

Density-Wave States in Twisted Double-Bilayer Graphene

Peter Rickhaus,^{1,*} Folkert K. de Vries,¹ Jihang Zhu,² Elías Portolés,¹ Giulia Zheng,¹ Michele Masseroni,¹ Annika Kurzmann,¹ Takashi Taniguchi,³ Kenji Wantanabe,³ Allan H. MacDonald,² Thomas Ihn,¹ and Klaus Ensslin¹

¹Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland ²Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA ³National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan (Dated: May 20, 2020)

Results

Outline

- Background on excitonic insulators and twisted 2D heterostructures
- Methods and sample preparation
- Appearance of a gap with displacement field
- Effects of magnetic fields
- Open questions

Excitonic insulators

Zhi Li et al, Possible Excitonic Insulating Phase in Quantum-Confined Sb Nanoflakes

 Interaction between electrons/holes in conducting/valence bands

- Correlated wave function formed analogous to superconductors (or Peierl's transition)
- Band nesting \rightarrow strong coherence

Excitonic insulators

GERS

Excitonic insulators

Twisted bilayer graphene

Twisted double bilayer graphene

Scattering processes

Umklapp scattering in e-e or h-h interactions

Carrier-phonon interactions

GERS

Limits on current due to scattering processes between electrons and holes (Relaxation of relative momentum)

Outline

- Background on excitonic insulators and twisted 2D heterostructures
- Methods and sample preparation
- Appearance of a gap with displacement field
- Effects of magnetic fields
- Open questions

Device design

ITGERS

- Three twist angles: 1.2°, 2.37°, and 10°
- Tear-and-stack technique for double bilayer
- •3 sets of leads attached to the same device
 - All measurements done at 100mK
 - $R_{xx} = \frac{V_{23}}{I_{14}}$ where I_{14} is an AC current

Identifying twist angle

JTGERS

12

Identifying twist angle

GERS

Outline

- Background on excitonic insulators and twisted 2D heterostructures
- Methods and sample preparation
- Appearance of a gap with displacement field
- Effects of magnetic fields
- Open questions

Displacement field effects

GERS

15

Displacement field effects

Charge density effects

GERS

Outline

- Background on excitonic insulators and twisted 2D heterostructures
- Methods and sample preparation
- Appearance of a gap with displacement field
- Effects of magnetic fields
- Open questions

D = 0.47 V/nm

ITGERS

ITGERS

SdH oscillation behavior distinguishes regions in *n* vs *D*

 $\frac{dG_{\chi\chi}}{dn}$ selected for visual convenience

TGERS

21

.=0

JTGERS

GERS

- Transitions between these regions match parabolic band theory calculations
- Asymmetry between hole and electron density
 - Intrinsic asymmetry from tight-binding model
 - Some effects from crystal field
 - Potential lattice relaxation effects

Magnetic field effects

Zeeman splitting creates new nesting possibilities \rightarrow Correlated insulating states at higher n

GERS

Valley-Zeeman effect dominates \rightarrow Weaker gap

Questions

- Possible competition with other correlated states? (spin states, nematic state, superconductivity)
- How much does scattering contribute to effects when turning carrier density?
- Origins of zero-bias peak with perpendicular magnetic field
- Effects of Landau levels on perpendicular magnetic field effects
- How resilient is the DW state with the application of strain?
- Phase of excitonic insulator—does it form a crystal-like lattice?
- Can this be measured in either transport or STM?