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2Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

3National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
(Dated: May 20, 2020)

When twisted to angles near 1◦, graphene multilayers provide a new window on electron correlation
physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors,
and unusual magnets. Here we report the discovery of a new member of the family, density-wave
states, in double bilayer graphene twisted to 2.37◦. At this angle the moiré states retain much
of their isolated bilayer character, allowing their bilayer projections to be separately controlled by
gates. We use this property to generate an energetic overlap between narrow isolated electron and
hole bands with good nesting properties. Our measurements reveal the formation of ordered states
with reconstructed Fermi surfaces, consistent with density-wave states, for equal electron and hole
densities. These states can be tuned without introducing chemical dopants, thus opening the door
to a new class of fundamental studies of density-waves and their interplay with superconductivity
and other types of order, a central issue in quantum matter physics.
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FIG. 1. Designed density-wave state in a moiré double bilayer. a) Applying an electric field D to twisted double bilayer
graphene will charge the top/bottom bilayer with electrons/holes. b) The layer polarization is given by Prob(κtop) and the
correlation strength scales with the effective mass m∗. Prob(κtop)(θ) and m∗(θ) (at layer energy difference ∆V = 40 meV, see
below) are obtained from band structure calculations, showing that twists around θ = 2.37◦ combine strong polarizations and
large masses and are favorable for DW formation. The red arrows mark twist angles at which measurements in the SI, section
C are presented. A correlated electron/hole gap is seen only at an intermediate θ. c) A peak in Rxx occurs at D = 0.47 V/nm
and n = 0, in a TDBG device with θ = 2.37◦, and is consistent with a thermally activated gap (see SI section D). d) The
bilayer’s Landau-fan diagram demonstrates that the gap appears inside a regime with both electron and hole bands, as testified
by the presence of Shubnikov-de Haas resistance peaks (orange and blue) that have opposite n vs. B slopes.

One Sentence Summary: We report the discovery of a density-wave state in twisted double bilayer graphene.

Fermi surface nesting refers to electron and hole Fermi surfaces that map onto each other under translation by a

nesting wavevector ~Q. Because nesting implies a small band energy cost for coherent superposition between electrons

and holes, it favors interaction-driven broken symmetry states. The nesting condition (ε(~kF + ~Q) = −ε(~kF)),where
epsilon is a small energy offset from the Fermi energy) implies1 that if two closed Fermi surfaces are perfectly nested,

they enclose the same area. Mixing two Fermi surfaces nested by wavevector ~Q leads to density-wave (DW) order
with wavelength 2π/Q. In the seminal theoretical work on DW states by Peierls2, nesting occurs between like-spins
in half-filled bands, the interactions are lattice mediated, and the DW is accompanied by a lattice distortion. The
Peierls transition is one of the first instabilities of the metallic state to be recognized, and has been observed in
a large range of materials. DW states can also be favored by Coulomb interactions between electrons, in which
case the lattice distortions3 play a parasitic role only. The DW is then often referred to as an excitonic insulator4.
This term is suggested by viewing the order as a condensation of bosonic electron/hole pair states. Evidence for
equilibrium excitonic condensation has been reported in 1T-TiSe2

5, in Sb nanoflakes3 and in double quantum wells at
high magnetic fields6,7. Condensation of non-equilibrium excitons and polaritons in optically pumped electron-hole
fluids has also been studied extensively.8 DWs continue to attract attention due to their rich intrinsic physics and
their close relationship to superconductivity9.

Twisting Van der Waals (VdW) materials, including graphene bilayers (TBG)10–15 and double Bernal bilayers
(TDBG)16–22, is a proven strategy to engineer moiré bands that favor strongly correlated electronic states. In the
present work we seek to realize DW physics by designing a moiré material with electron/hole bands that are both
nested and relatively narrow. To this end we have studied the properties of TDBG16–22 at intermediate twist angles,
where the layer coupling is strong enough to form moiré bands, but weak enough to retain the polarizability of
decoupled bilayers23–26. This polarizability can be quantified by the probability Prob(κtop) to find a band state at
the κ-point (of the mini-Brillouin zone) in the upper bilayer. If Prob(κtop) is large, which is the case at large twist
angles, applying a displacement field D will charge the top bilayer with electrons and the bottom bilayer with holes
(Fig. 1a). But DW states are fragile and if they occur, only indirectly observable25. Thus the correlation strength
needs to be maximized by approaching smaller angles where the narrowed moiré bands have a larger effective mass
m∗ (Fig. 1b).

Here we show that DW states are favored to form close to θ = 2.37◦, in the intermediate twist angle regime.
Figs. 1cd summarize the main experimental findings. We observe a resistance peak at zero total density n = 0 and
displacement field D = 0.47 V/nm (Fig. 1c) which appears when electrons and holes with approximately the same
density coexist. This coexistence is evident in Landau-fan measurements (Fig. 1d) that reveal electron and hole
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FIG. 2. Establishing electron/hole fluids. a) Side view and b) top view of the stack. Rxx ≡ V23/I14. Scale-bar: 2µm.
c) From thermal activation measurements we obtain ∆(D). d)-f) Single-particle band structures for different ∆V ∝ D. g)
∂/∂n (1/Rxx)(D,n) at B = 1.5 T exhibits SdH oscillations that distinguish the regions highlighted in h). In the yellow region,
electrons and holes coexist.

minibands which cross in energy. In this report, we first discuss how these overlapping electron/hole regions are
formed by tuning D and n and then show how Fermi surface nesting is influenced by these parameters. In a next
step, we support our interpretation by Hartree-Fock (HF) simulations. Finally, we discuss that a parallel magnetic
field lifts the spin and a perpendicular field the valley degeneracy of the DW state, allowing to address its spin or
valley symmetry.

