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We review the toric code, a simple spin-lattice model that exhibits topological or-

der and anyonic excitations. We derive these phenomena from a model Hamiltonian,

explain their significance, and highlight the connection to fault-tolerant quantum

computation.

I. INTRODUCTION

Topology is the branch of mathematics
that studies the properties of objects which
do not change under smooth deformations,
one classic example being the number of holes
in a torus. In other words, topologists study
global properties that are invariant to many
local perturbations. From this perspective it
is not hard to see why physicists are also in-
terested in topology. In this article we re-
view one example of a physical model where
the ground state degeneracy and elementary
excitations are determined by topology: the
toric code. We will take a condensed-matter
physicist’s approach to this model, start-
ing from the Hamiltonian and deriving the
ground state. We also discuss the low-energy
excitations and their unusual exchange statis-
tics, and explain why the toric code is a cor-
nerstone model in the study of fault-tolerant
quantum computation.

II. SPIN HAMILTONIAN

Consider a 2D square lattice with periodic
boundary conditions (i.e. a torus) and spin-
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particles located on each edge (Fig. 1).
Define the following Hamiltonian:

H = −
∑
v

Av −
∑
p

Bp, (1)

where the first sum is over all vertices v and
the second is over all faces or plaquettes p.
The vertex operators Av and plaquette oper-
ators Bp are tensor products of Pauli opera-
tors X = σx and Z = σz acting on individual

FIG. 1. Our model is a square lattice with peri-

odic boundary conditions and a spin-12 particle

(circles) on each edge. The dashed lines show

the dual lattice. Av and Bp consist of Pauli op-

erators Z (blue) and X (red) centered around a

vertex or plaquette of the primal lattice.

spins:

Av =
∏

j∈star(v)

Zj; Bp =
∏

j∈bdy(v)

Xj (2)

where star(v) is the set of edges adjacent to
vertex v, and bdy(p) is the set of edges form-
ing the boundary of the plaquette p (Fig. 1).

We can start by noting that Av and Bp are
Hermitian and square to the identity, there-
fore have eigenvalues ±1. Furthermore, each
of them commutes with all the others. To see
this, note that the overlap of Av with any Bp

occurs at an even number of edges. The op-
erators X and Z anticommute on any given
edge, but on an even number of edges this ef-
fect cancels itself out. Therefore, the ground
state(s) will be the simultaneous +1 eigen-
state of all the Av and Bp operators.

The next step is to figure out what kind
of states satisfy the above constraints. Be-
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fore we begin, let’s compute how many states
we expect to find so that we can be confi-
dent of the final answer. Each unit cell has
two spins, and each spin occupies a Hilbert
space of dimension 2, so one unit cell has
a 4-dimensional Hilbert space. If there are
N unit cells, the Hilbert space of the lattice
has dimension 22N . Now, think of Av and
Bp as constraints on this Hilbert space; vi-
olating any constraint costs energy, so the
ground state should obey every constraint.
Finally, note that while there are N each of
Av and Bp, each type gives only N − 1 inde-
pendent constraints because the product of
all Av is the identity, and similarly for Bp.
Putting everything together, we have 2N − 2
constraints, so we expect a GS manifold of
dimension 22N−(2N−2) = 4.

It will be useful to introduce some nota-
tion for constructing the ground state. We
adopt the convention that |0〉 is the +1 eigen-
state of Z and |1〉 is the −1 eigenstate. In
this basis, X acts as a spin-flip operator, i.e.
X |0〉 = |1〉, X |1〉 = |0〉. Taking the |0〉 , |1〉
notation literally, we will say that an edge is
“occupied” if the spin there is in the state
|1〉, and “empty” if it is |0〉. Recall that
we are looking for +1 eigenstates of all Av

and Bp, but for now let’s focus only on Av.
Clearly the state with all edges unoccupied
has eigenvalue +1 for all Av. If a single spin
is flipped, the resulting state will have eigen-
value −1 for the Av immediately adjacent to
that edge (Fig. 2a). In fact, anytime a vertex
v is surrounded by an odd number of occu-
pied edges, the corresponding Av will have
eigenvalue −1. The only states which do not
have at least one such vertex are those where
the occupied edges form closed loops, so the
set of all such states forms the +1 eigenspace
of the Av operators (Fig. 2b).

