INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Answers to Questions 4. Monday, Nov 18th

1.

(a)

If we take the expression for the Free energy
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and differentiate it, we obtain
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By integrating the result of part (a) over A, we obtain
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If the interaction energy has an expansion (Vint(A)) = AVi + A2Va + A3V3 + ..., then
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(d) When we turn on the interaction, the change in the ground-state energy involves the contri-
butions from both the change in the Hamiltonian and the change in the ground-state. The
factors of % appearing in front of the n-th order terms reflect the fact that the ground-state
relaxes in response to the change in hamiltonian, so that the change in the ground-state
energy from each term is less than the corresponding change in the expectation value of the

interaction.

The crosses represent the scattering amplitude V}, ;s and the lines represent the propagators.

Diagrammatically, we have:
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or

G (B) = G (B)dipo + G (B)ta 10 (B) Gy (E)



where the “blob” is the t-matrix, represented by the following sum of diagrams
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Written algebraically, this becomes

d
d%q" Uk —q)

— _/ —_—
how (B) =Ulk=K) + [ o E—E(q) +i6

tq,k’ (E> (8)

where we assume that the Fermi surface is empty (i.e u = 0, so that dx = 0 for all states.)
If U(z) = U (z), then U(q) = U and the t-matrix is now momentum independent. We
may immediately solve (8) to obtain

t(w) = 1—(§]F(w) 9)

where
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Let us examine how the integral in the denominator of the t-matrix scales with energy at low
energies. We take the case of a “drained Fermi sea”, in which the chemical potential u = 0,
so that for w < 0,
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Thus in dimensions d < 2, if U < 0, the denominator of the t-matrix
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will pass through zero at some small w = —w* oc |U|> =9, for arbitrarily small |U|, giving

rise to a pole in the t-matrix. To see that this means the development of a bound-state,
consider the density of one-particle states

p(w) = 3 5w Ey) (11)
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where E) is the energy of the eigenstate |\). We may rewrite this in the form
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where G(w) = (w— H +i0)~!. We may also take the trace by summing over the momentum
eigenstates, rather than energy eigenstates, so that
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Writing the Green-function in terms of the t-matrix, the change in the density of states due
to scattering is then
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Near the pole at negative energies, we may write this in the form
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Thus a pole in t(w) implies a pole at negative energies in the density of states, indicating a
bound-state.
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