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Abstract

The spin ice compounds Dy2Ti2O7 and Ho2Ti2O7 are highly unusual

magnets that epitomize a set of concepts of great interest in modern

condensed matter physics: Their low-energy physics exhibits an

emergent gauge field and their excitations are magnetic monopoles

that arise from the fractionalization of the microscopic magnetic spin

degrees of freedom. In this review, we provide an elementary intro-

duction to these concepts and we survey the thermodynamics, statics,

and dynamics—in and out of equilibrium—of spin ice from these

vantage points. Along the way, we touch on topics such as emergent

Coulomb plasmas, observable Dirac strings, and irrational charges.

We close with the outlook for these unique materials.
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1. INTRODUCTION

Spin ice (1) is a remarkably simple system in some ways; as a first approximation it is simply a

classical Ising antiferromagnet. However, this simplicity is deceptive. The antiferromagnetism is

not directly apparent in the spin variables, it is highly frustrated due to the topology of the

lattice and, importantly, it arises from long-ranged dipolar forces (2). It turns out that these

features combine to yield a host of properties that put spin ice at the intersection of two

particularly interesting streams of ideas—one of much current interest in quantum condensed

matter physics and one of greater antiquity—which make it a much more illuminating system

than might have been guessed a priori.

The first of these streams is invoked by the keywords fractionalization and topological order.

Fractionalization (3) is the phenomenon wherein the quantum numbers of the low-lying excita-

tions of a many-body system are noninteger multiples of those of the constituents, e.g., electrons

in a metallic system, or of the natural excitations, e.g., spin flips in an insulating magnet.

Perhaps the most celebrated examples of these in recent years are fractionally charged and

fractional statistics excitations in quantum Hall phases (4), although historically solitons in

systems in spatial dimension d ¼ 1, such as polyacteylene (5), first brought this phenomenon to

prominence in condensed matter physics. The term topological order (6) is of more recent

provenance, although its roots lie in seminal work in the early 1970s on spin liquids and lattice

gauge theories (7, 8). In the sense in which we use it, the term describes ordering characterized

by the emergence of a gauge field, as opposed to the emergence of a local order parameter field

in broken symmetry phases.1 More narrowly, the term is reserved for cases where the gauge

field is governed by a purely topological action but we use it in the more expansive sense, which

is perhaps better called gauge order. Again, the most celebrated examples of topologically

ordered phases in recent years have arisen in quantum Hall systems (6, 9).2 This coincidence is

not an accident. Although in d ¼ 1 fractionalization is generically associated with soliton

formation, in d > 1 fractionalization is generically associated with topological order.

The second stream of ideas is centered around the quest for magnetic monopoles, dating

from the seminal work of Dirac (11). As a matter of completeness and elegance, electromagne-

tism would be enhanced by the existence of particles carrying magnetic charge and it would

probably also simplify the teaching of the subject to undergraduates. Dirac was interested in the

constraints placed on possible magnetic monopoles by quantum mechanics and discovered his

celebrated quantization condition. Since that time, monopoles have been unsuccessfully sought

in experiment and successfully found in theory, where they arise naturally in models that go

beyond the standard model. Indeed, the current belief is that monopoles do exist but are

extremely massive and exceedingly rare (12).

In this review we discuss spin ice in the light of these two streams of ideas and show how it

gives rise to an emergent gauge field and to fractionalized excitations. These excitations are

monopoles of the emergent gauge field and monopoles of the microscopic gauge field that

implements the magnetostatics of the problem (in an appropriate sense, consistent with the

solenoidal character of the microscopic magnetic field). This discussion provides an especially

transparent realization of topological order in a classical setting, produces condensed matter

analogs of monopoles, and presents a coherent explanation of a set of elegant experiments on

these systems.

1We remind the reader that an emergent degree of freedom is one that is needed for a proper low-energy description of a
given system even though it has no clear meaning in its microscopic description.
2Although, the venerable superconductor (10) is historically the first example of a topologically ordered condensed matter
system.
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We begin with a review of the basic facts of life in spin ice—particularly the surprising

innocuousness of the dipolar interaction—move on to the monopoles and emergent gauge fields

and their dynamics, and conclude with some thoughts on the trajectory of the field. Along the

way we discuss some relevant experiments. We caution readers that this is not a proper review

of the field but instead a particular perspective on it. Fortunately, the reader can consult the

excellent historic review by Bramwell & Gingras (1) as well as a recent detailed one by Gingras

(13) and a brief overview by Balents (14) for complementary surveys.

2. SPIN ICE BASICS

The canonical spin ice compounds are Dy2Ti2O7 and Ho2Ti2O7, which host the magnetic ions

Dy3þ with J ¼ 15/2 and Ho3þ with J ¼ 8, leading to magnetic moments of the order of 10 mB.
Both compounds are insulating, and the magnetic ions sit on a sublattice of corner-sharing

tetrahedra that is commonly referred to as the pyrochlore lattice (Figure 1). Let us begin with

the two most salient experimental features of these compounds. The first, as reported in the

original discovery by Harris et al. in neutron scattering (15), is that, despite a ferromagnetic

Curie-Weiss temperature $ 2 K, these compounds fail to develop long-ranged spin order

down to a temperature four times lower. Indeed, they do not order even when cooled

further but instead fall out of equilibrium. The second, discovered by Ramirez et al. (16) via

calorimetry (Figure 2), is that the spins do not fully lose their entropy down to the lowest

Diamond lattice bonds
(along the local [111] axes)

Pyrochlore lattice sites
(rare earth magnetic ions)

Pyrochlore [110]
direction

[001] direction
Diamond lattice sites

Figure 1

The magnetic moments in spin ice reside on the sites of the pyrochlore lattice, which consists of corner-sharing tetrahedra. These sites
are the midpoints of the bonds of the diamond lattice (black) defined by the centers of the tetrahedra. The Ising axes are the local [111]
directions, which point along the respective diamond lattice bonds. The bonds of the pyrochlore lattice are in the [110] directions, and
a line joining the two midpoints of opposite bonds on the same tetrahedron defines a [100] direction.
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temperatures;3 instead, the spin ice compounds exhibit a macroscopic entropy per spin, S0,

which essentially equals the macroscopic entropy per hydrogen exhibited at low temperatures

by water ice (17). These observations are synergistic: The first implies the existence of substan-

tial frustration; the second quantifies it and explains the absence of any phase transition by the

failure of the system to hit upon a particularly favorable ordering pattern.