Clearly there are many, many possible
states with closed loops, so the ground state
is massively degenerate if we only satisfy the
Av constraints. To fix this degeneracy we add
the Bp terms to the picture. Each Bp is made
up of X operators, so it will flip all the spins

FIG. 2. Occupied edges are shaded black. (a)

Applying Av to the end of a string gives eigen-

value −1. (b) Applying Av anywhere on a loop

gives eigenvalue +1.

on the border of a given plaquette. This has
the effect of adding a new loop of occupied
edges or smoothly deforming an existing loop,
in the sense that we cannot break or join
a string of occupied edges by applying any
combination of Bp. Notice that we can con-
tract any loop that does not wind around the
torus until it disappears completely; in this
sense, such loops are equivalent to the trivial
state with no loops. However, a little thought
should convince you that a string of occupied
edges that winds all the way around the torus
in one direction cannot be contracted into
nothing, as this would require breaking the
string somewhere. This realization gives us
4 classes of loops which cannot be deformed
into one another: the trivial class with no
loops, a loop that winds around the torus in
either direction, and the combination of two
loops with one winding around in each direc-
tion (Fig. 3).

The fact that there are 4 inequivalent loop
configurations should not be too surprising;
as you may have guessed, they correspond to
the 4-dimensional GS manifold. To see this,
note that the 4 basic loops are not eigenstates
of Bp by themselves, but a completely sym-
metric superposition of any one of them with
all members of the trivial class is an eigen-
state. In other words, we have a sort of “loop
vacuum” (the trivial class), to which we can
add zero, one, or two non-trivial loops. Each
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(a) (b) (c) (d)

FIG. 3. Examples of the four classes of loops which cannot be deformed into each other.

FIG. 4. Strings of X or Z operators applied

to the ground state create pairs of “electric” or

“magnetic” excitations e and m. The energy of

each pair is +2 because the end of any string

anticommutes with one Av or Bp.

case is a degenerate eigenstate of the Hamil-
tonian (1), and together they form a basis for
the 4-dimensional GS manifold. Note that
this 4-fold degeneracy is directly related to
the topology of the system (i.e. the periodic
boundary conditions); we say that the toric
code displays topological order.

III. ANYONIC EXCITATIONS

Now that we know the ground state, we
can try to characterize the low-energy excita-
tions. The easiest way to do this is to think
in terms of the operators that create an exci-
tation. These turn out to be string operators
[1]:

Sx(t) =
∏
j∈t

Xj; Sz(t′) =
∏
j∈t′

Zj, (3)

where t (t′) is a string of edges on the (dual)
lattice (Fig. 4). If a string t is open-ended,

FIG. 5. Moving an e particle around an m parti-

cle causes the overall state to pick up a phase of

−1, because the X and Z strings anticommute

at exactly one site.

theX operators at its endpoints will anticom-
mute with one Av each, raising the energy
above the ground state by 2. Similarly, the
ends of a dual string t′ anticommute with Bp.
Note that it is impossible to create an exci-
tation with unit energy. To see this, suppose
there is an operator C acting on a state |ψ〉 in
the GS manifold such that C anticommutes
with only one Av (or Bp, it doesn’t matter
which). Recall that

∏
v Av = 1, therefore

C |ψ〉 =
∏
v

AvC |ψ〉 = −C
∏
v

Av |ψ〉 = −C |ψ〉 ,

i.e. C |ψ〉 = 0. More intuitively, it is im-
possible to create an open string with one
end, so the only allowed excitations come in
pairs. We call the quasiparticle pairs cre-
ated by Sx(t) “electric charges” e and the
pairs created by Sz(t′) “magnetic vortices” to
match existing literature on gauge field mod-
els, but this is just a convention [1].

Perhaps the most interesting thing about
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FIG. 6. Logical operators on acting on the qubits

encoded by the ground state of the toric code.