We now discuss our device in more detail by showing a side view schematic in Fig. 2a. We tune the density
n = (CtVt +CbVb)/e and displacement field D = (CbVb −CtVt)/2ε0 by applying voltages Vt and Vb to top and back
gate electrodes. Here, Ct, Cb are the corresponding capacitances per unit area. The resistance peak in Fig. 1c is
measured using the contact geometry in Fig. 2b.

From the decrease of the resistance peak with increasing temperature we extract a gap ∆ using the Arrhenius law
Rxx ∝ exp(∆/2kBT ). The extracted dependence of ∆ on D at total denstiy n = 0 is shown in 2c. The data reveals
a gap around D = 0 (gray line) that closes with increasing |D|. Another gap is opened at large |D| (yellow line).
We compare this finding to single-particle band structure calculations in Fig. 2d-f for different layer on-site energy
differences ∆V (∆V ≈ bD with b ≈ 59 meV/(Vnm−1) see SI, section A). For ∆V = 0 (Fig. 2d), a gap is present at
E = 0 allowing to assign a single-particle origin to ∆ around |D| = 0 (gray line in Fig. 2c)27. For increasing ∆V (and
D), the single-particle band structure is not gapped anymore (Fig. 2ef). This indicates that the measured ∆ at large
|D| (yellow line) originates from a correlated state formed out of electrons at the κ and holes at the κ′ point.

In the following we present measurements of Shubnikov-de Haas (SdH) oscillations for different n and D. In Figs. 2gh
we plot the numerical derivative of the inverse resistance ∂/∂n (1/Rxx) (this quantity is chosen for best visibility of
relevant features) measured in a perpendicular magnetic field B⊥ = 1.5 T. Along the dashed line at D = 0 in Fig. 2h,
the spacing between SdH oscillations corresponds to the band degeneracy g = 8. The degeneracy is lifted by changing
D and SdH lines with two slopes emerge (indicated with arrows) in the dark blue and the dark purple region. In the
light blue and light purple region, the pattern changes and lines with g = 4 that are parallel to the n = 0 line are
seen. The slope of the SdH lines then changes again in the yellow region, and the oscillations become weaker.

These observations can be explained by the single-particle band structures shown in Fig. 2d-f. At ∆V = 0 (Fig. 2d)
two separate Fermi surfaces of the four-fold spin/valley degenerate bilayer graphene emerge near the κ and κ′ points,
leading to a degeneracy g = 8. Changing ∆V (or D) breaks the layer degeneracy and the SdH lines acquire two
distinct slopes. These correspond to states in the top and bottom bilayer, thereby demonstrating that charge carriers
in these bilayers can be tuned independently26,28. With ∆V, single-band regions (light blue, light purple in Fig. 2e
and f) with g = 4 emerge, where the Fermi surface area is proportional to total density n. Around charge neutrality
(yellow) bands with opposite carrier type coexist. The region boundaries are well described using an electrostatic
model (see SI section H and G) where we also discuss the observed asymmetry with respect to n. We conclude that
the SdH measurements agree with the band structure calculation and that we observe a region where electron/hole
bands overlap. In this region, at n = 0, a correlated gap emerges.
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FIG. 3. Nesting. a) The size of Fermi surfaces at n = 0 and masses m∗ increase with D. b) G(Vsd, D) measurements reveals
the appearance of a gap ∆. Curves are offset from the D = 0.47 V/nm trace. The inset shows extracted ∆(D), revealing
that ∆ increases with D. c) G(Vsd, n) at D = 0.47 V/nm showing that the gap vanishes with increasing n, where d) Fermi
surface nesting falters. Depicted is the calculated dispersion and Fermi surface around κ (blue) and κ′ (red) in the K (solid)
and K′ (dashed) valley. For details, see SI section F. e) Single-particle (dashed) and HF (solid) bands at ∆V = 5 meV and
f) ∆V = 40 meV. g) From HF calculations, we obtain ∆(∆V) and reproduce the experimental observations. h) ∆ strongly
depends on m∗.

We now discuss the dependence of the correlated gap on the parameters D and n which change the sizes and
symmetries of the Fermi surfaces. When increasing D, the Fermi surfaces at n = 0 and the effective masses increase
as sketched in Fig. 3a. We expect that this stabilizes the DW state. Indeed, and in agreement with thermal activation
measurements, the two-terminal conductance as a function of DC bias G(Vsd) traces in Fig. 3b reveal that ∆ increases
with D. In the inset of Fig. 3b we show the increase of ∆ with D in orange dots which we compare to Hartree-Fock
(HF) calculations later. At D = 0.47 V/nm and n = 0, ∆ ≈ 5 meV (∆ is determined by the inflection points).
We note that usually, thermal activation energy and the bias gap agree, but differ by an order of magnitude here.
We speculate that this originates from complex thermal breakdown of the correlated gap and estimate that the bias
measurement overestimates ∆ by ∼ 10% by additional series resistances (see SI section A).

