · σ⃗ )2 = "2.
(b) In a magnetic field, the free energy becomes

F = −T
2

∑

k

Tr ln[−G−1(k) − µN σ⃗ · B⃗] + field-independent terms, (15.148)

where the factor of 1
2 derives from expanding the summation over one-half the Bril-

louin zone to the entire momentum space and µN is the nuclear moment of the
3He-atom. We can either differentiate this twice with respect to the field or write the
spin susceptibility as a mean-field polarization bubble, to obtain

χab = − ∂2F
∂Ba∂Bb

=

k

k

a b = −Tµ2
N

2 k
Tr σaG(k)σbG(k) .

(15.149)
Inserting (15.147), we obtain

χab = −Tµ2
N

2

∑

k

Tr

[

σ a iωn + ϵkτ3 + ("⃗k · σ⃗ )τ1

(iωn)2 − E2
k

σ b iωn + ϵkτ3 + ("⃗k · σ⃗ )τ1

(iωn)2 − E2
k

]

.

(15.150)

Now we can carry out the traces over the Nambu and Pauli matrices separately. Carrying
out the trace over the Nambu components, we obtain

χab = −Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k]Tr[σ aσ b] +
[
σ a("⃗k · σ⃗ )σ b("⃗k · σ⃗ )

])
.
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Now Tr[σ aσ b] = 2δab. To calculate Tr[σ aσ bσ cσ d], one can cyclically anticommute σ a

around the trace (using σ aσ b = 2δab − σ bσ a), picking up the remainders, to obtain

Tr[σ aσ bσ cσ d] = 2
(
δabδcd − δacδbd + δadδbc

)
,

so that

Tr[σ a("⃗k · σ⃗ )σ b("⃗k · σ⃗ )] = 2[2"a
k"b

k − δab"k · "k] = 2"2[2k̂ak̂b − δab], (15.151)

so the susceptibility can be rewritten

χab = −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k]δab + "2[2k̂ak̂b − δab]
)

= −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + ϵ2

k + "2]δab + 2"2[k̂ak̂b − δab]
)

.

(15.152)

After the momentum sums, k̂ak̂b → 1
3δab so the susceptibility is isotropic, χab = χ (T)δab,

where

χ = −2Tµ2
N

∑

k

1

[(iωn)2 − E2
k]2

(
[(iωn)2 + E2

k] − 4
3
"2

)
. (15.153)

The first term is recognized as the Pauli susceptibility of a singlet BCS superconductor,
which drops exponentially to zero as T → 0, while the second term must be interpreted
as an additional contribution derived from the polarizability of the triplet condensate. The
evaluation of the Matsubara sums follows the same lines as for a singlet superconductor.
We obtain

χ = −2µ2
N

∑

k

∮

z=±Ek

dz
2π i

f (z)
1

(z − Ek)2(z + Ek)2

(
z2 + E2

k − 4
3
"2

)

= −2µ2
N

∑

k

{
∂

∂z

[
f (z)

1
(z + Ek)2

(
z2 + E2

k − 4
3
"2

)]

z=Ek

+ (Ek → −Ek)

}

= 2µ2
N

∑

k

{

−f ′(Ek)

(

1 − 2"2

3E2
k

)

+ (1 − 2f (Ek))
"2

3E3
k

}

. (15.154)

At zero temperature, the first term vanishes. The second term becomes

χ (T = 0) = 2µ2
NN(0)

∫ ∞

−∞
dϵ

(
"2

3[ϵ2 + "2]3/2

)

= 2µ2
NN(0)

[
ϵ

3
√

ϵ2 + "2

]∞

−∞
= 2

3
× 2µ2

NN(0), (15.155)

so the zero-temperature susceptibility is 2/3 of the normal-state Pauli susceptibility. This
intrinsic susceptibility of the condensate is present because the triplet pairs become slightly
spin-polarized in a magnetic field.
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We can actually do a little better than this, however, by noticing that, at a finite
temperature (denoting E =

√
ϵ2 + "2),

2
3

= 1
3

∫ ∞

−∞
dϵ

d
dϵ

[
ϵ√

ϵ2 + "2
[1 − 2f (E)]

]