2.1. Disorder, Entropy, and Ice Rules

The zeroth order explanation for this behavior is quite simple. The large moments experience a

dipolar interaction, which has the right size, approximately 2 K (1). In addition they experience

a much larger local [111] anisotropy, approximately 300 K, which has the effect of forcing the

spins to point either into tetrahedra or out of them (1). The combination of the two terms causes

nearest-neighbor spins to favor pseudospin antiferromagnetism: An in spin wants its neighbors

on the same tetrahedron to point out and vice versa. Ignoring the longer range of the dipolar

interaction, this is really now an Ising antiferromagnet on the pyrochlore lattice, which, since

the ancient work of Anderson (19), has been known to exhibit a macroscopic entropy at T ¼ 0.

The entropy itself is accurately estimated by an argument of Pauling’s (17). A given tetrahe-

dron has 6 ground states of the nearest-neighbor Ising interaction out of the possible 16

configurations allowed by the crystal field anisotropy. A lattice with Ns spins and Nt ¼ Ns/2

tetrahedra is then estimated to have

2Ns
6

16

! "Nt

1.0

0.8

0.6

Sp
in

 e
nt

ro
py

 (R
 ln

2)

Temperature (K)

Pauling’s ice entropy

Entropy of Dy2Ti2O7

0.4

0.2

0
0 2 4 6 8 10

Figure 2

Entropy of Dy2Ti2O7 found by integrating the heat capacity divided by temperature from 0.2 K to 14 K.
The residual entropy at low temperatures is in good agreement with the estimate Sp=kBNs ¼ ð1=2Þlogð3=2Þ
based on Pauling’s work on water ice (17). Figure taken from Reference 16, figure 2b.

3For an interesting, much earlier, precursor see Reference 18.
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ground states via independent application of the tetrahedral constraints. This is equivalent to a

ground state entropy per spin Sp=kBNs ¼ ð1=2Þlogð3=2Þ, in fine agreement with the data in

Figure 2. This is a good place to note that Pauling’s estimate was done in the context of the low-

temperature entropy of water ice. The ground states of the two ices are isomorphic upon the

identification of the orientation of the spins with the location of hydrogen atoms on the bonds

between oxygens (Figure 3). In water ice the requirement that exactly two hydrogens are

proximate to a given oxygen is the ice rule that ensures that ice is constructed from water

molecules.

As promised, we have explained the macroscopic T ¼ 0 entropy. The Ising model also

explains the lack of a phase transition at any finite temperature; it has none, and no signature

of long-range order develops at any wavevector all the way down to T ¼ 0 starting in the high-

temperature paramagnetic region.

It would thus appear that we are done, having explained both significant facts about spin ice.

However, this is not the case. First, the nearest-neighbor Ising antiferromagnet is not so simple

after all; in fact, it exhibits a divergent correlation length as T ! 0, which cuts off algebraic,

dipolar spin correlations, which are signatures of an emergent gauge field (20–24). Second, the

dipolar interactions among the spins cannot be truncated to nearest-neighbor distances, and we

need to evaluate their impact on the story we have sketched thus far (25). We begin with the

second question and come back to the first one later. We find eventually that they lead to a

common, comprehensive, and yet simple understanding.

2.2. The Dipolar Puzzle and Its Resolution

To recap: Thus far we have noted that the nearest-neighbor dipole-dipole interaction combined

with the [111] easy axis anisotropy yields a pseudospin Ising antiferromagnet with a macro-

scopic T ¼ 0 entropy and also yields the ferromagnetic sign of the Curie-Weiss constant

observed in high-temperature measurements (1). The dipolar puzzle is that the long-range part

of the dipolar interaction (2) appears to change these results insignificantly, and most impor-

tantly, that it does not lead to low-temperature ordering down to T much smaller than the

Curie-Weiss constant (26, 27). We show now that this robustness results from a remarkable

feature of the anisotropy-constrained dipolar interaction on the pyrochlore lattice—that it

differs modestly and only at short range from a model dipole interaction on the pyrochlore

lattice that has the exact ground state degeneracy dictated by the ice rules.

Figure 3

Illustration of the mapping between spin ice and water ice. A spin that points outward/inward indicates an
H atom that is displaced away from/toward the O atom at the center of the tetrahedron.
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There are two very different formulations of this result in the literature (28, 29), and we

discuss the second one here, as it is essentially pictorial; it leads to the modestly named

dumbbell model of spin ice (see the supplementary information in Reference 29). We begin

with point dipoles of strength m placed on the pyrochlore lattice with their orientational

freedom restricted to the local [111] axes. Now consider replacing each dipole with a

dumbbell consisting of a pair of oppositely charged monopoles of strength 'qm. These are

placed at distance d in opposite directions away from the pyrochlore lattice site along the

local [111] axis. At this stage, the construction is purely mathematical: The monopoles have

no reality and we have not changed the number of degrees of freedom in the system. What

we have done is to change the original energy function, written as a sum of N2 dipolar

terms

H ¼ m0m2

4p

X

i<j

Si ( Sj
r3ij

)
3ðSi ( rijÞðSj ( rijÞ

r5ij

" #

, 1:

by a monopolar energy function written as a sum of 4N2 Coulombic terms,

H ¼
X

i<j

m0
4p

qiqj
rij

,

where the spins Si are assumed to point parallel to the local [111] axis, the charges qi take the
values 'qm, and m0 is the vacuum permeability.