In Fig. 3c we show the evolution of ∆(n) at D = 0.47 V/nm. Upon increasing n, the gap smears out and vanishes at
n ≈ 2.5× 1011 cm−2. Tuning to finite n introduces an asymmetry between the electron and hole Fermi surfaces (blue
and red), as depicted in Fig. 3d. As a consequence, nesting will become less favorable and unpaired charge carriers
(electrons for n > 0) contribute to the background conductance. These effects lead to shrinking and smearing of the
gap. Note that Fermi surfaces in the same valley are asymmetric even at n = 0 as they are not perfectly circular
due to interlayer tunneling between the middle two layers. However, the Fermi surfaces of opposite valleys K and K ′

(solid and dashed) match, suggesting that the correlated state is formed out of charge carriers from opposite valleys.
We confirm the gap opening in HF calculations where we incorporate the Coulomb potential and calculate ∆ self-

consistently (see SI section L). We obtain the correlated bands as shown in Fig. 3ef. A gap is opened by electron-hole
correlation, and linearly increases with layer on-site energy difference ∆V for ∆V ≤ 25 meV. Both the gap size and
the linearity with respect to displacement field agree with experiments, as shown in Fig. 3g. We point out that this
behavior is a result of decreasing static dielectric constant ε(q) with D (see SI section M). For ∆V > 25 meV, the
gap decreases as a result of the non-negligible moiré band asymmetry (seen in Fig. 3f).

Our model allows us to adjust the interlayer hopping parameter γ1 between dimer sites in each bilayer in order to
change m∗. We observe an almost linear increase ∆(m∗) (see Fig. 3h), supporting our previous statement that m∗

determines the correlation strength (Fig. 1b). Theory does not show a strong dependence of pairing on the momentum
difference between Fermi surfaces, only on the effective mass. This agrees with the excitonic character of the DW.

While the spin degree of freedom is irrelevant for the formation of a correlated state when no magnetic field is
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closed by B⊥. In the inset we plot the critical field, Bc, as a function of D. e) DW gaps are formed out of K (solid) and K′

(dashed) bands which shift in B⊥. Colors refer to Zeeman split spin bands, see a).

applied, the situation changes at a finite parallel field, B‖, where the bands are split by the Zeeman energy. In Fig. 4a
we depict the situation at finite B‖, showing that perfect nesting (equal Fermi surface) between opposite magnetic
moments is possible at n = 0, whereas perfect nesting between same magnetic moments is possible at n 6= 0. Therefore,
by changing n we influence the spin state of the electron-hole pairs. Measured Rxx(n,B‖) traces are consistent with
this concept (Fig. 4b). At B‖ = 8 T, a shoulder in resistance at finite n emerges, agreeing with a partially gapped
bandstructure where half of the carriers form a correlated state while the other magnetic moment-bands remain
conducting. How the region of enhanced conductance changes as a function of |B‖| and D can be observed in Fig. 4c.
By using a basic model we calculate the expected density of the spin-polarized region as a function of displacement
field and at large B‖. The results are plotted with dashed lines in Fig. 4c and the model is discussed in SI section I
and J. Good agreement between theory and experiment is found.

In Fig. 4d we show G(Vsd, D = 0.47 V/nm) traces in perpendicular magnetic fields B⊥. The gap is closed at
Bc = 4 T (orange trace). The inset shows the extracted dependence Bc(D). In a semi-classical picture, the bands
shift with B⊥ due to the Valley-Zeeman effect (Fig. 4e). The valley g-factor in bilayer graphene can range between
gv ∼ 20 − 12029 but is always much larger than the spin g-factor. Thus, for opposite valley pairing (K,K’) the gap
size at κ (yellow) increases with B⊥ and decreases at κ′ (red). G decreases most drastically if both bands are gapped.
Thus, the gap closing in Fig. 4e with increasing B⊥ and decreasing D can be viewed as the closing gap at κ′ (red).
For B⊥ > Bc another gap opens (green), that can be interpreted as a single-particle gap at κ′ (green in Fig. 4e)
and a correlated gap at κ, i.e. the formation of a minivalley polarized DW. We note that a more rigorous analysis is
required, taking into account the formation of Landau levels, especially for the regime where the magnetic length is
smaller than the moiré periodicity. In Fig. 3c and Fig. 4d we observe a zero bias peak when applying a certain n or
when passing Bc. The origin of this peak is currently not understood .

In conclusion, we have revealed the appearance of a correlated gap in TDBG at θ = 2.37◦, formed out of electrons
and holes with equal Fermi surface. The wavefunctions in the top/bottom bilayer can be tuned individually making
it possible to enter a region where electron and hole bands coexist. In this region, we observe a gap emerging
from nesting of electron and hole Fermi surfaces. The spin and valley dependence of electron-hole pairing are both
strongly influenced by the application of a magnetic field. The correlated electron/hole state can be viewed as an
excitonic insulator and is expected to exhibit counterflow superfluidity. Quantum phase transitions between DWs and
disordered states can be controlled without chemical doping by varying n, or by varying D at n = 0, and if continuous
could provide a new window on non-Fermi-liquid physics.

