
INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Answers to Questions I.

Figure 1: Plot of specific heat in the Einstein model of 1906.

1. The Hamiltonian for a single oscillator is

H = h̄ω(a†a+
1

2
) (1)

For an ensemble of NAV oscillators, where NAV is Avagadro’s number, the expectation value of
the energy is

E(T ) = NAV 〈H〉 = NAV h̄ω

(
n(ω) +

1

2

)
(2)

where n(ω) = 1/(eh̄ω/kBT − 1). Differentiating to obtain the specific heat capacity

CV =
dE

dT
= NAV h̄ω

d

dT

(
1

e
h̄ω

kBT

− 1

)
= NAV

(
h̄ω

kBT 2

)
e

h̄ω
kBT

(e
h̄ω

kBT − 1)2

= NAV kB

( h̄ω

kBT

)2
 1

2 sinh
(

h̄ω
2kBT

)
2

= R F

[
h̄ω

kBT

]
(3)

where the function

F (x) =

(
x

2 sinh(x/2)

)2

and R = NAV kB is the gas constant (see Fig. 1.). Notice that at high temperatures F [h̄ω/kBT ] →
1, so that CV (T ) → R, as expected for two quadratic degrees of freedom, from the Dulong and
Petit Law.
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2. (a)Making the transformation

b = ua+ va†,
b† = ua† + va, (4)

(where u and v are real), we find that

[b, b†] = [ua+ va†, ua† + va] = u2[a, a†] + v2[a†, a] = u2 − v2, (5)

and [b, b] = [b†, b†] = 0 trivially. If u2−v2 = 1, then [b, b†] = 1 and the transformation is canonical.
(b) Let us assume that the Hamiltonian can be diagonalized in the form

H = ω̃(b†b+
1

2
). (6)

Substituting in the above transformation, we find that

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + aa), (7)

where

ω = ω̃(u2 + v2), ∆ = ω̃(2uv), (8)

Squaring both terms, and subtracting we find

ω2 −∆2 = ω̃2(u2 − v2)2 = ω̃2 (9)

so that ω̃ =
√
ω2 −∆2. Notice that the first condition in ( 8) forces ω̃ to be formally positive.

Physically, we do not expect a negative excitation energy! By substituting v2 = u2 − 1 into the
first equation in ( 8), we obtain

u2 =
1

2
(1 + ω/

√
ω2 −∆2),

v2 = −1

2
(1− ω/

√
ω2 −∆2). (10)

When ∆ = ω, the frequency of oscillation goes to zero. You might perhaps have spotted that if
you write a = 1√

2
(x+ ip), then (a†)2+a2 = (x2−p2), so that when ∆ = ω, the Hamiltonian takes

the form H = ωx2, i.e the mass of the particle has become infinite, and hence the frequency of
oscillation vanishes.

3. (i) To get an approximate estimate of the amplitude of zero-point motion, suppose we treat each
site as a simple harmonic oscillator. The amplitude of zero point motion is then

∆x ∼
√

h̄

2mω
(11)

Setting ∆x < a/3, we obtain
h̄

mωa2
< ζc (12)
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In our estimate, ζc = 2/9. Actually, this type of relation must hold on purely dimensional grounds,
with some value of ζ that needs to be determined.
(ii) If we evaluate the amplitude of oscillation for the 3D crystal, we obtain

〈0|Φ2
j |0〉 = 3

1

Ns

∑
q

h̄

2mωq

= 3a3
∫

d3q

(2π)3
h̄

2mωq

=
3h̄

4mω
I3 (13)

where the factor of three derives from the three directions of oscillation and

I3 =

∫ π

0

du3

π3
1√∑

l=1,3 sin
2(ul)

= 0.91 (14)

The final condition is
h̄

mωa2
< ζc =

4

27I3
= 0.16 (15)

If you had ignored the three directions of motion, you would have obtained a value that is three
times larger.
(iii)Since the frequency increases more rapidly than a−2, zero-point motion will become smaller
when a is smaller, so the crystal is liquid when a > ac, and solid for a < ac. Putting in the
numbers, we obtain :

ac =

(
h̄

mωζc

) 1
2

=

(
h̄2

m(h̄ω/kB)kBζc

) 1
2

=

[
(10−34)2

4× 1.7× 10−27 × 300× 1.34× 10−23 × 0.16

] 1
2

= 4.8× 10−11m (16)

or half an angstrom.