To understand the purpose of the construction, consider the interaction between two

distant dumbbells. Up to the constant, immaterial self-energy of each dumbbell, the Cou-

lombic monopole-monopole interaction between the constituents of the dumbbells translates

into the original O(1=r3) dipolar interactions between the spins. Therefore, we have

represented the long-ranged part of our original problem faithfully. At not so long distances

there are O(1=r5) corrections but we can limit their significance at short distances by two

maneuvers. First, we make a clever choice of the separation d between the monopoles:

We tune it equal to the distance ad=2 to the tetrahedral center (and therefore qm ¼ m=ad).
Second, as this causes monopoles from different dumbbells to overlap, we regularize the

Coulomb interactions to

VðrÞ ¼
m0
4p

qiqj
rij

rij 6¼ 0

v0qiqj rij ¼ 0,

8
<

:

where the value of the onsite Coulomb interaction v0 can be chosen so that the dipolar energy of

two neighboring dipoles is exactly recovered in the dumbbell model. In fact we can do better.

There is also a small nearest-neighbor exchange term in the Hamiltonian,

H ¼ J

3

X

hiji
Si ( Sj, 2:

and we can choose v0 so that this is also included correctly (29):

v0
m
ad

! "2

¼ J

3
þ 4

3
1þ

ffiffiffi
2

3

r !

D, 3:

where D ¼ m0m2/4pa3 is the dipolar coupling constant at the dipole-dipole nearest-neighbor

distance a.
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The net result of these replacements is that we can rewrite the energy function in terms of the

net charges Qa * Si2a qi ¼ 0, '2qm, and '4qm at the centers a of the tetrahedra (which form a

diamond lattice):

H ¼ m0
4p

X

a<b

QaQb

rab
þ v0

2

X

a
Q2

a . 4:

This equation encapsulates the dumbbell model. The unmodified Coulomb limit is recovered by

taking v0 ! 1; in that limit it is clear that the ground states of the model consist of all

configurations for whichQa ¼ 0 for all a. These are exactly the ice rule satisfying configurations
(2in-2out; Figures 4a,c). At finite v0, the low-temperature fate of the system is determined by

the competition between the self-energy cost of a charge and the Madelung energy gain of an

arrangement of positive and negative charges on the diamond lattice. One can check that the

ground state set of Equation 4 remains unchanged when v0 is sufficiently large, which is the case

for physical values in Dy2Ti2O7 and Ho2Ti2O7. We have thus shown that the dumbbell

model—which captures most of the dipole interaction accurately including its long-ranged

part—has exactly the same ground states as the nearest-neighbor model of spin ice.

We ask the reader to take a moment to admire what has been accomplished. For a model of

hard (fixed-length) spins with genuinely long-ranged and frustrated interactions, we have found

O(eN) exact ground states. Normally, even finding one such ground state would be a tall order.

Here, the lattice anisotropy and our choice of interactions have conspired to make the task

trivial. What is remarkable is that there are actual compounds, the spin ice materials, that

realize this model to an excellent approximation. Conversely, the dumbbell model, whose

energetics differ from that of the purely dipolar model by manifestly small terms, explains why

spin ice exhibits the Pauling entropy at low temperatures. In principle, the deviations from the

perfect degeneracy captured in the dumbbell model do give rise to ordering as T ! 0 (1, 2, 28).

However, these appear to be experimentally inaccessible—the system freezes before any order-

ing is detected—and they are thus irrelevant in the discussion of the actual physics of these

compounds.

3. MONOPOLES

Now let us turn to the excitations. As far as their energetics is concerned, we can again work

with the dumbbell model. The simplest move out of the ground state manifold consists of

flipping a single spin, which breaks the ice rule for two neighboring tetrahedra, as illustrated

in Figures 4b,d. In the dumbbell model, the corresponding move creates two equal and opposite

charges '2qm on nearest-neighbor diamond sites. Now, these charges do not have to sit next to

each other; they can be moved apart by flipping a sequence of spins/dumbbells as illustrated

in Figure 4e. In other words, the initial spin flip can fractionalize into two defect tetrahedra

that can move independently. A key issue in any such construction is the energetic feasibility

of the fractionalization, i.e., are the fractionalized objects (“quarks”) deconfined?4 In our case

the answer is immediate thanks to the dumbbell model wherein the energy of two defects

located at a distance r apart is simply

EðrÞ ¼ 2
2v0m2

a2d
þ m0
4p

ð2m=adÞð)2m=adÞ
r

,

4We note that confinement requires that we pay an infinite energy to separate the constituents. However, deconfined
objects can nonetheless exhibit bound states with finite binding energy.
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which is the sum of two defect creation energies D ¼ 2v0m2=a2d and a (magnetic) Coulombic

interaction between the defects. Given the nature of the magnetic interaction between the

defects, it is appropriate to call them monopoles, but more on that anon.