∗ peterri@phys.ethz.ch
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SUPPORTING INFORMATION

A. Fabrication, geometry and twist angle

We fabricate encapsulated TDBG by the tear-and-stack method30. Twisted double bilayer graphene is encapsulated
in a top/bottom hBN with thicknesses 27.0/50.3 nm and features a graphite back gate31. Clean device areas are
identified by atomic force microscopy. TDBG is contacted by edge contacts32 (blue in the schematic in Fig. 2a). After
deposition of local top gates (not shown in the schematic), the TDBG is etched (brown in the top-view in Fig. 2b)
and 30 nm of AlOx are deposited. Finally, we evaporate a global top gate (yellow). Throughout the measurements,
the local and global top gates are tuned such that a uniform potential forms, therefore we will not discuss the effect
of the local gate.

We measure Rxx by passing an AC current between contacts 1 and 4 (Fig. 2b), and measuring the voltage Vxx

between contacts 2 and 3. For the finite bias measurements in Fig. 3 we apply AC+DC voltage between contacts 3
and 6 and measure the resulting AC current to obtain the differential conductance G(Vsd). We have measured all
other devices (3x6 contacts) on the stack and obtained comparable results, shown in section B. All measurements are
performed at a temperature of 100 mK, unless stated otherwise.

For the measurement of ∆(Vsd), an additional series resistance Rs has to be considered. The measurement of R at
large densities gives an estimate for Rs ≈ 2 kΩ which is an order of magnitude smaller than the resistance in the gap,
indicating that ∆ can be estimated well from G(Vsd).

The external field D = 1/2ε0(CbVb − CtVt) is simulated in the band structure calculation by an on-site energy
difference ∆V between adjacent layers, where the on-site energy from the top-most to the bottom-most layer is
U = ∆V(−3/2,−1/2, 1/2, 3/2). The relation of ∆V to the external field D for bilayer is ∆V = eDd/ε = eDε0/CBLG,
with CBLG ≈ 7.5µF/cm2 the capacitance between the graphene layers28. Therefore, for the four layers, ∆V = bD
with b = eε0/2CBLG ≈ 59 meV/(Vnm−1).

For our intermediate twist angle θ = 2.37◦, the density of full filling of the first band (ns ≈ 13× 1012 cm−2) is
outside the measurement range. However, we have three possibilities to determine the twist angle. First, we do
observe Landau levels emerging from the band edge, allowing us to estimate ns. Second, the Lifshitz transition is
clearly visible in our devices and its critical density is characteristic for a certain twist angle. Finally, the Hofstadter
butterfly pattern, where we clearly observe flux quanta through up to 37 moiré unit cells, allows us to determine the
size of the unit cell and therefore the twist. All three methods are explained in Ref.26. We find a twist angle of 2.35◦

with little variation (±0.04◦) along the 15µm long device.

B. Measurements in other devices

In Fig. S1 we show two terminal resistance measurements R(Vt, Vb) for different junctions on the device. A resistance
peak at finite D and n = 0 is observed for all devices, i.e. all devices exhibit the correlated electron/hole gap.

C. Measurement at different twist angles

Here we analyze the impact of the twist angle by contrasting Rxx(n,D) and Landau fans at θ = 2.37◦ to measure-
ments at θ = 10◦ and θ = 1.2◦. We first consider the large twist device, where we observe decoupled behavior. In the
R(n,D) map shown in Fig. S2a, a large resistance peak around (n,D) = (0, 0) is measured that is attributed to the
presence of crystal fields27. By increasing the displacement field, two features of increased resistance split up (marked
with orange and blue arrows), corresponding to charge neutrality lines in the top and bottom bilayer. Importantly,
around n = 0 no resistance peak is observed (white arrow), in agreement with the observations in Ref.27. The Landau
fan at finite D = −0.35 V/nm in Fig. S2b agrees with the expected coexistence of electron and hole bands. At large
twist angles, it is therefore possible to observe the coexistence of electron and hole Fermi surfaces, but these do not
form a correlated state.

Decoupled behavior and overlapping electron/hole bands are also observed for the θ = 2.37◦ device, Fig. 4b. In
contrast to θ = 10◦, the single-band regions occupy a larger density range due to increased effective mass. However,
the devices can be described by a similar electrostatic model. The important difference is the occurrence of a gap at
n = 0 and finite D.

The small twist-angle device (Fig. 4c) exhibits a fundamentally different behavior (see also19–21). Resistance peaks
are observed at n ≈ ±3× 1012 cm−2 due to filling of the first band. At D = 0, there is no band gap at zero energy
due to band overlap. The band overlap is removed by applying a displacement field |D| > 0.3 V/nm, where a single
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particle gap appears. The Landau fan in this regime reveals that electron and hole bands do not overlap at finite D,
they rather emerge from the gap around n = 0. This is in agreement with band structure calculations that exhibit
a single-particle gap at finite D3,21. At small twist angles it is therefore not possible to engineer a coexistence of
electron and hole Fermi surfaces by increasing the displacement field. This is due to the fact that the wavefunction is
no longer layer polarized, therefore it is not possible to charge the upper bilayer with electrons and the lower bilayer
with holes.

