
INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Solution to Problems 5.

1. (a) Suppose we write the interaction in the form

V̂ = 1/2
∑
ijkl

Vijklc
†
ic

†
jclck,

then using Wick’s theorem

⟨ϕ|V̂ |ϕ⟩ = 1/2
∑
ijkl

Vijkl⟨ϕ|c†ic†jclck|ϕ⟩

= 1/2
∑
ijkl

Vijkl

{
⟨ϕ|c†ic†jclck|ϕ⟩+ ⟨ϕ|c†ic†jclck|ϕ⟩

}
= 1/2

∑
ijkl

ninj

(
Vijji − Vijij

)
(1)

where ni = ⟨ϕ|c†ici|ϕ⟩. For the case of a translationally invariant system, this becomes

⟨ϕ|V̂ |ϕ⟩ = 1/2
∑

k⃗σk⃗′σ′

n
k⃗σ
n
k⃗σ′

(
V (q⃗ = 0)− V (k⃗ − k⃗′)δσσ′

)
(2)

The first term corresponds to the Classical interaction energy in a uniform gas of particles. The
second term describes the exchange energy between particles in the same spin-state. Particles
in the same spin state must have a spatially asymmetric mutual wavefunction, which lowers the
repulsive energy between them. The corresponding Feynman diagrams are

∆E
V = −i×

[ ]
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(b,c) Here are the five connected diagrams appearing in second-order perturbation theory:

(∆E(2)/V olume) = i×
−1.(i2).(2S+1)

4

∫ d4kd4q1d4q2
(2π)12

V (q1)V (q2)G(k)G(k − q1)

×G(k − q1 − q2)G(k − q2)+

(−1)2.(i2).(2S+1)2

4

∫ d4q
(2π)4

V (q)2
[∫ d4k

(2π)4
G(k)G(k + q)

]2
+

−1.(i2).(2S+1)
2

∫ d4k
(2π)4

G(k)2
[∫ d4q

(2π)4
V (q)G(k − q)

]2
+

(−1)2.(i2).(2S + 1)2V (0)
∫ d4k

(2π)4
G(k)eiω0

+

×
∫ d4k

(2π)4
G2(k)G(k − q)V (q)eiω0

+
+

−1.(i2).(2S+1)3

2 V (0)2
[∫ d4k

(2π)4
G[k]eiω0

+
]2 [∫ d4k

(2π)4
G[k]2eiω0

+
]
+

Actually, the last diagram vanishes, because the integral
∫ d4k

(2π)4
G(k)2 = 0, a result you can un-

derstand by completing the contour of integration on the side opposite to the double pole of
G(k)2.

2. (a) The Fermi wavevector is given by

ρ =
2

(2π)3

(
4π

3
k3F

)
=

1

3π2
k3F

so
kF = (3π2ρ)

1
3 .

Now since ρ = 3
4πR3

e
, where Re = ars defines the separation Re in terms of the dimensionless

separation rs, it follows that

kF =

(
9π

4R3
e

) 1
3

=
1(

4
9π

)1/3
rsa

(b) The total Hartree-Fock energy is the sum of the kinetic energy E0, the Hartree energy EH

and the Fock exchange energy EF , E = E0 + EH + EF . Charge neutrality guarantees that
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EH = 0, and the remaining terms are

E0/V = 2

∫ kF

0

4πk2dk

(2π)3

(
h̄2k2

2m

)
=

h̄2

2m

k5F
5π2m

=
3h̄2k2F
10m

ρ

EF /V = −2× 1

2

∫
k,k′

e2

ϵ0|k− k′|2
fkfk′ (3)

where the minus sign derives from the exchange. Substituting kF = 1/(αrsaB) into E0, we
obtain

E0

ρV
=

3

5

RY︷ ︸︸ ︷(
h̄2

2ma2B

)
1

(αrs)2
=

3

5

RY

(αrS)2
=

2.21RY

r2s
(4)