4. To transform the Hamiltonian

H =
∑
j

{
J1(a

†
i+1ai +H.c) + J2(a

†
i+1a

†
i +H.c)

}
(17)

we first transform to momentum space, writing aj = 1
N1/2

∑
q e

iqRjaq, whereupon

H =
1

2

∑
q

[
2J1 cos(qa)(a

†
qaq + a−qa

†
−q) + 2J1 cos(qa)(a

†
qa

†
−q + a−qaq)

]
. (18)

(Note that each operator in brackets is symmetric under q ⇀↽ −q, so that if you obtained expres-
sions of the form eiqa they would automatically be symmetrized to cos(qa).) This is of the form
found in 3., so we may carry out a Boguilubov transformation

bq = uqaq + vqa
†
−q,
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b†q = uqa
†
q + vqa−q, (19)

(notice the minus signs which are needed to conserve momentum), to obtain

H =
∑
q

ωq(b
†
qbq +

1

2
) (20)

where

ωq = 2[J2
1 − J2

2 ]
1/2| cos(qa)|. (21)

In terms of the original operators,

ai =
1√
N

∑
q

(ubq − vb†−q)e
iqRj . (22)

The coefficients are momentum independent:(
u2

v2

)
=

1

2

(
J1√

J2
1 − J2

2

± 1

)
. (23)

When J1 = J2, the spectrum is zero at all values of momentum.
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5. (i) Newton’s laws of motion for the one-dimensional chain are

ẍj = −Ω2
1(2xj − xj+1 − xj−1), (j odd)

ẍj = −Ω2
2(2xj − xj+1 − xj−1), (j even)

where Ω2
1 = k/M and Ω2

2 = k/m. We seek normal mode solutions of the form

xj =
1√
N

∑
q

ei(qRj−ωqt)x(±)
qη (24)

where ± refers to even and odd numbered sites, respectively and η = ± will refer to the two bands
of excitation- one optic, one acoustic. (There are N heavy and N light atoms. The allowed values
of q are ql = 2π

L l =
π
aN l, with l ∈ [1, N ] and a is the atom separation. Note that q + π/a ≡ q,

i.e the Brillouin zone is of width π/a. One can take q ∈ [− π
2a ,

π
2a ]. ) Substituting this into the

equations of motion, we obtain

ω2

(
x
(+)
qη

x
(−)
qη

)
= 2

[
Ω2
1 −Ω2

1 cos(qa)
−Ω2

2 cos(qa) Ω2
2

](
x
(+)
qη

x
(−)
qη

)
. (25)

Subtracting the left from the right, taking the determinant of the resulting matrix and solving for
the roots we obtain

ω2
qη = (Ω2

1 +Ω2
2) + η

√
(Ω2

1 − Ω2
2)

2 + 4Ω2
1Ω

2
2 cos

2 qa, (η = ±1) (26)

corresponding to two normal modes- one acoustic (η = −1), one “optic” (η = +1). The dispersion
of these modes is sketched beneath.

/2aπ/2a−π
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0

q

Figure 2:

(ii) The gap between the two modes is minimum for qa = π/2, and is given by ∆g =
√
2|Ω1−Ω2|.
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(iii)The second-quantized Hamiltonian will involve two types of phonon- one optic (η = +) and
one acoustic (η = −), and can be written

H =
∑

q,η=±
ωqη[a

†
qηaqη +

1

2
] (27)

Second-quantization is a question of first finding the canonically conjugate normal co-ordinates,
then rewriting the normal co-ordinates in terms of creation and annihilation operators. The
canonical commutation relations between the normal co-ordinates will guarantee that the creation
and annihilation operators satisfy canonical bosonic commutation relations.
Here’s how you can derive canonically conjugate normal co-ordinates. First, rescale the momenta
and displacements at each site to absorb the difference in masses, writing

Pi = pi/
√
mi, Qi = xi

√
mi, (28)

The Hamiltonian can now be written in the form

H =
∑
i

{
P 2
i

2
+

1

2
[2Ω2

i Q
2
i − Ω1Ω2 Qi(Qi+1 +Qi−1)]

}
(29)

where Ω2
i = (Ω1)

2 = k/M on odd sites and Ω2
i = (Ω2)

2 = k/m on even sites. Now writing

Pj =

{
1√
N

∑
q P

(+)
q e−iqRj , j ∈ even site,

1√
N

∑
q P

(−)
q e−iqRj , j ∈ odd site,

Qj =

{
1√
N

∑
q Q

(+)
q e−iqRj , j ∈ even site,

1√
N

∑
q Q

(−)
q e−iqRj , j ∈ odd site.