The measurements strongly suggest that an intermediate twist angle is important. We argue that, on the one hand,
the twist needs to be large enough such that layer-polarized, bilayer bands emerge from the κ,κ′ points, see also26.
The bilayer bands can be individually controlled by top/back gate electrodes. In strong contrast to correlated states
that are formed out of flat bands, here, single-particle band structure calculations reveal the states out of which a
correlated groundstate is formed. On the other hand, the twist angle needs to be small enough such that the effective
mass of the bands is sufficiently large to obtain a well observable gap, as we argue in the main text.

D. Thermal activation of the gap

In Fig. S3 we show additional data on the thermal activation of the gap.

E. Effective mass

In Fig. S4 we show extracted effective masses for different cuts in the n,D map for the device at θ = 2.37◦. The
extraction was done by analyzing the thermal activation of Shubnikov-de Haas oscillations. The average effective
mass along the red and blue cut (single valence band region) is m∗ = 0.09me and 0.08me, respectively. For the
double band region we find, in average, m∗ = 0.06me, and for the single and double counduction band region (yellow)
m∗ = 0.09me.

To extract the effective masses from the different regions of the n−D map we remove a background from Rxx(n, T )
and obtain a series of Shubnikov-de Haas (SdH) oscillations for different temperatures, as shown in Fig. S5a. We
remove a polynomial background. This is done for the minimal polynomial order and the maximal polynomial order
which result in a flat background, separately. For each of the two selected extremes we perform the following procedure
for extracting the effective mass: We select a peak at a given density and extract its maximum value for every different
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temperature. We then perform a fit of such maxima as a function of temperature using the formula

∆R ∝ χ

sinhχ
with : χ =

2π2kBTm
∗

~eB
. (S1)

Once obtained the value of the effective mass, m∗, we calculate two envelopes of equation (S1) as shown in Fig. S5b.
The envelopes are selected such that only one data point is outside the envelopes for T < 12.5K. This is the threshold
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we use for plotting the error bars. We finally average the points of the two polynomial order extrema and merge the
error bars such that we obtain the effective mass as a function of density with error bars taking into account both the
background extraction and the fitting error, as shown in Fig. S4.

F. Fermi surfaces in different valleys

In Fig. S6a we show the dispersion relation at finite ∆V in the two valleys K and K ′. The corresponding Fermi-
surfaces are shown in Fig. S6b at E = 0. With green arrows we depict two wavevectors, one corresponding to
intra-valley nesting (Qintra) and another corresponding to inter-valley (Qinter) nesting. Since the Fermi surfaces
around the κ and κ′ points are not perfectly circular, it is not possible to connect the two Fermi surfaces in the same
valley with the same Qintra. It is, however, possible to connect the Fermi surfaces at κ and κ′ between the valleys with
Qinter. This suggests that the correlated state is most stable when it pairs electrons and holes in opposite valleys.

At finite density and energy (Fig. S6c), not only the shape but also the size of the Fermi surfaces within the same
valley and between opposite valleys becomes different, explaining the observed vanishing correlated state.
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G. Asymmetry of the single-band regions

Consider a cut in Fig. 2e of the main text for D = 0.3 V/nm. The single band-region (i.e. one of the bilayers gapped)
of the valence band in the top bilayer (light blue) spans a significantly larger density range than the single-band region
of the conduction band in the bottom bilayer (light purple). However, in the band structure calculation in Fig. 2gh
and Fig. S7b, the asymmetry seems to be opposite, i.e. the gap at κ spans a smaller energy range than the gap at κ′.

The origin of this asymmetry is closely linked to the gap that can be observed without external field (D = 0 or
∆V = 0 in Fig. S7). At larger twist angles, this gap is solely due to a spontaneous layer polarization of charge carriers,
since the inner layers have a different electrostatic environment from the outer layers. This layer polarization has
been measured and theoretically confirmed27 at larger twist angles, but also needs to be taken into account here.
In Fig. S7a and b we compare band structures without and with the crystal field contribution. Apparently, the
asymmetry changes, when crystal fields are taken into account. The gap for positive energies is larger than the one
for negative ones if crystal fields are considered, in contradiction with the experimental findings at θ = 2.37◦ but in
agreement with the large twist angle device, Fig. S2a and ref.27.

It is to be noted, however, that the band structure is also gapped if the crystal field contribution is not taken
into account, see Fig. S7. Importantly, upon changing the interlayer bias ∆V , this leads to an opposite asymmetry,
counteracting the crystal field effect. We argue, that the tight-binding model may underestimate this effect. In the
following, we present indications that in the experiment, the spontaneous layer polarization of charges at D = 0 by
the moiré lattice is stronger than captured by the tight-binding model.

There are other effects that the model does not capture very accurately, e.g. the density at which the van-Hove
singularity (VHS, ∼ 60 meV in Fig. S7a) is to be expected in the conduction and valence band. Whereas the bands
for ∆V = 0 are almost perfectly electron-hole symmetric in the calculation (both with and without crystal fields), we
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observe a significant difference in densities of the VHS in the conduction (n = 5.8× 1012 cm− 2) and valence band
(n = 5× 1012 cm− 2).