3.1. Two-Component Plasma and the Debye-Hückel Theory

Our considerations above are summarized by the formulation that we have mapped the ener-

getics of the low-energy configurations of spin ice onto that of a set of monopoles and

antimonopoles with a finite creation energy per particle and a Coulomb interaction between

e “Dirac
string”

a

c d

b

Figure 4

Illustration of the spin to dumbbell mapping for ice rule satisfying tetrahedra (a versus c) and for tetrahedra
hosting positive and negative monopoles (b versus d). A “Dirac string” between two monopoles (white) is
shown in panel e. Figure taken from Reference 29, figure 2.
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them—a system that has been known and studied for many years and goes under the name,

among others, of the two-component plasma (30). Although this mapping requires some further

discussion and qualification to which we return below, let us first show that it provides a simple

yet accurate account of the low-temperature thermodynamics of spin ice.

The natural parameters in the plasma are the average thermal energy of the particles kBT, the
magnitude Q ¼ 2qm ¼ 2m/ad of their charges, and their average separation defined by their

density d + n)1/3. In addition, the plasma needs a short-distance cutoff to regulate the Coulomb

attraction, absent which the system suffers collapse. In our problem, that is naturally provided

by the lattice constant ad. From these quantities we generate two dimensionless ratios that

control the physics of the system. One can choose these to be the plasma parameter or the

interaction strength in units of the temperature G ¼ Q2=d
kBT

and the dimensionless density in units

of the short-distance cutoff ~n ¼ na3d. In terms of these, the plasma exhibits a phase diagram with

gas, liquid, and coexistence regions topped by a critical point as sketched in Figure 5.

The monopole density in spin ice varies with T; at asymptotically low temperatures, it

vanishes as ~n + e)D=T . At the same time the dimensionless interaction strength also decreases

with temperature. It follows that spin ice traces a path on the phase diagram in Figure 5 that lies

entirely within the gaseous region, as sketched there. Note that this statement is equivalent to

our earlier statement that spin ice exhibits no phase transition as it is cooled from the paramag-

netic phase.

Avery useful understanding of this gaseous region can be gained by resorting to the standard

approximate treatment of dilute plasmas, namely the Debye-Hückel (DH) theory (30, 31).

Given the correct identification of the monopole charge, chemical potential, and lattice entropy

appropriate for spin ice, it is straightforward to use the DH equations to compute the heat

capacity. This calculation can be compared to the experimental heat capacity data by Klemke

and collaborators (see Reference 32, figure 1b), and it is apparent that the DH theory provides a

Coexistence Critical point

Gas

Liquid

na3
d

Spin ice

T
Q2/d

Figure 5

Sketch of the generic phase diagram of a two-component plasma. In zero field, spin ice traces a trajectory as
a function of temperature that lies entirely in the gaseous phase.
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good understanding of the low-temperature behavior in the regime where monopoles are

sparse. It is also clear that this plasma computation does much better than traditional spin

system methods such as cluster expansions of the free energy or Cayley tree approximations and

thus provides evidence for the correctness of the plasma formulation.

A further tunable knob is needed to access the rest of the plasma phase diagram. Here, the

specific structure of the local easy axis anisotropies on the pyrochlore lattice comes to the

rescue: Although spin ice is an antiferromagnet in pseudospin language, a magnetic field

couples to the real magnetic moments and can thus lift degeneracies, as the moments do not

locally sum up to zero even in the ground states (33).

One thus observes (see Figures 4a,b) that applying an external magnetic field along one of

the [111] axes eventually favors a (unique) configuration with only 1in-3out and 1out-3in

tetrahedra. As such, it acts as a chemical potential for the monopoles, which can now be tuned

independently of temperature (29). This predicts that the phase diagram in the (H, T) plane
should exhibit a first-order gas-liquid transition line terminated by a critical end point. In fact,

exactly this phase diagram was observed in spin ice prior to the formulation of the theory (34)

and was already flagged as being unusual. The first-order line exhibits a jump in magnetization,

which is the same in this context as a jump in the monopole density (see Figure 6), and the jump

goes away at a critical point.

3.2. Monopoles with Strings Attached

Everything we have said thus far about the monopoles has only turned on their Coulombic

interaction, and that is an unproblematic consequence of their energetics, as most transparently

encoded in the dumbbell model. We turn now to a more careful consideration of the objects

themselves.

We begin with a generality: Although a condensed matter system can produce objects that

act as fractionally charged sources for the electric field E, it cannot do the same for the magnetic

field B. This distinction holds for long wavelength fractional charges, which arise from averag-

ing over microscopic sources. Whereas r ( E ¼ r, and averaging can give rise to a fractional

source on the right-hand side, r ( B ¼ 0, and no amount of averaging can produce anything

except zero on the right-hand side. Thus the apparent consequence of the dumbbell model, that

the monopoles are sources of B, cannot be correct.

It is easy to see where the problem lies. In introducing dumbbells we introduced degrees

of freedom which are microscopic sources of B. Although this was unproblematic in the

ground states, it becomes problematic in the excited states. Going back to the original

dipoles remedies that problem. In the dipole language, we create two separated monopoles

starting with a given ground state by identifying a chain of dipoles arranged head to tail

and flipping them. This is equivalent to starting with the initial configuration and adding

two copies of the reversed dipole chain. Relative to the starting ground state we have

introduced the magnetic field of a dipole chain with a dipole moment density )2m/ad per

unit length. The magnetic field B, due to this inserted object, is that of a monopole-

antimonopole pair at its endpoints and a “Dirac string” of flux connecting them along the

dipole string (see Figure 4e). The existence of the string now accounts for the solenoidal

constraint.

