INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024
Answers to Questions III. Oct. 11th

1. (a) The eigenvalues are as follows:

|1k) = bli[0), &1, = ex
12k) = b1|0), oy = 26
V2!
Loy
|3k> = ﬁb k|0>, 53}( = 361( +U

Notice that the excitation energies are ex = &1, = &, — &1, and ex + U = &3, — &y, .

(b) If we can ignore occupancies higher than three, then the partition function is

7 = H(l + e—ﬁﬁk + 6—265k + 6_5(3€k+U))
k

so that the free energy is

F = ZFk = —k;BTZln [1 + e P 4 gm2Bax 4 o= FBactl)
k k

(c) The occupancy of the k state is

aFk efﬁek + 2672ﬁ6k + 367B(36k+U)
8u - 1+ e Bex + e—2Bex + e—BBex+U)

ng = (ni) = —

(d) Let us plot nk at low temperatures. There are three regions to consider:
o ¢, >0, ng =0.
o ¢ <0, but e +U >0, ng =2.
o cx + U < 0 and ng = 3. so that there are two “Fermi surfaces” (see Fig. 1).

In(61):= num[x_, U_y A1 t= (EXp[-4 X] + 2. EXp[-2 8 x] + 3EXp[-4 ((3. x) + U)] +4Exp[-4 ((4x) +4U)]) /
(1+ Exp[-4 x] + Exp[-2 8 x] + EXp[-/ ((3x) +U)] +Exp[-4 ((4x) +4U)1);
B=80.;

Plot[num[x, 1., B], {x, -3, 1.}, PlotRange - All, AxesLabel » {e, n[e]}]

n(e)
3.5

out[61]=

Figure 1: The occupancy versus €y, showing two Fermi surfaces.



2.

(a)

We may estimate the Bose Einstein transition temperature from

3.31 [ h?n?/3 3.31 h2(10%1m—3)2/3
Trm = = ~6.9uK.
BE = g < m 1.38 x 1023 23m, a

These tiny temperatures are attained by “evaporative cooling” . Sodium atoms are held in
a “magneto-optic” trap. Radio waves are used to “evaporate” the most energetic atoms in
the trap, leaving behind the cold ones.

In Helium-4, we may estimate the Bose Einstein transition temperature as

Ty = 331 <h2n2/3> _ 331 <h2((122/(4m,,)))2/3> o

kp \ mue 1.38 x 1023 4m,

The actual condensation temperature is 2.21K. The difference in condensation temperatures
is due to the repulsive interaction between atoms.

If the interaction has the form

o-{ TR ®

then in second-quantized form, the interaction Hamiltonian is

3 3 / f T/x/ /x/ Z)|.
V=g [t [ e ) ®)

(ii) Inverting the Fourier transform, we have ¢z = [ d3xwg(f)e*“z'f , so that

ez, Tr]e = /ded?)x/[%(x)’ Wl (2] e iR )
— 50- o/

= 05 or(2m)%6 (k —
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(iii) In momentum space, we may write

1 [ d3kd*k' d3q

V= 2/(%)9‘/((1) |:CTE+QU Tk/ io' Ko ’CTkU:|’ (5)

where

3 iTE _ 47TU R . 47TR3U
V(q): dq:V(g; T — . drrsm(qr): 3 F(qR) (6)
0
and
3 |sinz

F(z)= = —coszx| . (7)

The form of the interaction in momentum space is sketched above. The hard core in real
space is manifested as a long-range oscillatory component in momentum space.
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Figure 2: Fourier transformed potential V(q) for “hard sphere” potential.

(a) We begin by noting that the matrix elements for the tight-binding Hamiltonian are

e (i=7)
(i|H|j) =< —t (i, j, nearest neighbors) (8)
0 (otherwise)

where € is the energy of an isolated orbital and —t is the hopping matrix element. Now the
orbital at site A, position r; is connected to orbitals at sites B which are located in the
unit cells at positions r;, r; — b and r; —a. (Note the minus signs). Consequently, the
tight-binding Hamiltonian takes the form

hopping betweenAnearest neighbors
H ==t 3 {0 50r) + 'm0 — ) + 47 5(r = b)| a(mi) + He | +(e=p) 3 (nali)+n(i).
J Q

2
Here 97 4 p(r;) creates an electron at site A or B respectively in the unit cell located at
position rj.

(b) If we Fourier transform, writing

W) = = S eae ™ (A= 4,5) (10)
5 k



then substituting into the Hamiltonian, we obtain

—Nsdy 1
——
H = —— Z (1 + %2 4 e*P)ey e KK L | 4 (e —p ZC KACKA
],kk’
_ P e—pn Ak (ks
Z (C kB, ¢ kA) <A*(k) €— ) \cka (11)

k

where _ _
A(k) — —t(l + 67,k~a + ezk~b)

The eigenvalues of the matrix

{e A (k)]
Ak) e—p
ax = FAK)|+(e—p)
= +t1/(3 +2cos(k.a) + 2 cos(k.b) + 2cos(k.(a — b))) + (e — p) (12)
(see Fig. 3)

Figure 3: Contour plot of quasiparticle dispersion ey.
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(c) If eKa = 1% | KD — =15 then clearly,

A(K) x (14 a4 Kby = (1 4 615 4 71%5) =0



To satisfy the conditions

V3 1 2
Ka = —(K, -K,a=—
a 5 (Kza) + 5 Hya =
1 2
Kb — ﬁ(K 0) - yKa= - (13)
we require K, =0, K, = 3a, or K = aj. When k = £K, A(k) = A(xK) = 0.
(d) If we expand A(p + K) for small p, we obtain
Ak) = —t[l+e5(1+ip-a)+e 3 (1+ip-b)]
= —it[e"%ﬂp ateGp- b
L1 V3 1 V3
—
3 3 3t
= gt ipx zipya = Q [py + ipa) (14)
2 2 2
so that we can write
€—p A(1@>+K)> ( €—p 6(py+ipx)> .
N ~ N . =(e—p)l+c Op — P20
(A <p + K) €—u C(py _ pr) €—u ( 'UJ) (py b y)
= (e—p)l+¢(éxp) (15)
In the vicinity of k ~ K, we thus have
t t e—p  AP+K)| (cpikB
;)(C KB, € p+KA> [A*(p +K) €— I Cp+KA
= > Plop (€= )1+ x p)Ppy (16)
p~0
where
Cp+KB
= 17
o = ((277) (17
Similarly, for k = p — K, where p is small, we have
€—p A(p—K)} [ €~ p —C(py —ipa:)} T
. ~ B . = (€ — l + C X O ].8
[A P-K) e—p —c(py + ipx) €—p (e-mltelpxa) (18)
so that
i f e—p  Ap-K)| (cpikn P
Z (C p—KB;C p*KA> |:A*(p o K) €— 1 Cp_ KA Z w 1 + C(U X P))i/)p—
p~0 p~0
(19)
where
Cp—KA
= , 20
o = (o ) (20
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Combining the two contributions (18) and (21), the low energy Hamiltonian thus has the
form
H =" oA (7 x p) + (e — 1) 1)tpa (21)

PA