This qualitatively agrees with the larger effective mass that we observed for the large angle twisted bilayer device27,
where the ratio of effective masses in the valence/conduction band was mv/mc ∼ 1.5 in the experiment (though with
a significant error bar), mv/mc ∼ 1.2 in the DFT calculation and mv/mc ∼ 1.1 in the tight binding calculation27. We
conclude that modeling the electron/hole asymmetry accurately on a quantitative level appears to be difficult using
tight-binding calculations. However, the strength of the asymmetry of the gaps upon application of an interlayer bias
will strongly depend on the electron/hole symmetry.

Finally, our tight binding model does not include lattice relaxation effects, which can have an impact on the
asymmetry and the crystal field gap33. Since the energy scales of the asymmetry are rather small, a quantitative
agreement between experiment and tight binding calculations is not to be expected, but not required either.

H. Electrostatic model on parabolic bands

Here we introduce a model based on parabolic bands with the goal to determine the density n and displacement
field D of the transition between single- and double band regions. We start by considering the case where an external
field D introduces a linear charge distribution from top to bottom layer. The electric field between the top layers,
between the inner layers and between the bottom layers would be D/3. In contrast, if charges equilibrate completely
between the inner two layers, then the displacement field in the top and bottom bilayer is D/2. Only in this case, the
electron/hole bands at the κ and κ′ point don’t overlap, but touch.
We introduce the parameter p which is the probability that charges in the inner two layers equilibrate. For p = 1,
the inner layers have the same charge density (full equilibration), for p = 0 the charge in the inner layers is entirely
determined by the external field (no equilibration). For the field between the upper two layers, we can then write:

Dt =
D

3− p
=

1

(3− p)2ε0
(CtVt − CbVb) (S2)

The field between the inner layers is then

Dinner = D(1− p)/3
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For the field between the center of charges in the top and the center of charges in the bottom layer it follows:

DBLG = D

(
1

3− p
+

1− p
3

)
(S3)

This allows to write the gap in the top and bottom bilayer and the band-offset ∆v :

∆t = bDt + ∆0 (S4)

∆b = bDb −∆0 (S5)

∆v = bDBLG (S6)

Here, we have introduced ∆0 to take into account the gap that is present without the application of an external
field27,33 as well as the displacement field to gap conversion factor b = 59 meV/(V/nm), see Methods. The energy
range of the double band region is given by Edouble = ∆v −∆t/2−∆b/2 = ∆v − bD/(3− p). We can write:

Edouble = ±bD
(

1− p
3

)
=: bD · f(p)

Note that, for p = 1 (full equilibration of the inner two layers), f(p) = 0, i.e. the bands do not overlap.
Now we need to take into account that the band-structure is gapped at zero displacement field. To enter the double
band regime, a certain displacement field, D0, needs to be applied such that the bands overlap. Therefore:

E+t
double = bf(p) · (D −D0) forD > D0

E−tdouble = bf(p) · (D +D0) forD < −D0

The density of electrons in the double band regime is ndouble = 2EdoubleCq, with Cq = e2∂n/∂EF = e22m∗/~2π for a
parabolic dispersion. Starting from E = 0, where n = 0 we find:

n+t
double = Cqbf(p) · (D −D0) forD > D0 (S7)

n+b
double = −Cqbf(p) · (D −D0) forD > D0 (S8)

n−tdouble = Cqbf(p) · (D +D0) forD < −D0 (S9)

n−bdouble = −Cqbf(p) · (D +D0) forD < −D0 (S10)

If ∆0 ≈ −bf(p)D0, as the measurement suggests, then:

n+t
double ≈ Cq(bf(p)D + ∆0) forD > D0 (S11)

n+b
double ≈ −Cq(bf(p)D + ∆0) forD > D0 (S12)

n−tdouble ≈ Cq(bf(p) ·D −∆0) forD < −D0 (S13)

n−bdouble ≈ −Cq(bf(p) ·D −∆0) forD < −D0 (S14)
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To reach the end of the single-band regime, Esingle in the top layer:

E+t
single = E+

double/2 + ∆t

In density

n+t
single = Cq(E+

double + ∆t) forD > D0

This gives the four lines:

n+t
single = Cq/e

(
bf(p) · (D −D0) + bf̃(p)D + ∆0

)
forD > D0 (S15)

n−tsingle = Cq/e
(
bf(p) · (D +D0) + bf̃(p)D + ∆0

)
forD < −D0 (S16)

n+b
single = −Cq/e

(
bf(p) · (D −D0) + bf̃(p)D −∆0

)
forD > D0 (S17)

n−bsingle = −Cq/e
(
bf(p) · (D +D0) + bf̃(p)D −∆0

)
forD < −D0 (S18)

(S19)

with:

f(p) =
1− p

3
, f̃(p) =

1

3− p
, g(p) = f + f̃ (S20)

If ∆0 ≈ −bf(p)D0, as the measurement suggests, then:

n+t
single ≈

Cqbg(p)

e
D − 2Cq

e
∆0 forD > D0 (S21)

n+b
single ≈ −

Cqbg(p)

e
D forD > D0 (S22)

n−tsingle ≈
Cqbg(p)

e
D forD < −D0 (S23)

n−bsingle ≈ −
Cqbg(p)

e
D − 2Cq

e
∆0 forD < −D0 (S24)

(S25)

The results are plotted in Fig. S9.
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FIG. S10. a) Schematics of band structures and gap formation at different n in finite B‖ (compare to Fig. 3e). b) Experimental
data without and with fits that determine the expected boundary of the single-spin region (compare to Fig. 3g). Dashed lines
are coarse fits. The width ñ of the single-spin region depends on the gap size which scales with D.