Three comments on the string are in order. First, its existence evades the classical Dirac

argument for monopole quantization. Indeed, in spin ice the monopole charge is approximately

8,000 times smaller than the Dirac value (11)—in part testimony to the smallness of the

fundamental dipole, which itself is forced to arise from currents, and in part a consequence of
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fractionalization on the scale of the lattice constant. Second, the deconfinement of the mono-

poles finds an alternative to the classical Dirac construction—in which the Dirac string is made

unobservable—by making the string tensionless and thus infinitely extensible. Third, there is

really no string, in that it can be defined only with respect to a particular starting ground state

and it changes if one changes the reference ground state. If simply handed a spin ice configura-

tion with monopoles, one cannot uniquely identify strings in it. This ambiguity also feeds into

the feature that the actual spatial distribution of B for a monopole in a given ground state,

which arises from all moments in the system, is not particularly monopolar except under special

circumstances such as in the “Stanford monopole experiment” mentioned below. Nevertheless,

we shall see shortly that one can experimentally observe strings if we force the system into a

given ground state initially.

Finally, we note that the monopoles can be identified as sources of the magnetic field H ¼
B ) M after appropriate coarse graining. Specifically, consider the smeared magnetic charge

rmðRÞ ¼
ð
d3r exp ) jr) Rj2

x2

 !
r(H.

In the limit x , a, this returns '2qm for isolated magnetic monopoles/antimonopoles.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1.0

1.2

Temperature (K)

M
ag

ne
tic

 fi
el

d 
(T

)

0.80 0.82 0.84 0.86 0.88 0.90 0.92

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Magnetic field (T)

M
ag

ne
tiz

at
io

n 
(µ

B
/ D

y)

Simulation

Experiment

Figure 6

Phase diagram of spin ice as a function of temperature and magnetic field applied in the [111] direction. The
inset illustrates the behavior of the magnetization above and below the critical temperature [from Monte
Carlo (MC) simulations]. The experimental results are from Reference 71. Figure taken from Reference 29,
figure 4.

www.annualreviews.org " Spin Ice, Fractionalization, and Topological Order 45

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

12
.3

:3
5-

55
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
rie

s o
n 

02
/0

4/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



3.3. Imaging the Dirac Strings

As explained above, creating a separated monopole-antimonopole pair requires flipping a chain

of head-to-tail aligned spins. In general, this Dirac string is statistically indistinguishable from

the ice rule obeying background, and no (local) spin correlation function can detect it. This

statement holds for typical ice rule–satisfying configurations—the vast majority, in fact—but

not all of them. Indeed, Morris and collaborators (32) took advantage of a notable exception

and elegantly succeeded in measuring the Dirac strings, thus providing indirect confirmation of

the monopole excitations in spin ice materials.

The key step at the root of this experiment is to use a [001] field to bring the system to

magnetic saturation, which can be achieved with fields much weaker than the anisotropy. This

selects a unique configuration in which all spins have a positive projection onto the field

direction, and thus minimize the Zeeman energy. From Figure 1, one can immediately see that

this state also satisfies the ice rules.

Before we turn to the role of monopoles, we briefly digress to note that the transition

between this state and the spin ice states with unsaturated magnetization reflects the topological

character of the states satisfying the ice rules: The magnetization of each [001] plane is the same

throughout the lattice. Therefore, as the field is reduced, the magnetization can only be reduced

in the absence of monopoles by a nonlocal move, namely by flipping a string of spins spanning

the entire system: In the saturated state, no local fluctuations are possible! The transition out of

this state therefore has the unusual character of appearing fluctuation-free on the high-field

side, while looking like a perfectly standard second-order transition on the low-field side,

because an entropic repulsion between the strings leads to a gradual lowering of the magnetiza-

tion (35). This transition bears Kasteleyn’s name, who first discussed this behavior in the

context of planar dimer models.

In experiment, such nonlocal spin flips are not possible. Instead, reducing the field at low

temperature generates a dilute set of monopole-antimonopole pairs. These pairs are connected

by finite-length Dirac strings, defined relative to the saturated starting state. This string must

stretch monotonically in the [001] direction, although it is free to meander transversely on the

lattice—indeed, it meanders randomly in the transverse plane.

The diluteness of the Dirac strings allows them to be observed. More precisely, they provide

a set of dilute and thus independent degrees of freedom, which can be used to generate a

compact description of the scattering pattern. The remaining task is to compute the scattering

due to a single string, and here its orientation comes to our aid. Thanks to the latter, we are able

to view the strings as two-dimensional random walks in the xy plane, drawn as a function of

“time” in the z direction. The correlation between two spins separated by a vector (x, y, z) is
directly related to the probability that a two-dimensional random walk starting at the origin

passes by position (x, y) after time z. On the pyrochlore lattice, with spins pointing along the

local [111] easy axis, these correlations translate into characteristic cone-shaped intensity

patterns in the structure factor, which are clearly observed in diffuse neutron scattering mea-

surements (32), as illustrated in Figure 7. Tilting the field away from the [001] direction gives a

bias to the random walk, as the string prefers to visit those sites that are cheaper to flip against

the applied field; this was again observed experimentally (not shown).

4. EMERGENT GAUGE FIELD

Thus far, we have discussed a low-temperature description entirely in terms of the energetics of

the monopoles. And yet this cannot be the whole story, as we have ignored one of the defining
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features of spin ice, its macroscopic zero-temperature entropy. This entropy turns out to have

two consequences. First, the zero-temperature limit of the spin correlations is nontrivial; it

involves an average over all the ground states. Second, the spin entropy is modified by the

presence of monopoles, and it is sensitive to their location. In turn this results in an entropic

force between the monopoles. Interestingly, both effects are captured by an emergent gauge

field governed by a Maxwell action (20–24, 36).