(30)

then in terms of these Fourier transformed variables, the Hamiltonian becomes

H =
1

2

∑
q

[
P T

q P−q +QT
−q

Ω2(q)Q
q

]
(31)

where we have introduced the column vectors

P q =

(
P

(+)
q

P
(−)
q

)
, Q

q
=

(
Q

(+)
q

P
(−)
q

)
, (32)

and the dynamic matrix

Ω2(q) = 2

[
Ω2
1 −Ω1Ω2 cos(qa)

−Ω1Ω2 cos(qa) Ω2
2

]
. (33)

The eigenvectors of the dynamic matrix Ω2(q) satisfy Ω2(q)ξqη = ω2
qηξqη, where η = ± refers to

the optic and acoustic modes, respectively. They are real and orthonormal. Consequently, if we
write

P q =
∑
η=±

ξ
qη
pqη,
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Q
q

=
∑
η=±

ξ
qη
xqη, (34)

then it follows that

H =
∑
q,η

1

2

[
pqηp−qη + ω2

qηxqηx−qη

]
(35)

is diagonal. We may write the momentum and position in terms of the normal co-ordinates, as
follows

pj =

√
M√
N

∑
qη

pqηξ
(+)
ηq e

−iqRj , (odd sites)

pj =

√
m√
N

∑
qη

pqηξ
(−)
ηq e

−iqRj (even sites)

xj =
1√
MN

∑
qη

xqηξ
(+)
ηq e

−iqRj , (odd sites)

xj =
1√
mN

∑
qη

xqηξ
(−)
ηq e

−iqRj (even sites) (36)

Up to this point, classical and quantum mechanics are identical! As a last step, we rewrite the
normal co-ordinates in terms of creation and annihilation operators:

xqη =

√
h̄

2ωqη
[aqη + a†−qη] (37)

and

πqη = −i
√
h̄ωqη

2
[aqη − a†−qη] (38)

where [aqη, a
†
q′η′ ] = δηη′δqq′ are canonically conjugate.

6. (a) To derive the linear response, let us begin in the Schrodinger representation, where HS(t) =
H0 + VS(t) and

H0 = h̄ω(a†a+
1

2
),

VS(t) = −f(t)x. (39)

We now transform to the “interaction representation”, which removes the time evolution of the
states due to H0, so that

|ψI(t)〉 = eiH0t/h̄|ψS(t)〉
VI(t) = eiH0t/h̄VS(t)e

−iH0t/h̄ (40)

The equation of motion for |ψI(t)〉 is then

ih̄∂tψI(t)〉 = ih̄∂t

(
eiH0t/h̄

)
|ψS(t)〉+ eiH0t/h̄ih̄∂t|ψS(t)〉

7



= −H0e
iH0t/h̄|ψS(t)〉+ eiH0t/h̄(H0 + VS(t))|ψS(t)〉

= −eiH0t/h̄H0|ψS(t)〉+ eiH0t/h̄(H0 + VS(t))|ψS(t)〉
= eiH0t/h̄VS(t)|ψS(t)〉 = eiH0t/h̄VS(t)e

−iH0t/h̄|ψI(t)〉
= VI(t)|ψI(t)〉. (41)

(b) The general solution solution to (41) is

|ψI(t)〉 = Texp

(
−i1
h̄

∫ t

−∞
VI(t

′)dt′
)
|ψI(0)〉. (42)

Expanding this to leading order in f gives

|ψI(t)〉 =
(
1 + i

∫ t

−∞
dt′f(t′)xI(t

′)

)
+O(f2) (43)

where xI = eiH0t/h̄xe−iH0t/h̄ is in the “interaction” representation. The complex conjugate of this
expression is

〈ψI(t)| = 〈ψI(t)|
(
1− i

h̄

∫ t

−∞
dt′xI(t

′)f(t′)

)
+O(f2) (44)

(c) Finally, we may evaluate the expectation of the displacement at time t. This is given by

〈x(t)〉 = 〈ψI(t)|xI(t)|ψI(t)〉

= 〈ψI(t)|
(
1− i

h̄

∫ t

−∞
dt′xI(t

′)f(t′)

)
xI(t)

(
1 +

i

h̄

∫ t

−∞
dt′f(t′)xI(t

′)

)
|ψI(t)〉+O(f2)

=

=0︷ ︸︸ ︷
〈0|xI(t)|0〉+

∫ t

−∞
dt′

R(t−t′)︷ ︸︸ ︷
i

h̄
〈0|[xI(t), xI(t′)]|0〉 f(t′) +O(f2)

=

∫ t

−∞
dt′R(t− t′)f(t′). (45)

By convention, we drop the subsripts “I” on the x, implicitly assuming that they are in the
Heisenberg representation of the undriven Hamiltonian H0, so

R(t− t′) =
i

h̄
〈0|[xI(t), xI(t′)]|0〉θ(t− t′).

where the theta function enables us to extend the integration over the entire number line

〈x(t)〉 =
∫ ∞

−∞
dt′R(t− t′)f(t′). (46)
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