In the main text we discuss that, at n = 0, a correlated gap out of opposite magnetic moments can be formed. We
now calculate the density ñ that determines the boundaries of these three gapped regions as a function of B‖ and D
(see Fig. S10b).

By applying a parallel magnetic field B‖, The energy of bands with different magnetic moments shift by the Zeeman
energy Ez = gµBB‖, with g = 2 in graphene. We label the regions where only one spin band is gapped as ∆↑ and ∆↓
(see Fig. S10a). The size of these regions is given by the Zeemann energy ∆↑ + ∆↓ = Ez. The energy range of the
band structure that is partially or entirely gapped is therefore Ez + ∆, where ∆ corresponds to the gap size at n = 0.
We thus obtain ñ:

ñ =
Cq

e2
(2∆ + Ez) (S26)

where Cq = e2 · 2m∗/(~2π) for a parabolic bilayer band. When converting gap to density, ∆ has to be multiplied by
2 since all the bands are gapped there, as opposed to the single-spin gapped regions (see Fig. S10).

To obtain the coarse fits we estimate ∆(D,B‖) from the experiment. In Fig. 3b we can roughly fit the size of the
correlated gap:

∆(D,B‖ = 0) = α(D −D0) (S27)

with α = 15 meV/(Vnm−1) and D0 = 0.15 V/nm. From bias measurements at n = 0 as a function of B‖ (Fig. S11)
we find that ∆(B‖ = 8 T)/∆(B‖ = 0) ≈ 1/2. We thus obtain ñ(D,B‖ = 8 T). With m∗ = 0.12me we obtain the
dashed line shown in Fig. S10b.

J. Gap in parallel magnetic field

Here we show additional data in parallel magnetic field. In Fig. S11a we show the gap in a Vsd measurement as
a function of density and for B‖ = 0 and B‖ = 4 T. As a guide, we mark the corresponding lines in the Rxx map
(Fig. S11 and Fig. 3f). The source drain measurement exhibits a reduced conductance at B‖ = 4 T between the
region, marked by red arrows, which is not present at B‖ = 0. We attribute this to a partially gapped band structure,
as argued previously.

In Fig. S11c, we show the evolution of the gap with B‖ at D = 0.47 V/nm and n = 0 in a Vsd waterfall plot.
With increasing B‖, the feature that we identify as the main gap is reduced in energy. This is consistent with the
Zeeman-split spin bands (Fig. S10a), where two gaps of different size emerge for the two possibilities of spin pairing
at n = 0. Note that in the bias measurement, the region where all spin bands are gapped (given by the size of
the smallest gap) leads to the most significant decrease of conductance. I.e. the gap that is observed in Fig. S11c
corresponds to the smaller gap at n = 0, which is decreasing with B‖.
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in a) c) Gap in G(Vsd) as a function of B‖.

at  conductionκ at  valenceκ at  conductionκ′  valenceκ′ θ = 1.2∘
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θ = 10∘
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b

c

FIG. S12. Band structures and probabilities at κ and κ′ of the first conduction and valence bands. (a) θ = 1.2◦, (b) θ = 2.3◦, (c)
θ = 10◦. For small twist angles, the middle two graphene layers are strongly coupled thereby decreasing the layer polarization.
For θ & 2◦, the wave function is mainly localized on a specific sublattice and a moiré reciprocal lattice vector G0 = 0 (indicated
by the sharp peak).

K. Layer polarization and effective mass

We show band structures and probabilities at κ and κ′ for twist angles 1.2◦, 2.3◦ and 10◦ in Fig. S12, where crystal
fields and external electric fields are ignored. As the twist angle increases, electrons are concentrated on layer 2 at κ
and on layer 3 at κ′. Here layer 1 to 4 denote top-most layer to bottom-most layer. Since the probabilities of valence
bands do not change with respect to twist angles, we define the layer polarization as the probability on the top bilayer
(layer 1,2) at κ, i.e. Prob(κtop).
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FIG. S13. Layer polarization Prob(κt) and effective mass m∗ in units of free electron mass me with respect to twist angle. m∗c
(m∗v) is the effective mass of conduction (valence) band near κ (κ′). The vertical dashed line is a guide to the eye at θ = 2.3◦,
which is the relevant angle in our experiment and theoretical calculations. (a) ∆V = 0 meV, (b) ∆V = 20 meV, (c) ∆V = 40
meV. At some finite ∆V, both layer polarization and effective mass are large near θ ∼ 2◦. This explains our observation of the
excitonic insulating state only near an intermediate twist angle ∼ 2◦.
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FIG. S14. Layer polarization Prob(κt) and effective mass m∗ in units of free electron mass me for different twist angles. (a)
θ = 1.8◦, (b) θ = 2.3◦, (c) θ = 10◦.

