MANY BODY PHYSICS: 621. Spring 2024

Exercise 1 solutions. Kondo Effect.

1.

(a)

(b)

In a non-interacting impurity problem, the asymptotic wavefunction’s experience a

scattering phase shift, with a radial wavefunction that takes the form

sin(kr + 0(Ey))

Y(r) ~ (1

If we put the system inside a sphere of radius R, and the boundary condition ¥(R) = 0,

then kR + 6(E;) = nm determines the allowed momenta of the quasiparticles, given by

k, = n% - @, separated in momentum by Ak = % The level spacing in the absence
of scattering is Ae = %Ak = g—;% Now in the presence of the scattering phase shift,
momenta are reduced by an amount Ak = —@, so the corresponding energy levels
are shifted downwards by an amount

B e~ _ _OE), )

ok R
Since there is a one-to-one correspondence between the original states with energy €

and the scattered eigenstates with energy E, we can write
N(e)de = N*(E)dE (3)

where N(€) and N*(E) are the unscattered and scattered density of states, respectively.

It thus follows that

de
N*(E) = N(e)— 4
(E) = N(e) E 4)
Now from (2) we have
o(E
Eze- 2B\ (5)
b
so that
de Ae 06(E)
= o=
dE % OE ©)
Combining this with (4) we thus obtain
Ae dé(E
N*(E) = N(E) (1 + —EL) 7
m dE

where we have replaced N(e) — N(E), because E and e differ by the infinitesimal Ae.
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But N(E) = e so that
€

N*(E) = N(E) + 145(E)

n dE ®)



(a)

(b)

(c)

Let us write the basis of singlet states as

1 .
{ummxm:{ﬂ%m»EﬂMﬁ+ﬂwaxﬁﬁm%, )
then the action of the Hamiltonian
H = Z [a//jrl//()' + Vh/’j;—fo‘ +H.c]+ Efl’lfo-] + UI’lfTI’Lfl, (10)
o=",0
on these states is
HIl) = (2eyy] + V ) (fw] +yif)) 10y = 261y + V2V[2) (11)
similarly ,
H|2) = (e + Ep)[2) + V2V(1) + [3)), (12)
and
H|3) = QE; + U)3) + Y2V[2). (13)

Note the appearance of U in the last equaation From this we see that H|i) = |j)H;; =
|/)(jlH|i) , where
2¢e  V2v 0
H;;=|V2v e+E; V2v |=H (14)
0 V2V 2E;+U

The determinantal equation for the eigenvalues E of H is

detlE1 - H] = (E - 2€) [(E - (e + ED)E = 2E; - U) - 2V?| - 2V? |E - 2E, - U]
= (E - 2€)(E - 2E; - U) [E—E—Ef—Z(E)], (15)

where the “self energy”

2v2 2v2
X(E) = + . 16
(&) E-2E,-U E-2e (16)
It follows that the three energy eigenvalues are roots of the equation
E=(e+Ef)+X(E) 17
The triplet states
v f10),
vl £]10), (18)
WS + v IO,

do not hybridize with each other, and have energies Ef + €.
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(d)

(e)

(a)

To obtain the energy eigenstates to leading order in V2, we can use second-order per-

turbation theory, to obtain

2V?
E} = 2e—
f—E
2V 2V
E; = e+E- -
E—Ef Ef+U—E
. 2V?
Ef = 2E,+U-—— (19)
6—Ef—U

When € — Ey > 0 and Ef + U — € > 0, then the lowest energy eigenvalue of the
singlet states is E; =~ €+ E, corresponding to a state with one f-electron: a stable local
moment, bound-into a singlet with a conduction electron. The energy of this singlet
state is, to leading order in perturbation theory

2v? 2v2
e—E; Ej+U-e¢

E;:€+Ef— :€+Ef—2.] (20)

where
V2 V?
+
E—Ef Ef+U—E

If we project into the sub-space with 1 f-electron, then the energy of the triplet state

J=

1)

18 en. + E; — 2J for the singlet state and en. + E; otherwise, so that in this case, the

effective Hamiltonian is

H= Z bWy — 20Ps g1 (22)
where
1 1 .
Pson=1 = 7 Pus1 = WG aplip) - S (23)
where P, -; = n. — 2n4n., projects into the state with n. = 1, Where n., = lﬂ;_l//o-,

ne = ney+n.;. Notice how this Hamiltonian contains a potential and a Kondo scattering

term.

