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!Fig. 12.6 (a) Action for initial white-noise variableα. (b) Action for shifted variable" is shifted off-center when the related
quantity A has a predisposition towards developing an expectation value.
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where the summation represents a sum over all possible configurations {"} of the auxiliary
field ". The transformed field

"j = αj − gAj

is a combination of a white-noise field αj and the physical field −gAj, so its fluctuations
now acquire the correlations associated with the electron fluid. Indeed, when the associ-
ated variable A is prone to the development of a broken-symmetry expectation value, the
distribution function for " becomes concentrated around a non-zero value (Figure 12.6).
We call "j a Weiss field after Weiss, who first introduced such a field in the context of
magnetism.

12.5.3 Effective action

Since the fermionic action inside the path integral is actually Gaussian, we can formally
integrate out the fermions as follows:

e−Sψ ["̄,"] =
∫

D[c̄, c]e−S̃ = det[∂τ + hE["̄, "]], (12.178)

where hE is the matrix representation of HE. The full path integral may thus be written

Z =
∫

D["̄, "]e−SE["̄,"],
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where

SE[!̄, !] =
∑

j

∫
dτ

!̄j!j

g
− ln det[∂τ + hE[!̄, !]]

=
∑

j

∫
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!̄j!j

g
− Tr ln[∂τ + hE[!̄, !]]. (12.179)

effective action

Here we have made the replacement ln det → Tr ln. This quantity is called the effective
action of the field !. The additional fermionic contribution to this action can profoundly
change the distribution of the field !. For example, if SE develops a minima around
! = !o #= 0, then ! = −A/g will acquire a vacuum expectation value. This makes
the Hubbard–Stratonovich transformation an invaluable tool for studying the development
of broken symmetry in interacting Fermi systems.

12.5.4 Generalizations to real variables and repulsive interactions

The method outlined in the previous section can also be applied to real fields. If we have
an interaction between real fields, we can introduce a real white-noise field as follows:
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2
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. (12.180)

Then, by redefining qj = Qj + gAj, one obtains

− g
2

∑

j

A2
j →

∑

j

{

QjAj +
Q2

j

g

}

. (12.181)

For example, we can use the Hubbard–Stratonovich transformation to replace an attractive
interaction between fermions by a white-noise potential with variance g:

HI = −g
2

∑

j

(nj)2 →
∑

jσ

Vjnj +
V2

j

2g
,

where nj = nj↑ + nj↓.
But what about repulsive interactions? These require a little more care, because we can’t

just change the sign of g in (12.181), for the integral over the white-noise fields will no
longer be convergent. Instead, after introducing the dummy white-noise fields as before,
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, (12.182)
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we shift each variable in the path integral qj(τ ) by an imaginary amount, qj(τ ) = Qj(τ ) +
igAj(τ ), to obtain 3

g
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∑

j

A2
j →

∑

j

{

iQjAj +
Q2

j

2g

}

. (12.183)

Note finally that, if one replaces Qj = −iQ̃j, this takes the form

g
2

∑
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j →
∑

j
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Q̃jAj −
Q̃2

j

2g

}

. (12.184)

At first sight, this looks like the generalization of (12.181) to negative g, except that now
the integrals over each Qj(τ ) traverse the imaginary rather than the real axis.

Example 12.7 Using the Hubbard–Stratonovich transformation, show that the Coulomb
interaction can be decoupled in terms of a fluctuating potential as follows:

HI = 1
2

∫

x, x′
ρ(x)ρ(x′)

e2

4πε0|x − x′| →
∫

x

[
eρ(x)φ(x) − ε0

(∇φ)2

2

]
. (12.185)

What is the interpretation of the new term, quadratic in the potential field (and why is the
sign negative)?

Solution

Because of the non-local nature of the Coulomb interaction, it is more transparent to make
this transformation in momentum space. Writing

ρ(x) =
∫

q
ρqeiq·x,

1
4πε0|x − x′| =

∫

q

1
ε0q2 eiq·(x−x′), (12.186)

where
∫

q ≡
∫ d3q

(2π )3 , the interaction becomes

HI = 1
2

∫

q

(eρq)(eρ−q)
ε0q2 .

We now add in a dummy white-noise term:

HI → H′
I = 1

2

∫

q

[
(eρq)(eρ−q)

ε0q2 − ε0q2φqφ−q

]
,

3 One might be worried about the legitimacy of shifting a real field by an imaginary quantity. However, just as
the integral

∫ ∞

−∞
dQe−Q2/2 =

∫ ∞+iA

−∞+iA
dQe−Q2/2

is unaffected by a constant shift of the variable Q by an imaginary amount, Q → Q + iA, a multi-variable path
integral

∫
D[Q]e−

∫
dτQ(τ )2/2

is similarly unaffected by shifting the integration variable Q(τ ) by an amount iA(τ ), Q(τ ) → Q(τ ) + iA(τ ).
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with the understanding that, in the path integral, the φq field is to be integrated along the
imaginary axis φq = iφ̃q. Now if we shift φq → φq − eρq

ε0q2 , we obtain

H′
I =

∫

q

[
(eρq)φ−q − ε0

2
q2φqφ−q

]
.

Finally, Fourier transforming back into real space (q2 → −∇2), we obtain

H′
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∫

x

[
eρ(x)φ(x) + ε0

2
φ∇2φ

]
. (12.187)

Integrating the last term by parts gives

H′
I =

∫
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2
(∇φ)2

]
. (12.188)

We can identify the last term in this expression as −ε0E2/2, which is the electrostatic
contribution to the action. The minus sign can be traced back to the fact that, inside the
electromagnetic (Maxwell) action

SEM =
∫

d3xdτ

[
B2

2µ0
− ε0E2

2

]
, (12.189)

the electrostatic contribution to the action enters with the opposite sign to the magnetic
part. The complete path integral for interacting electrons in this representation is then

Z =
∫

D[ψ̄ , ψ , φ] exp
[
−

∫ β

0
dτ

∫
d3x

(
ψ̄

(
− 1

2m
∇2 + eφ(x) − µ

)
ψ − ε0

2
(∇φ)2

)]
.

Thus, by carrying out a Hubbard–Stratonovich transformation, the action becomes local.
This formulation is ideal for the development of RPA approximations to the electron gas,
while mean-field solutions of this path integral can be used to explore the formation of
Wigner crystals.

Appendix 12A Derivation of key properties of bosonic coherent
states

Here we derive the matrix elements and the completeness properties of bosonic coherent
states.

Matrix elements

Matrix elements of normal-ordered operators O[b̂
†
, b̂] between two coherent states are

obtained simply by replacing the operators b̂ and b̂
†

by the c-numbers b and b̄, respectively:

〈b̄1|Ô[b̂
†
, b̂]|b2〉 = O[b̄1, b2] × 〈b̄1|b2〉 = O[b̄1, b2] × eb̄1|b2 . (12.190)