Consider the spin ice ground states, with the ice rule forcing two spins to point in and

two to point out on each tetrahedron. If we change our perspective, we can think of these as

the configurations of a lattice vector field S that lives on the bonds of the dual diamond

lattice, takes values oriented along and opposite to each bond, and satisfies the lattice

discretization of the conservation law r ( S(x) ¼ 0. If we now switch to a somewhat

coarse-grained description, we go from weighting all states equally to generating a probabil-

ity distribution,

P½SðxÞ. / dðr ( SÞe)K
2

Ð
d3xjSðxÞj2 . 5:

The particular form here follows from (a) the requirements of analyticity and minimum scaling

dimension for the output of a short-distance coarse graining (a standard renormalization group

argument), (b) the observation that microscopic configurations with lots of short loops of the

lattice vector field dominate the ground state sum and coarse grain to configurations with

small values of S(x), and (c) the requirement that the coarse graining preserves the solenoidal

constraint. [Note that the coarse-grained spin field is proportional to the coarse-grained mag-

netization M(x).]
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Neutron diffraction data showing cone scattering appearing at the (020) Bragg peak (a), compared with the result calculated using
two-dimensional random walk considerations (b). Figure taken from Reference 32, figure 3.
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At this point it is trivial to solve the constraint via the introduction of a gauge field S(x) ¼
r / A(x) and obtain the probability distribution of a Euclidean Maxwell theory,

P½AðxÞ. / e)
K
2

Ð
d3

xjr/AðxÞj2 ,

thus uncovering the promised gauge field. As such, it will not surprise the reader that this

analysis implies that the long-distance spin correlations are dipolar (22):

hSiðxÞSjð0Þi /
3xixj ) r2dij

r5
. 6:

In turn, the correlations imply the existence of bow ties or pinch points in the neutron

scattering pattern in momentum space. Gratifyingly, such singularities have indeed been

observed (37, 38) in low-temperature neutron scattering on spin ice (Figure 8). Readers

should note that these dipolar correlations are not a trivial consequence of the dipolar

interaction—after all they exist already for the short-ranged model of spin ice. Of course

there is a deeper connection: It is the happy coincidence of the entropic and energetic dipolar

correlations that makes the physics of spin ice stable to the inclusion of the full range of the

dipolar interaction.

A second consequence of the emergent gauge field is that the monopoles, as sites that violate

the solenoidal constraint, are also sources of its flux and thus experience the standard Coulomb

interaction with a strength set by K T, the latter factor accounting for the translation between

the entropy encapsulated in Equation 5 and the free energy. Thus there is this elegant feature

that the full interaction between monopoles is still Coulombic—now with a T-dependent

3
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Figure 8

Diffuse scattering maps from spin ice Ho2Ti2O7. The dipolar nature of the spin ice correlations (Equation 6)
leads to a characteristic cos2(y) angular dependence of the intensity of the structure factor in reciprocal
space: As one moves around a Brillouin zone center, say (0,0,2), the intensity goes through maxima (red)
and minima (blue) twice as we complete a full 3600 contour. Figure taken from Reference 37, figure 2A.
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strength (39). [Historically, the entropic interaction was understood (20–24) prior to the iden-

tification of the energetic interaction.] For practical purposes though, the energetic part domi-

nates strongly at the relevant temperatures in the current compounds, although that could

change in spin ice realizations with smaller moments and thus (relatively) stronger nearest-

neighbor exchange.

The thermally excited monopoles do, however, cut off the dipolar correlations and thus

define a length scale—their separation—that functions as a divergent correlation length as

T ! 0. Thus we find that as T ! 0 spin ice approaches a critical point, characterized not by

the development of quasi-long-ranged order in an order parameter but instead by the

deconfinement of a gauge field. Although this is thermal physics, it is in remarkably close

analogy with Polyakov’s explication of the physics of compact U(1) gauge theory near the

Maxwell limit in 2 þ 1 dimensions (40).

Finally, we should note two related instructive aspects of spin ice physics. First, the feature

that monopoles are sources of both the standard magnetic field and the emergent gauge flux

is common in topologically ordered systems, although it was not recognized until it cropped up

in spin ice (41). It has the consequence that one must distinguish the charge under the emergent

gauge field, which is quantized, from the charge under the magnetostatic gauge field, which is

not. This distinction generalizes to other topologically ordered systems, in particular to models

of electric charges on the pyrochlore lattice (42), or indeed to water ice itself.

Second, the application of a [111] magnetic field leads to a magnetization plateau in which

there is still a residual macroscopic entropy. The entropy of this kagome ice state (43–46) comes

from purely planar rearrangements of the spins, and it is captured by a two-dimensional critical

gauge field, more commonly known as a height field. Thus we have the interesting phenomenon

of a dimensional reduction of the emergent gauge structure by the application of an external

field.

The fluctuations of this height field can be quenched by tilting the field toward the

[
))
112] direction, and the resulting two-dimensional Kasteleyn transition (46) has also been

observed (47).

5. DYNAMICS

Thus far we have discussed the low-temperature statics and thermodynamics of spin ice. Let us

now turn to what is known about its dynamics in and out of equilibrium. We warn the reader at

the outset, however, that this is a subject that is not nearly as well settled as the thermodynamics

and statics.

