INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Questions I. (Due Thu, Sept 19th.)

These questions can all be done with a minimum of algebra. They will familiarize you with the method of second-quantization, as applied to free bosonic fields. Please choose one of the four harder questions. If you do more than one, I will grade the others as extra credit.

1. In 1906, in what is arguably the first paper in theoretical condensed matter physics[?] Albert Einstein postulated that vibrational excitations of a solid are quantized with energy $\hbar\omega$, just like the photons in the vacuum. Repeat his calculation for diamond: calculate the energy E(T) of one mole of simple harmonic oscillators with characteristic frequency ω at temperature T and show that the specific heat capacity is

$$C_V(T) = \frac{dE}{dT} = RF\left(\frac{\hbar\omega}{k_BT}\right)$$

where

$$F(x) = \left(\frac{x/2}{\sinh(x/2)}\right)^2.$$

and $R = N_{AV}k_B$ the product of Avagadro's number N_{AV} and Boltzmann's constant k_B . Plot C(T) and show that it deviates from Dulong and Petit's law $C_V = (R/2)$ per quadratic degree of freedom at temperatures $T \ll \hbar \omega/k_B$.

2. (a) Show that if a is a canonical bose operator, the canonical transformation

$$b = ua + va^{\dagger},$$

$$b^{\dagger} = ua^{\dagger} + va,$$
(1)

(where u and v are real), preserves the canonical commutation relations, provided $u^2 - v^2 = 1$.

(b) Using the results of (a), diagonalize the Hamiltonian

$$H = \omega(a^{\dagger}a + \frac{1}{2}) + \frac{1}{2}\Delta(a^{\dagger}a^{\dagger} + aa), \tag{2}$$

by transforming it into the form $H = \tilde{\omega}(b^{\dagger}b + \frac{1}{2})$. Find $\tilde{\omega}$, u and v in terms of ω and Δ . What happens when $\Delta = \omega$?

- 3. (Harder) According to the "Lindeman" criterion, a crystal melts when the rms displacement of its atoms exceeds a third of the average separation of the atoms. Consider a three dimensional crystal with separation a, atoms of mass m and a nearest neighbor quadratic interaction $V = \frac{m\omega^2}{2}(\vec{\Phi}_{\mathbf{R}} \vec{\Phi}_{\mathbf{R}+\mathbf{a}})^2$.
 - (i) Estimate the amplitude of zero point fluctuations using the uncertainty principle, to show that if

$$\frac{\hbar}{m\omega a^2} > \zeta_c \tag{3}$$

where ζ_c is a dimensionless number of order one, the crystal will be unstable, even at absolute zero, and will melt due to zero-point fluctuations. (Hint... what would the answer be for a simple harmonic oscillator?)

- (ii) Calculate ζ_c in the above model. If you like, to start out, imagine that the atoms only move in one direction, so that Φ is a scalar displacement at the site with equilibrium position \mathbf{R} . Calculate the rms zero-point displacement of an atom $\sqrt{\langle 0|\Phi(x)^2|0\rangle}$. Now generalize your result to take account of the fluctuations in three orthogonal directions.
- (iii) Suppose $\hbar\omega/k_B = 300K$, and the atom is a Helium atom. Assuming that ω is independent of atom separation a_c estimate the critical atomic separation a_c at which the solid becomes unstable to quantum fluctuations. Note that in practice ω is dependent on a, and rises rapidly at short distances, with $\omega \sim a^{-\alpha}$, where $\alpha > 2$. Is the solid stable for $a < a_c$ or for $a > a_c$?
- 4. (Harder) Find the transformation that diagonalizes the Hamiltonian

$$H = \sum_{j} \left\{ J_1(a_{j+1}^{\dagger} a_j + H.c) + J_2(a_{j+1}^{\dagger} a_j^{\dagger} + H.c) \right\}$$
 (4)

where a_j^{\dagger} creates a boson located at the jth site. The position of the jth-site is located at $R_j = aj$. You may find it helpful to (i) transform to momentum space, writing $a_j = \frac{1}{N^{1/2}} \sum_q e^{iqR_j} a_q$, using periodic boundary conditions on a ring of n-sites. After this, carry out a canonical transformation of the form $b_q = u_q a_q + v_q a_{-q}^{\dagger}$, where $u^2 - v^2 = 1$. What happens when $J_1 = J_2$?

5. (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one dimensional chain with Hamiltonian

$$H = \sum_{j} \left[\frac{p_j^2}{2m_j} + \frac{k}{2} (x_j - x_{j-1})^2 \right]$$
 (5)

where at even sites $m_{2j} = m$ and at odd sites $m_{2j+1} = M$. Please sketch the dispersion curves.

- (ii) What is the gap in the excitation spectrum?
- (iii) Write the diagonalized Hamiltonian in second quantized form and discuss how you might arrive at your final answer. You will now need two types of creation operator.
- 6. (Harder) This problem sketches the proof that the displacement of the quantum Harmonic oscillator, originally in its ground-state (in the distant past), is given by

$$\langle x(t)\rangle = \int_0^t R(t-t')f(t')dt',$$

where

$$R(t - t') = \frac{i}{\hbar} \langle 0 | [x(t), x(t')] | 0 \rangle$$

is the "response function" and x(t) is the position operator in the Heisenberg representation of H_0 . A more detailed discussion can be found in chapter 10.

An applied force f(t) introduces an additional forcing term to the harmonic oscillator Hamiltonian

$$\hat{H}(t) = H_0 + V(t) = \hat{H}_0 - f(t)\hat{x},$$

where $H_0 = \hbar \omega (a^{\dagger} a + \frac{1}{2})$ is the unperturbed Hamiltonian. To compute the displacement of the Harmonic oscillator, it is convenient to work in the "interaction representation", which is the Heisenberg representation for H_0 . In this representation, the time-evolution of the wavefunction is due to the force term. The wavefunction of the harmonic oscillator in the interation representation $|\psi_I(t)\rangle$ is related to the Schrödinger state $|\psi_S(t)\rangle$ by the relation $|\psi_I(t)\rangle = e^{iH_0t/\hbar}|\psi_S(t)\rangle$.

(a) By using the equation of motion for the Schrodinger state $i\hbar\partial_t|\psi_S(t)\rangle = (H_0 + V(t))|\psi_S(t)\rangle$, show that the time evolution of the wavefunction in the interaction representation is

$$i\hbar\partial_t|\psi_I(t)\rangle = V_I(t)|\psi_I(t)\rangle = -f(t)\hat{x}(t)|\psi_I(t)\rangle,$$

where $V_I(t) = e^{iH_0t/\hbar}\hat{V}(t)e^{-iH_0t/\hbar} = -x(t)f(t)$ is the force term in the interaction representation.

(b) Show that if $|\psi(t)\rangle = |0\rangle$ at $t = -\infty$, then the leading order solution to the above equation of motion is then

$$|\psi_I(t)\rangle = |0\rangle + \frac{i}{\hbar} \int_{-\infty}^t dt' f(t') \hat{x}(t') |0\rangle + O(f^2),$$

so that

$$\langle \psi_I(t)| = \langle 0| - \frac{i}{\hbar} \int_{-\infty}^t dt' f(t') \langle 0| \hat{x}(t') + O(f^2).$$

(c) Using the results just derived expand the expectation value $\langle \psi_I(t)|x(t)|\psi_I(t)\rangle$ to linear order in f, obtaining the above cited result.