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Figure 1: Plot of specific heat in the Einstein model of 1906.

1. The Hamiltonian for a single oscillator is

1
H = hw(a'a + 5)

(1)

For an ensemble of N4y oscillators, where N4y is Avagadro’s number, the expectation value of

the energy is

1
E(T) = NAv<H> = Ny hw <n(w) + 2) (2)
where n(w) = 1/(e/*8T — 1). Differentiating to obtain the specific heat capacity
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and R = Njykp is the gas constant (see Fig. 1.). Notice that at high temperatures F[hw/kgT]| —
1, so that Cy(T) — R, as expected for two quadratic degrees of freedom, from the Dulong and

Petit Law.



2. (a)Making the transformation

b = ua—l—vaT,
b = wal +va, (4)

(where u and v are real), we find that
[b,b'] = [ua + va', ua® + va] = u?[a, a'] +v?[al, a] = u? — v, (5)

and [b,b] = [bf, bl] = 0 trivially. If u>—v? = 1, then [b, (] = 1 and the transformation is canonical.
(b) Let us assume that the Hamiltonian can be diagonalized in the form

H=ab'h+ %). (6)

Substituting in the above transformation, we find that
H = w(a'a+ %) + %A(aTaJr + aa), (7)
where
w = @(u? +v?), A = @ (2uv), (8)
Squaring both terms, and subtracting we find
w? = A? = 2 (u? — 0?2 = @? 9)

so that @ = vVw? — A2. Notice that the first condition in ( 8) forces @ to be formally positive.
Physically, we do not expect a negative excitation energy! By substituting v?> = u? — 1 into the
first equation in ( 8), we obtain

u? = %(1+w/M),
v? = —%(1—w/\/w2—A2). (10)

When A = w, the frequency of oscillation goes to zero. You might perhaps have spotted that if
you write a = %(w +ip), then (a")?+a? = (22 — p?), so that when A = w, the Hamiltonian takes
the form H = wz?, i.e the mass of the particle has become infinite, and hence the frequency of
oscillation vanishes.

. (i) To get an approximate estimate of the amplitude of zero-point motion, suppose we treat each
site as a simple harmonic oscillator. The amplitude of zero point motion is then

h
Ax ~ ) —— 11
v 2mw (11)
Setting Az < a/3, we obtain
h
c 12
—_— ¢ (12)



In our estimate, ¢, = 2/9. Actually, this type of relation must hold on purely dimensional grounds,
with some value of  that needs to be determined.

(ii) If we evaluate the amplitude of oscillation for the 3D crystal, we obtain
1 h
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where the factor of three derives from the three directions of oscillation and
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= 0.91 (14)
The final condition is . A

If you had ignored the three directions of motion, you would have obtained a value that is three
times larger.

(iii)Since the frequency increases more rapidly than a~2, zero-point motion will become smaller

when a is smaller, so the crystal is liquid when a > a., and solid for a < a.. Putting in the
numbers, we obtain :

1

=

I 5 hQ 2 (10—34)2
e = (mw¢c> - <m(hw/k3)k;3gc> - [4 x 1.7 x 1027 x 300 x 1.34 x 1025 x 0.16
— 48x 10 m (16)

or half an angstrom.

. To transform the Hamiltonian

H = Z {Jl (aTH_lai + H.C) + JQ(aTiHaTi + HC)} (17)
J

we first transform to momentum space, writing a; = iz > q© %% a4, whereupon

1
H = 3 Z {ZJ;[ cos(qa)(a'yay + a_qa’_y) + 2.J; cos(qa)(a’ya’ _, + a_qaq)} . (18)
q
(Note that each operator in brackets is symmetric under ¢ = —g, so that if you obtained expres-
sions of the form €%® they would automatically be symmetrized to cos(ga).) This is of the form
found in 3., so we may carry out a Boguilubov transformation

— t
by = ugaq+vga'_g,



qu = uqaij—l—vqa_q,

(notice the minus signs which are needed to conserve momentum), to obtain

1
H = qu(qubq + 5)
q

where
wy = 2[J7 — J3]"/?| cos(qa)-
In terms of the original operators,
1 )
a; = —— uby — vb'_,)etti
1 \/N Zq:( q q)
The coefficients are momentum independent:
( u2 ) 1 J1
s |=z|—=—==1]|.
)" I\VE- 7

When J; = Js, the spectrum is zero at all values of momentum.

(23)



5. (i) Newton’s laws of motion for the one-dimensional chain are

;1;] = —Q%(Z’L’] — Tj41 — xj—l)a (.] Odd)
j'j = —Q%(Ql‘j — Tj41 — l‘jfl)a (J even)

where Q3 = k/M and Q3 = k/m. We seek normal mode solutions of the form

_ L N iR et ()

xj = e x (24)
VN Zq: an

where + refers to even and odd numbered sites, respectively and 1 = + will refer to the two bands

of excitation- one optic, one acoustic. (There are N heavy and N light atoms. The allowed values

of g are q; = %l = I, with [ € [1, N] and a is the atom separation. Note that ¢ + 7/a = g,

i.e the Brillouin zone is of width m/a. One can take ¢ € [—g, 5-]. ) Substituting this into the

equations of motion, we obtain

2 ) :2[ ) 02 —Qf?%cos(qa)} s _ (25)
a:g;) —Q5cos(qa) 3 xé;)