Next, writing out the exchange energy, we have

EF

V
= −

∫
k,k′

e2

ϵ0(k2 + k′2 − 2kk′ cos θ)

= −e2

ϵ0

∫ kF

0

k2dk

2π2

∫ kF

0

k′2dk′

2π2

∫ 1

−1

dc

2

1

k2 + k′2 − 2kk′c

= − e2

8π4ϵ0

∫ kF

0
kk′dk′dk ln

∣∣∣∣k + k′

k − k′

∣∣∣∣
= − e2k4F

8π4ϵ0

1
2︷ ︸︸ ︷∫ 1

0
xydxdy ln

∣∣∣∣x+ y

x− y

∣∣∣∣ = −e2

ϵ0
× k4F

(2π)4

= − 3e2kF
(4π)2ϵ0

ρ (5)

so that

EF

ρV
= −

2RY︷ ︸︸ ︷
e2

4πϵ0aB

(
3

4παrs

)
= − 3

2παrs
RY ≈ −0.916

rS
RY (6)

yielding our final answer

E

ρV
=

3

5

RY

α2r2s
− 3

2π

RY

αrs

=

(
2.21

r2s
− 0.916

rS

)
RY . (7)

(c) The exchange energy provides a measure of the strength of interaction effects in the uniform
quantum electron plasma. The ratio of the two terms is given by

|EF |
E0

∼ rS

so that interaction effects become small at small rS , or high density.
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3. (a) The three-body delta-function potential can be written

V (ri, rj , rk) =
β

3!

∫
ddx : ρ(x)3 : (8)

(b) Let us denote a three-body vertex by the diagram

with which we associate the amplitude β(−i)(i3) = −β. Here the (i3) is derived from the
three propagators per interaction, and the (−i) is associated with the expansion of the time-
ordered exponential. The leading-order contributions to the energy are then(

E
(3)
int

V

)
= i

∑
(linked cluster diagrams)

= i

{ }
= −iβ

{
−n3

s

6
+

n2
s

2
− ns

3

}
×
[∫

ddp

(2π)d
G(p)

]3
= (−i)(i)3βρ̃3[−n3

s + 3n2
s − 2ns]/6 =

βρ̃3

6
ns(ns − 1)(n2 − 2) (9)

Note that this vanishes for ns = 1 and ns = 2. This is because three identical fermions can
not come together at a point unless they all have different spin components, which requires a
spin degeneracy in excess of two. The three-body interaction is identically zero unless ns > 2,
and discussions of stability completely mimic the above section. For ns > 2, the ground-state
energy per particle is then

ϵ(ns, ρ̃) =

[
aρ̃2/d − αbρ̃+ βcρ̃2

]
(10)

where

a =
2πd

d+ 2

(
h̄2

m

)
[(
d

2
)!]2/d

b =
1

2
(ns − 1)

c =
1

6
(ns − 1)(n2 − 2) (11)

The effect of the three-body term is to introduce an additional “hard-core” interaction that
stabilizes the nuclear matter in two and three dimensions. Provided α > αc =

8βcρ̃
b , the fluid

forms a stable high density configuration with density

ρ̃ ∼ α

β
. (12)
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(c) In nuclear matter, where Coulomb forces are a small perturbation on the strong interaction
between nucleons, the proton and neutron are essentially indistinguishable, forming part of
an “isospin” doublet. Thus each nucleon is described by the tensor product of its spin and
isospin quantum numbers, giving rise to an effective “spin” degeneracy ns = 2× 2 = 4.

(
p
n

)
⊗
(
↑
↓

)
≡


|p ↑⟩
|p ↓⟩
|n ↑⟩
|n ↓⟩

 (13)

Because ns > 2, point three-body interactions become active inside the nucleon and play an
important role in providing the hard-core repulsive interaction which stabilizes the nucleus
at high densities.
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