The one loop Feynman diagrams for the anisotropic Kondo model are basically the

same as for the isotropic case. There are two contributions to the t-matrix. Process I is



for which the T-matrix for scattering into a high energy electron state is

1
TOE)posar = ) [ ] Jad o (@0 )5S “S ")
— Ek//
€ €[D-6D,D]
1
= J,JppoD [m] (O’aO'b)ﬁ(,(S as b)a-’cr 24)

In process (I1),

ko

the formation of a particle-hole pair involves a conduction electron line that crosses
itself, leading to a negative sign. Notice how the spin operators of the conduction sea
and antiferromagnet reverse their relative order in process I, so that the T-matrix for
scattering into a high-energy hole-state is given by

1

T(H)(E)k’,&r’;kaa' = - E (6 e P )
- k kl - k/l

] Ja]b(o-bo-a)ﬁa(s “s b)a"a’

& €[-D,—~D+6D] [

1 a a
—JanpdD[ﬁ] (0" 0)pa(S“S V) r (25)

where we have assumed that the energies € and ¢ are negligible compared with D.

Adding (Eq. 24) and (Eq. 25) gives

A

, A JJpploD
6Hll<"lﬁt‘?0";kmr = T[ + =~ bp| l

T[I — 5 [O_a’ O-b]‘gaSaSb
2ieege  jehdgd
1 J Jypl6D| —— ="

=5 p [0, 0" 1pa S, 8"

|€nbz“5z‘d
—N—
p|5D| abc _abd _c ¢d
= ——JuJp €€ 04,8

oD
= /%Ja-]bleabclo-cﬁas co"o—a (26)



(b)

(c)

(d)

where we are using a summation convention throughout. In this way we see that the
virtual emission of a high energy electron and hole generates an antiferromagnetic

correction to the original Kondo coupling constant

oD oD
Jo(D = 16D|) = J(D) + 2Jchp% = Ju(D) - JbJCPH, (b #c+a), 27)
since we have reduced the band-width, 6D = —|6D|. Note that in removing the sum-

mation convention, and the |€,.|, we pick up a factor of two and must now impose the

condition a # b # ¢ In other words,

0J,.p

D - -2y J., (a#b #c). (28)
In the easy-plane/easy axis case where J, = J, = J,, the three scaling equations in
(28) become
oJ
5 lnlD = —2J.J.p+ O,
oJ.
aanD = =2(J.)°p + O(J), (29)

Multiplying the first equation by J, and the second equation by J,, and subtracting the

two we then get

0
a—D(JZ2 — Ji) =0, = JZ2 — J_2L = constant, (30)

The scaling flows contain three domains of attraction corresponding to three stable
fixed points: (Fig. 1):

e Fully Screened Kondo singlet, with domain of attraction J, > 0, J, > —|J_|.

e Unscreened local moment, with domain of attraction J, < —|J,|.

e Entangled Kondo triplet, with domain of attraction J, <0, J, > —|J,|.
In the easy-plane ferromagnetic Kondo model, J, < 0. Provided J, > —|J,|, i.e
providing the Ising part of the Kondo coupling is not too ferromagnetic, a “triplet

Kondo” effect will take place, scaling to strong coupling to produce a S=1, triplet

entangled Kondo state.
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FIG. 1:  Scaling flows for the anisotropic Kondo model, showing three stable fixed points: the Kondo

singlet, the entangled triplet and unscreened moment fixed points.



