
INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Answers to Questions 4. Monday, Nov 18th

1. (a) If we take the expression for the Free energy

F (λ) = −T lnZ(λ) = −T lnTr[e−β[Ho+λV ]] (1)

and differentiate it, we obtain

∂F

∂λ
= −T

Z

∂Z

∂λ
. (2)

Now

∂Z

∂λ
= Tr[

∂e−β[Ho+λV ]

∂λ
] = −βTr[V e−β[Ho+λV ]]] (3)

so that

∂F

∂λ
=

Tr[V e−β[Ho+λV ]]]

Z
= ⟨V ⟩ = ⟨Vint⟩/λ. (4)

(b) By integrating the result of part (a) over λ, we obtain

∆F =

∫ 1

0
dλ

∂F

∂λ
=

∫ 1

0

dλ

λ
⟨Vint(λ)⟩ (5)

(c) If the interaction energy has an expansion ⟨Vint(λ)⟩ = λV1 + λ2V2 + λ3V3 + . . . , then

∆E =

∫ 1

0

dλ

λ
⟨ϕ|Vint(λ)|ϕ⟩ = V1 +

1

2
V2 +

1

3
V3 + . . . (6)

(d) When we turn on the interaction, the change in the ground-state energy involves the contri-
butions from both the change in the Hamiltonian and the change in the ground-state. The
factors of 1

n appearing in front of the n-th order terms reflect the fact that the ground-state
relaxes in response to the change in hamiltonian, so that the change in the ground-state
energy from each term is less than the corresponding change in the expectation value of the
interaction.

2. (a) The crosses represent the scattering amplitude Vk,k′ and the lines represent the propagators.

(b) Diagrammatically, we have:

or

Gk,k′(E) = G
(0)
k (E)δk,k′ +G

(0)
k (E)tk, k′(E)G

(0)
k′ (E) (7)
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where the “blob” is the t-matrix, represented by the following sum of diagrams

Written algebraically, this becomes

tk,k′(E) = U(k− k′) +

∫
ddq

2π

d
U(k− q)

E − E(q) + iδ
tq,k′(E) (8)

where we assume that the Fermi surface is empty (i.e µ = 0, so that δk = δ for all states.)

(c) If U(x) = Uδ(d)(x), then U(q) = U and the t-matrix is now momentum independent. We
may immediately solve (8) to obtain

t(ω) =
U

1− UF (ω)
(9)

where

F (ω) =

∫
ddk

(2π)d
G(0)(k, ω)

(d) Let us examine how the integral in the denominator of the t-matrix scales with energy at low
energies. We take the case of a “drained Fermi sea”, in which the chemical potential µ = 0,
so that for ω < 0,

F (ω) =

∫
ddk

(2π)d
G(0)(k, ω) ∝

∫
dϵϵ(

d
2
−1) 1

ω − ϵ+ iδ

∝ −(−ω)(
d
2
−1)

∝ −ln

(
Λ

−ω

)
, (d = 2). (10)

Thus in dimensions d ≤ 2, if U < 0, the denominator of the t-matrix

1− UF (ω) = 1 + |U |F (ω) ∼ 1− |U |
(−ω)(2−d)/2

will pass through zero at some small ω = −ω∗ ∝ |U |2/(2−d), for arbitrarily small |U |, giving
rise to a pole in the t-matrix. To see that this means the development of a bound-state,
consider the density of one-particle states

ρ(ω) =
∑
λ

δ(ω − Eλ) (11)

where Eλ is the energy of the eigenstate |λ⟩. We may rewrite this in the form

ρ(ω) = − 1

π
Im

∑
λ

1

(ω − Eλ + iδ)
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= − 1

π
Im

∑
λ

⟨λ|Ĝ(ω)|λ⟩

= = − 1

π
ImTr

[
Ĝ(ω)

]
, (12)

where Ĝ(ω) = (ω−H + iδ)−1. We may also take the trace by summing over the momentum
eigenstates, rather than energy eigenstates, so that

ρ(ω) = − 1

π

∑
k

Im⟨k|Ĝ(ω)|k⟩

= − 1

π

∑
k

ImGk,k(ω) (13)

Writing the Green-function in terms of the t-matrix, the change in the density of states due
to scattering is then

∆ρ(ω) = − 1

π
Im

[(∫
ddk

(2π)d
G(0)(k, ω)

)2

t(ω)

]
(14)

Near the pole at negative energies, we may write this in the form

∆ρ(ω) = − 1

π
Im[F (ω)2t(ω)] = − 1

π
Im

[(
1

U
− 1

t(ω)

)2

t(ω)

]
≈ − 1

U2π
Im [t(ω)] (15)

Thus a pole in t(ω) implies a pole at negative energies in the density of states, indicating a
bound-state.
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