= 1
3

∫ ∞

−∞
dϵ

d
dϵ

[
"3

E2 [1 − 2f (E)] − 2f ′(E)
(

1 − "2

E2

)]
, (15.156)

which we recognize as the argument of the second part of the integral in (15.154). We can
thus rewrite the susceptibility as

χ (T) = 1
3
χS(T) + 2

3
χP,

where χP = 2µ2
NN(0) is the Pauli susceptibility of the normal state and

χS(T) = 2µ2
NN(0)

∫ ∞

−∞
dϵ[−f ′(

√
ϵ2 + "2)] = 2µ2

NN(0)Y
[

"

2T

]
, (15.157)

where

Y[x] = 1
2

∫ ∞

−∞

du

cosh2[
√

u2 + x2]
(15.158)

is called the Yoshida function, after its inventor, Kei Yoshida. The final expression for the
susceptibility of the B phase is then

χB(T) = χP

[
2
3

+ 1
3

Y["/2T]
]

. (15.159)

Exercises

Exercise 15.1 The standard two-component Nambu spinor approach does not allow a rota-
tionally invariant treatment of the electron spin and the Zeeman coupling of
fermions to a magnetic field. This drawback can be overcome by switching to a
four-component Balian–Werthamer spinor, denoted by

ψk =
(

c†
k

−iσ2(c†
k)T

)
=

⎛

⎜⎜⎝

ck↑
−ck↓
c†−k↓
c†−k↑

⎞

⎟⎟⎠ . (15.160)

(a) Show, using this notation, that the total electron spin can be written

S⃗ = 1
4

∑

k

ψ†
kσ⃗(4)ψk, (15.161)

where

σ⃗4 =
(

σ⃗ 0
0 σ⃗

)
(15.162)
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is the four-component Pauli matrix. (You may find it useful to use the relationship
σ⃗ T = iσ2σ⃗ iσ2.) In practical usage, the subscript 4 is normally dropped.

(b) Show that, in a Zeeman field, the BCS Hamiltonian

HMFT =
∑

kσ

c†
kα[ϵkδαβ − σ⃗αβ · B⃗]ckβ +

∑

k

[
"̄c−k↓ck↑ + c†

k↑c†−k↓"
]

+ V
g0

"̄"

(15.163)
can be rewritten using Balian–Werthamer spinors in the compact form

HMFT = 1
2

∑

k

ψ†
k
[
hk − σ⃗4 · B⃗

]
ψk + V

g0
"̄", (15.164)

where hk = ϵkτ1 + "1τ1 + "2τ2 as before, but the τ⃗ now refer to the four-
dimensional Nambu matrices

τ⃗ =
([

0 1
1 0

]
,
[

0 −i1
i1 0

]
,
[

1 0
0 −1

])
. (15.165)

(c) Show that the quasiparticle energies in a field are given by ±Ek − σB.
Exercise 15.2 Pauli limited type II superconductors.

The BCS Hamiltonian introduced in describes a Pauli limited superconductor, in
which the Zeeman coupling of the paired electrons with the magnetic field domi-
nates over the orbital coupling to the magnetic field. In the flux lattice of a Pauli
limited type II superconductor, the magnetic field penetrates the condensate and can
be considered to be approximately uniform.

(a) Assuming that the orbital coupling of the electron to the magnetic field is negli-
gible, use the Balian–Werthamer approach developed in the previous problem to
formulate BCS theory in a uniform Zeeman field, as a path integral. Show that the
free energy can be written

F = −T
2

∑

k

Tr ln[∂τ + hk − σ⃗4 · B⃗] + V
g0

"̄"

= −T
2

∑

k,iωn,σ

ln
[
E2

k − (iωn − σB)2
]

+ V
g0

"̄"

= −T
∑

k,σ

ln
[

2 cosh
β(Ek − σB)

2

]
+ V

g0
"̄". (15.166)

(b) Show that the gap equation for a Pauli limited superconductor becomes

1
g0

= 1
2

∑

k,σ

tanh
(

β(Ek − σB)
2

)
1

2Ek
.

Use this expression to show that the upper critical field is given by gµBBc2/2 =
"/2, where " is the zero-temperature value of the gap.

(c) Pauli limited superconductors usually undergo a first-order transition to the flux
state at a higher field than the one just estimated. Why is this?
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