Subtracting the left from the right, taking the determinant of the resulting matrix and solving for
the roots we obtain

W2y = (0 + 0F) + (@} — 03)2 + 4030 cos? qa, (= £1) (26)

corresponding to two normal modes- one acoustic (7 = —1), one “optic” (n = +1). The dispersion
of these modes is sketched beneath.
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Figure 2:

(ii) The gap between the two modes is minimum for ga = 7/2, and is given by A, = v/2|Q; — Qs



(iii) The second-quantized Hamiltonian will involve two types of phonon- one optic (n = +) and
one acoustic (n = —), and can be written

H = Z qu[aanaqn + é] (27)
==
Second-quantization is a question of first finding the canonically conjugate normal co-ordinates,
then rewriting the normal co-ordinates in terms of creation and annihilation operators. The
canonical commutation relations between the normal co-ordinates will guarantee that the creation
and annihilation operators satisfy canonical bosonic commutation relations.

Here’s how you can derive canonically conjugate normal co-ordinates. First, rescale the momenta
and displacements at each site to absorb the difference in masses, writing

P = pi//mi, Qi = zi/my, (28)

The Hamiltonian can now be written in the form

Pz 1
H = Z {21 + 5[2QZ2 Q7 — M Qi(Qiy1 + Qil)}} (29)
where Q? _ (QI)Q = k/M on odd sites and Qg = (92)2 = k/m on even sites. Now writing
. \/% Zq pq(ﬂe—iqu, j € even site,
i = \/% Zq pq(*)e—iqu, j € odd site,
0 \/% Zq Qng)e—iqu, j € even site, (30)
i = \/% >, QL) e—iak j € odd site.

then in terms of these Fourier transformed variables, the Hamiltonian becomes
1 T T 2
H= 3 [PIP, +Q" 90)Q,) (31)
q

where we have introduced the column vectors
(+) (+)
P, Q
P p— q 3 p— q 3 32
P, (Pq()> Q, (Pq()> (32)

02 —01Q9 cos(qa) ]
0%(q) =2 1 .
() [ —0Q1Q9 cos(qa) Q%

and the dynamic matrix

(33)

The eigenvectors of the dynamic matrix Q*(q) satisfy Q2(q)&, = wgnfqn, where n = + refers to
the optic and acoustic modes, respectively. They are real and orthonormal. Consequently, if we
write

P, = Zimpqnv
n==+



Qq = Z §q,7$qn> (34)
n==+
then it follows that

1
H=3) 5 [Panp—an + WoyanT—an)] (35)
an

is diagonal. We may write the momentum and position in terms of the normal co-ordinates, as
follows

VM +) _—iqR; :

v (=) p—iaR; ;
P = — e J even sites
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zr; = —iak (even sites) (36)
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Up to this point, classical and quantum mechanics are identical! As a last step, we rewrite the
normal co-ordinates in terms of creation and annihilation operators:

h
Lagn = %[aqn + aT—qn] (37)
and
. Jhw,
Tgn = —1 2q77 [agn — at—tm] (38)

where [agy, alyy] = 0,y84q are canonically conjugate.

6. (a) To derive the linear response, let us begin in the Schrodinger representation, where Hg(t) =
Hy + Vs(t) and

Hy = hw(aTa—i-%),
Vs(t) = —f(t)z. (39)

We now transform to the “interaction representation”, which removes the time evolution of the
states due to Hyp, so that

r(t)) = et P lys (1))
Vi(t) — ezHot/hVS(t)e—ZHOt/h (40)

The equation of motion for |¢;(t)) is then

ihdr(t)) = ihd, (M) [ () + M ik s (1)

7



= —Hoe™Myg(t)) + e (Hy + Vg (1)) s (t))
—eHot/h o[ (1)) + e U™ (Hy + Vs (8)[0s (1))

ey ()]s (t)) = e oMV () e Hot Mo, (1))

= Vi@®)[¥r(t)). (41)

(b) The general solution solution to (41) is

1 t
) = Tesp (~i [ Vit ) s, (42)
Expanding this to leading order in f gives
t
(1)) = (1 i f dt’f(t’)xz(t’)> Lo (43)

iHot/hl,e—iHot/h

where z; = ¢ is in the “interaction” representation. The complex conjugate of this

expression is

il = w0l (1- 1 [ ate®)s©)) +0(2) (44)

—00

(c) Finally, we may evaluate the expectation of the displacement at time t. This is given by

(@) = (Wr@®lzr@)Pr()

t

= w0l (1-7 [t @)) o) (141 [ s@d)) rto) + 01

o t i R(t—t')
= <0!xz(t)!0>+/_ dt’ 50 [z1(t), 21 ()]]0) () + O(f*)
= /t dt'R(t —t') f(t). (45)

By convention, we drop the subsripts “I” on the z, implicitly assuming that they are in the
Heisenberg representation of the undriven Hamiltonian Hy, so
i

R(t —1") = 2 (0[z1 (), z1(¢)]|0)0(t — ).

>t

where the theta function enables us to extend the integration over the entire number line

(x(t)) = /OO dt' R(t — ') f(t). (46)
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