
INTRODUCTION TO MANY BODY PHYSICS: 620. Fall 2024

Questions I. (Due Thu, Sept 19th.)

These questions can all be done with a minimum of algebra. They will familiarize you with the
method of second-quantization, as applied to free bosonic fields. Please choose one of the four harder
questions. If you do more than one, I will grade the others as extra credit.

1. In 1906, in what is arguably the first paper in theoretical condensed matter physics[?] Albert
Einstein postulated that vibrational excitations of a solid are quantized with energy h̄ω, just like
the photons in the vacuum. Repeat his calculation for diamond: calculate the energy E(T ) of one
mole of simple harmonic oscillators with characteristic frequency ω at temperature T and show
that the specific heat capacity is

CV (T ) =
dE

dT
= RF

(
h̄ω

kBT

)
where

F (x) =

(
x/2

sinh(x/2)

)2

.

and R = NAV kB the product of Avagadro’s number NAV and Boltzmann’s constant kB. Plot
C(T ) and show that it deviates from Dulong and Petit’s law CV = (R/2) per quadratic degree of
freedom at temperatures T << h̄ω/kB.

2. (a) Show that if a is a canonical bose operator, the canonical transformation

b = ua+ va†,
b† = ua† + va, (1)

(where u and v are real), preserves the canonical commutation relations, provided u2 − v2 = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + aa), (2)

by transforming it into the form H = ω̃(b†b + 1
2). Find ω̃, u and v in terms of ω and ∆. What

happens when ∆ = ω?

3. (Harder) According to the “Lindeman” criterion, a crystal melts when the rms displacement of
its atoms exceeds a third of the average separation of the atoms. Consider a three dimensional
crystal with separation a, atoms of mass m and a nearest neigbor quadratic interaction V =
mω2

2 (Φ⃗R − Φ⃗R+a)
2.

(i) Estimate the amplitude of zero point fluctuations using the uncertainty principle, to show that
if

h̄

mωa2
> ζc (3)
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where ζc is a dimensionless number of order one, the crystal will be unstable, even at absolute
zero, and will melt due to zero-point fluctuations. (Hint... what would the answer be for a simple
harmonic oscillator?)

(ii) Calculate ζc in the above model. If you like, to start out, imagine that the atoms only
move in one direction, so that Φ is a scalar displacement at the site with equilibrium position R.
Calculate the rms zero-point displacement of an atom

√
⟨0|Φ(x)2|0⟩. Now generalize your result

to take account of the fluctuations in three orthogonal directions.

(iii)Suppose h̄ω/kB = 300K, and the atom is a Helium atom. Assuming that ω is independent of
atom separation a, estimate the critical atomic separation ac at which the solid becomes unstable
to quantum fluctuations. Note that in practice ω is dependent on a, and rises rapidly at short
distances, with ω ∼ a−α, where α > 2. Is the solid stable for a < ac or for a > ac?

4. (Harder) Find the transformation that diagonalizes the Hamiltonian

H =
∑
j

{
J1(a

†
j+1aj +H.c) + J2(a

†
j+1a

†
j +H.c)

}
(4)

where a†j creates a boson located at the jth site. The position of the jth-site is located at Rj = aj.

You may find it helpful to (i) transform to momentum space, writing aj =
1

N1/2

∑
q e

iqRjaq, using
periodic boundary conditions on a ring of n-sites. After this, carry out a canonical transformation
of the form bq = uqaq + vqa

†
−q, where u

2 − v2 = 1. What happens when J1 = J2?

5. (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one dimen-
sional chain with Hamiltonian

H =
∑
j

[
p2j
2mj

+
k

2
(xj − xj−1)

2

]
(5)

where at even sites m2j = m and at odd sites m2j+1 =M . Please sketch the dispersion curves.

(ii) What is the gap in the excitation spectrum?

(iii)Write the diagonalized Hamiltonian in second quantized form and discuss how you might arrive
at your final answer. You will now need two types of creation operator.

6. (Harder) This problem sketches the proof that the displacement of the quantum Harmonic oscil-
lator, originally in its ground-state (in the distant past), is given by

⟨x(t)⟩ =
∫ t

0
R(t− t′)f(t′)dt′,

where

R(t− t′) =
i

h̄
⟨0|[x(t), x(t′)]|0⟩

is the “response function” and x(t) is the position operator in the Heisenberg representation of
H0. A more detailed discussion can be found in chapter 10.

An applied force f(t) introduces an additional forcing term to the harmonic oscillator Hamiltonian

Ĥ(t) = H0 + V (t) = Ĥ0 − f(t)x̂,
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where H0 = h̄ω(a†a + 1
2) is the unperturbed Hamiltonian. To compute the displacement of

the Harmonic oscillator, it is convenient to work in the “interaction representation”, which is the
Heisenberg representation for H0. In this representation, the time-evolution of the wavefunction is
due to the force term. The wavefunction of the harmonic oscillator in the interation representation
|ψI(t)⟩ is related to the Schrodinger state |ψS(t)⟩ by the relation |ψI(t)⟩ = eiH0t/h̄|ψS(t)⟩.

(a) By using the equation of motion for the Schrodinger state ih̄∂t|ψS(t)⟩ = (H0 + V (t))|ψS(t)⟩,
show that the time evolution of the wavefunction in the interaction representation is

ih̄∂t|ψI(t)⟩ = VI(t)|ψI(t)⟩ = −f(t)x̂(t)|ψI(t)⟩,

where VI(t) = eiH0t/h̄V̂ (t)e−iH0t/h̄ = −x(t)f(t) is the force term in the interaction represen-
tation.

(b) Show that if |ψ(t)⟩ = |0⟩ at t = −∞, then the leading order solution to the above equation
of motion is then

|ψI(t)⟩ = |0⟩+ i

h̄

∫ t

−∞
dt′f(t′)x̂(t′)|0⟩+O(f2),

so that

⟨ψI(t)| = ⟨0| − i

h̄

∫ t

−∞
dt′f(t′)⟨0|x̂(t′) +O(f2).

(c) Using the results just derived expand the expectation value ⟨ψI(t)|x(t)|ψI(t)⟩ to linear order
in f , obtaining the above cited result.
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