Anticommutation relations can be inferred from

the intersection of the strings, and they match

the usual Pauli operators on two qubits.

these quasiparticles is their exchange statis-
tics. Clearly Sx(t1) commutes with Sx(t2) for
any strings t1 and t2, as they only involve X
terms. The same is true of Sz, so it appears
that both the e and m particles are hard-core
bosons. However, if we move an e particle
around an m particle or vice versa (Fig. 5),
it acquires a phase of−1 from the overlapping
string operators. Quasiparticles that behave
in this way are called anyons, because they
fall outside the usual bosonic/fermionic pic-
ture [1]. Anyons are unique to 2D systems
and feature in the theory of the fractional
quantum Hall effect [2]. More recently, Bar-
tolemi et al published strong experimental
evidence for their existence using an “anyon
collider” [3].

IV. FAULT-TOLERANT QUANTUM

COMPUTATION

The ground state of the Hamiltonian (1)
is protected from local perturbations. For
instance, consider a local X perturbation
V = λ

∑
j Xj where j runs over every spin

on the lattice and λ � 1. This perturbation
will split the degeneracy of the ground state,
but the splitting terms obtained from per-
turbation theory are of the form 〈ψ|V n |φ〉
for |ψ〉 , |φ〉 two orthogonal states in the GS

manifold. Recall that mapping between or-
thogonal states in the GS manifold requires
flipping a loop of spins that winds around one
dimension of the torus (see Fig. 3), therefore
the first non-zero correction will not show up
until the L-th order, where L is the smallest
circumference of the torus, and the correc-
tions vanish in the thermodynamic limit [1].

We can take advantage of this pro-
tected ground state for quantum computa-
tion. From here on we will use the terms
spin and qubit interchangeably, but this is
just a matter of terminology. A qubit can be
any 2-level quantum system; referring to it
as such simply indicates our intention to use
this system for information processing. The
Hilbert space of n qubits has dimension 2n, so
we can store 2 qubits worth of information in
the ground state of the toric code. The prop-
erties of our Hamiltonian ensure that this in-
formation is distributed across the state of
the entire system rather than localized to the
states of individual spins; this protects the
information from local errors. A scheme for
storing quantum information in this way is
called a quantum error-correcting code [4, 5],
which is where the name toric code comes
from [1].

It turns out we can do more than just store
information. Let us re-label the four orthog-
onal ground states (a, b, c, d) from Fig. 3 as
|00〉 , |10〉 , |01〉 and |11〉, to make the analogy
explicit for two logical qubits (as opposed to
physical qubits). Then a string of X opera-
tors looped around the horizontal dimension
maps |00〉 ↔ |10〉, and a loop of Z operators
in the vertical direction maps |00〉 ↔ |00〉 and
|10〉 ↔ − |10〉, therefore we can identify these
strings as logical Pauli operators X̄1 and Z̄1

acting on the first logical qubit. Similarly,
the remaining loops of X and Z operators
act as logical operators X̄2, Z̄2 on the second
qubit (Fig. 6).

Note that the action of these logical op-
erators does not depend on a specific path
as long as that path winds around the torus,
and we could also interpret these operators
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as anyon pairs which tunnel around the torus
before self-annihilating. This is just one ex-
ample of the connections between topological
order, anyons, and quantum computation. A
further discussion is beyond the scope of this
review, but before we conclude it should be
pointed out that the toric code and its close
relative the surface code [6] underpin some of
the leading proposals for fault-tolerant quan-
tum computation [7]. This section is in-
tended to provide some insight into why that
is the case, and to encourage further reading
(e.g. ref. [5] is quite accessible).

V. CONCLUSION

The toric code is a canonical example of
a system with topological order and anyonic
excitations. It also establishes a connection
between physical systems and quantum infor-
mation, which motivates the study of anyons
and topological order as a route to fault-
tolerant quantum computation. The quest
to better understand systems where topology
plays a role and to fabricate them in the lab is
an active area of research, and there is much
to discover in the coming years.
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