Let us begin with two overarching observations. The first is empirical: Relaxation times in

spin ice grow extremely rapidly at low temperatures, and below approximately 600 mK spin ice

is generally not in equilibrium on laboratory timescales. As evidence, see the contrasting

measurements of field-cooled and zero-field-cooled magnetization and the measurements of

the uniform magnetic susceptibility (48, 49). The second observation is theoretical: The low-

temperature dynamics of spin ice is sensitive, as befits a classical system, to various details that

do not affect the equilibrium behavior. These include the relative magnitudes of processes that

move the system in the ground state manifold and processes that involve the creation, motion,

and recombination of monopoles as well as the microscopic timescales for attempting such

transitions. Our current best understanding is that the low-temperature dynamics of spin ice

below approximately 10 K is well captured by a stochastic, Monte Carlo (MC), process in

which single spins attempt to flip approximately every millisecond at a relatively T-independent
attempt frequency. This has the consequence that although existing monopole motion is fast,

www.annualreviews.org " Spin Ice, Fractionalization, and Topological Order 49

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

12
.3

:3
5-

55
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
rie

s o
n 

02
/0

4/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



their pairwise creation is a slow process and there is no significant direct motion in the ground

state manifold, via ring exchange terms. It is nonetheless important to remark that such ring

exchange terms are present in principle, and they could be boosted via local chemistry, e.g., in

compounds with smaller spins or, more generally, a different crystal field level scheme.

5.1. Equilibrium Dynamics

Ideally, we would like to have an understanding of the frequency and wavevector-dependent

spin correlations at low temperatures. Experimentally, what is available at present is the q ¼ 0

small o response measured in AC susceptibility measurements, as seen in References 49 and 50.

These authors extracted a timescale that exhibits a rapid increase as the temperature is

decreased, quickly becoming larger than the accessible time window (Figure 9). The increase

was so rapid that they argued it could be faster than exponential. We now describe the current

state of the theory.

The first treatment of the dynamics in spin ice in terms of the gauge field/monopole descrip-

tion was given in Reference 46 for the kagome ice plateau in a [111] field discussed above,

which relied on collective dynamics for the gauge field generated by ring exchange terms,

i.e., cooperative moves of the spin that respect the ground state conditions. As we have noted

above, it appears that the ring exchange terms are too small at accessible temperatures. [It is

0 3
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Monte Carlo simulations
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Figure 9

Experimental magnetic relaxation timescale t as a function of temperature from susceptibility data from
Reference 49 (gray crosses and dashed lines). The rapid increase in t at low temperatures is due to the
paucity of defects responsible for the magnetic rearrangement of a spin ice configuration (namely, the
monopoles). This increase cannot be described by the Arrhenius law that obtains in the noninteracting
approximation (red lines). On the contrary, the spin autocorrelation timescales computed using Monte
Carlo simulations from Reference 51 (blue dots) are in good agreement with the experimental data (gray
crosses and dashed lines). To leading order, the improvement is due to a finite screening length that reduces
the isolated monopole cost at intermediate temperatures. As discussed in Reference 39, this effect of the
interactions on the timescales can be captured using Debye-Hückel theory. Figure taken from Reference 51,
figure 2.
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perhaps worth emphasizing that this is a quantitative issue, for the collective dynamics will

dominate as T! 0 for an ideal spin ice system.]

The next step was taken by Ryzhkin in a paper (52) that did not get the attention it deserved

at the time due to an abstract that announced a noninteracting treatment of the monopoles.

Although he incorrectly identified the decay of the entropic forces as being faster than a

Coulomb interaction, he did come close to identifying the energetic Coulomb force. Impor-

tantly, he did recognize the role of the monopoles as sources and sinks for the magnetization

and their significance for magnetic relaxation in the low-temperature, hydrodynamic, regime.

In this regime the relaxation of the magnetization by monopole motion is summarized by the

equation (52)

@M

@t
¼ jm

and the constitutive relation

j ¼ )2mnFM,

where m and n are the monopole mobility and density and F ¼ ð8=
ffiffiffi
3

p
ÞakBT. The T dependence

of F indicates the entropic origin of the monopole drift in response to the local magnetization

(53). Together these two equations imply a relaxation time

t + 1

2mnF
,

which diverges exponentially+ eD/Tat low temperatures due to the vanishing monopole density,

as well as a Debye relaxation form for the susceptibility. This analysis is likely asymptotically

correct as T! 0 at q ¼ 0, although it needs to be supplemented by the explicit inclusion of

Coulomb effects to treat q 6¼ 0.

A comparison between this noninteracting exponential increase and the experimental results in

Reference 49 leads, however, to an unsatisfactory agreement at accessible temperatures. A much

better fit is obtained if the monopole density is computed using DH theory (39), indicating

that Coulomb effects are significant for the measurements even at q ¼ 0. An even better fit to the

data has been obtained by Jaubert &Holdsworth (51) who have computed a relaxation time from

the spin autocorrelation function by explicit MC simulations of dipolar spin ice.

As noted above, the dynamics of spin ice is believed to be a good approximation to MC

dynamics. This is not a trivial problem as one still needs to deal with the serious limitations on

the system sizes that can be simulated, imposed by the computational cost of treating the long-

ranged dipolar interactions. These are particularly crippling at low temperatures, when the

density of monopoles becomes exponentially small. In Reference 51, the problem was partially

solved with a clever approximation: an algorithm that retains the full spin configuration but

computes its energy using the effective monopole description, in terms of chemical potential

and longed-range Coulomb interactions. Contrary to the conventional dipolar approach, this

new algorithm becomes more and more efficient as the temperature is decreased and the

number of long-ranged interacting terms is exponentially suppressed, although it still has to

deal with the need to simulate an ever larger system.

We note that although the results of Reference 51 fit the data of Reference 49 quite well (see

Figure 9), there are two unresolved issues in this agreement. First, it is not yet possible to access

via MC the putative transition to the naive exponential growth that would serve as a test of its

asymptotic agreement with the hydrodynamics as T! 0. Second, the local spin autocorrelation

function is an integral over all q, and that is not what is measured in Reference 49.
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This last point brings us to the observation that the dynamics at low T is also dynamics near

a critical point with a divergent correlation length and thus should also fit into the framework

of dynamical critical phenomena (54). The related problem of multicomponent antiferromag-

netic spins on the pyrochlore lattice has been shown to exhibit dynamic scaling (55, 56) for long

wavelengths and low frequencies. The spin ice problem still awaits a definitive analysis along

these lines.

5.2. Out of Equilibrium Behavior

First, the most obvious reason to be interested in the behavior of spin ice out of equilibrium is

that this is what is observed experimentally at low temperatures where timescales of the order

of a few days and longer are easily arranged. Second, there is the more fundamental question of

how an ensemble of point-like defects embedded in a network of strings behaves. Finally, there

is the enticing prospect of constructing by means of magnetic charges analogs of familiar circuit

phenomena with electric charges.

Reference 57 considers the fate of the system following a thermal quench from high temper-

atures where monopoles are abundant down to low temperatures where they are sparse. As

monopoles can only pair annihilate, one obtains a diffusion-annihilation problem, in which the

monopole density decays slowly, as each monopole first needs to move to find a partner with

which to annihilate. Whereas the magnetic Coulomb force helps in locating such a partner, it

turns out that at low temperature it in fact slows down the annihilation process as a result of a

simple trapping mechanism: Flipping the spin shared by two tetrahedra hosting a pair of

oppositely charged monopoles annihilates this pair only if this spin flip repairs the ice rules; if

instead it leads to the creation of charge-2Q monopoles, the monopoles are stuck, as there is a

Coulomb energy barrier for them to annihilate by flipping a longer string of spins (57). The

counterintuitive fact that this dynamical arrest is most visible at low temperature when the

equilbrium monopole density is lowest reflects an unusual interplay of lattice-scale and long-

wavelength degrees of freedom.

The magnetic two-component Coulomb plasma analogy outlined above has been pushed

beyond equilibrium phenomena in an imaginative stream of work by Bramwell and

coworkers (58, 59) aiming to transpose concepts from the field of electrolytes to the study

of spin ice; in this context the labels magnetolyte (60) and magnetricity (58) have been

applied to spin ice and the collective behavior of the monopoles it hosts. They examine the

response of spin ice to a small magnetic field, specifically analyzing the experiments in

terms of Onsager’s modeling (61) developed in the framework of the Wien effect, which

refers to the change in the analogous electrical response properties of an electrolyte. This

work turns on managing the complexity of length scales in the plasma by truncating it to a

binary classification between bound and free monopoles and writing rate equations for the

latter. Although the soundness of various approximations employed in this work remains to

be established, its success in modeling data suggests that it is indeed possible to give a

coherent account of spin ice even out of equilibrium in terms of the monopoles and their

interactions.

For a complete understanding of the nonequilibrium behavior of spin ice, it has become

apparent that a model in terms of spins alone will not be sufficient. Demagnetization (62) and

field sweep experiments (63, 64) have unearthed a rich phenomenology with several different

timescales. For instance, at low temperatures, there are three distinct magnetization curves as a

function of field sweep rate. For (in practice, unattainably) low sweep rates, one on general

grounds expects to find the equilibrium magnetization curve. At intermediate sweep rates, the
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magnetization does not start growing until a critical field is reached, when the Zeeman energy

gain surmounts the smallest energy barrier for a spin flip, whereafter a smooth growth in

magnetization up to saturation occurs. For fast sweeps, plateaux in the magnetization

connected by discontinuous jumps occur; a jump goes along with heating of the sample,

indicative of an inability of the phonons to carry away the heat generated in a magnetic

avalanche. Why these avalanches appear around the same temperature where MC simulations

not incorporating phonons find the rapidly growing timescales (51) remains for the moment a

mysterious coincidence.

Finally it is also worth noting that monopoles have been studied in artificial spin ice in two-

dimensional lithographically patterned micromagnetic arrays since the early work described in

References 65 and 66. Here the dynamics is entirely nonequilibrium and poses, for example, the

challenge of understanding the role of monopoles in avalanche dynamics of these systems; for a

popular account, see Reference 67.

6. LOOKING FORWARD

We hope we have succeeded in conveying to the reader the significance of the spin ice com-

pounds in the contexts of fractionization and topological order, which we highlighted at the

outset—not least because they still are a rare, and exceptionally transparent, realization of these

ideas outside the setting of two dimensions and high magnetic fields.

Our understanding of the current spin ice compounds is less complete in relation to

their dynamics, and we sketched some open questions above. There is also the challenge

of single monopole detection, perhaps along the lines of the celebrated Stanford mono-

pole search as proposed in Reference 29. Here we would detect the actual magnetic flux

through a loop external to a long sample—a special setup that evades our earlier

caveats about the difficulty of detecting the magnetic flux associated with monopoles

in general.

It would be interesting to move beyond the focus on Dy2Ti2O7 and Ho2Ti2O7. For example,

a lowering of the gap to higher crystal field levels should strengthen the relative importance of

off-diagonal (non-Ising) terms in the Hamiltonian, which will as a result lead to coherent

quantum dynamics. The properties of such quantum spin ice will push the analyses here into

the quantum realm, which has so far only partially been explored (20–24, 68, 69) and seems not

unpromising.

However, even absent a breakthrough on this front, one may hope that minor tweaking of

the Hamiltonian may lead to a qualitative change in behavior of even classical spin ice systems.

Most simply, even as the relative magnitudes of the exchange and dipolar couplings change,

monopoles will start to occur more frequently in neutral bound pairs, thereby opening a

different window on the physics of two-component Coulomb liquids. Larger changes will

intertwine with an interesting literature on phase transitions out of the Coulomb phase of the

emergent gauge field (35, 70).

In sum, we contend that the spin ice problem has had a fine run given the relative simplicity

of its ingredients, and it appears not yet to be losing momentum!
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