To qualitatively capture the band flatness near the Fermi level, we estimate the effective mass m∗ by

m∗ =
~2(k − κ)2

2me(Ek − Eκ)
(S28)

and k is taken to be |κ′ − κ|/4 away from the reference point κ.
Figure S13 shows the layer polarization Prob(κt) and effective masses of conduction band m∗c and valence band

m∗v as a function of twist angle for external fields ∆V = 0, ∆V = 20 meV and ∆V = 40 meV. m∗c (m∗v) is estimated
near κ (κ′) as defined in Eq.(S28). The layer polarization increases quickly with twist angle and does not evidently
depend on external field ∆V. On the contrary, the effective masses decrease quickly with twist angle and the steepness
depends on ∆V. At some finite ∆V, the situation is optimized near θ ∼ 2◦ where both layer polarization and effective
mass are large. This explains our observation of the excitonic insulating state only near an intermediate twist angle
near 2◦.

The layer polarization and effective masses as a function of displacement field parameter ∆V for θ = 1.8◦, 2.3◦ and
10◦ are shown in Fig. S14. As we pointed out in the main text, the layer polarization is almost independent of ∆V.
For large twist angle, for example 10◦ in Fig. S14c, effective masses m∗c and m∗v are the same and independent of ∆V.
This indicates high symmetry between conduction and valence band. For intermediate twist angles, for example 2.3◦

in Fig. S14b, both layer polarization and effective masses are relatively large, which is close to the optimal situation
to realize the excitonic insulator. For small twist angles, for example 1.8◦ in Fig. S14a, the layer polarization is
small even though the effective mass is large. For intermediate twist angles, m∗c and m∗v differs by an amount which
is increasing with ∆V, this partly explains the correlated gap decreasing for large ∆V as in Fig. 4c as a result of
asymmetric bands.
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L. Self-consistent Hartree Fock using an effective two-band model

In Fig. S12b, we have shown that the low-energy bands of θ = 2.3◦ near Fermi level at charge neutrality mainly
localize on the middle two graphene layers on a specific sublattice and a moiré reciprocal lattice vector G0 = 0.
We, therefore, can map the Hamiltonian to a 2× 2 effective Hamiltonian using the partition technique developed by
Feshbach34 and Loẅdin35. We divide the Hilbert space of TDBG into two parts, target subspace and background
subspace with subscripts t and b respectively:

H =

(
Ht Htb

Hbt Hb

)
(S29)

After mapping, the effective Hamiltonian in the target subspace Heff
t keeps the same eigenvalues and eigenvectors as

H:

Heff
t = Ht +Htb(εn −Hb)

−1Hbt (S30)

where εn is eigenvalue of the original Hamiltonian H.
The basis of 2× 2 effective Hamiltonian Heff of TDBG is (zA2,G0

zB3,G0
)T , where 2 and 3 are layer indices, A and

B are sublattices and moiré reciprocal lattice vector G0 = 0. The Coulomb interaction of this two-band model is

V =
1

2A

∑
k,k′,q

(
V Sq a

†
c,k+qa

†
c,k′−qac,k′ac,k + V Sq a

†
v,k+qa

†
v,k′−qav,k′av,k

)
+

1

A

∑
k,k′,q

V Dq a†c,k+qa
†
v,k′−qav,k′ac,k (S31)

where c and v denote conduction and valence band respectively. The Coulomb potential in the same layer is V Sq = 2πe2

εq ,

and the Coulomb potenial between different layers is V Dq = 2πe2

εq e−qd. In the Hartree Fock mean-field theory, the total

Hamiltonian is

HMF = Heff + VMF =
∑
k

(
a†ck a†vk

)( εck −∆k

−∆∗k εvk

)(
ack
avk

)
(S32)

A set of equations are solved self consistently:

εck = ε0
ck +

2πε0
cke

2dne
ε

− 1

A

∑
k′

V S(k′ − k)〈a†ck′ack′〉 (S33)

εvk = ε0
vk −

2πe2dnh
ε

− 1

A

∑
k′

V S(k′ − k)
(
〈a†vk′avk′〉 − 1

)
(S34)

εk =
1

2
(εck − εvk) (S35)

∆k =
1

A

∑
k′

V D(k′ − k)
∆k′

2
√
ε2
k′ + ∆2

k′

(S36)

ne =
1

A

∑
k

〈a†ckack〉 (S37)

where ε0
ck and ε0

vk are eigenvalues of Heff.

M. Static polarization function and dielectric constant

The electric field modifies the band structure, especially the band gaps of top and bottom bilayers as shown in
Fig. S7, thereby the static dielectric constant. We examine the static polarization function using the Lindhard formula

ΠGG′

0 (q, ω → 0) =
g

A

∑
n,m,k
G1,G2

f(εn,k)− f(εm,k+q)

εn,k − εm,k+q
〈ψn,k+G1 |e−i(q+G)·r|ψm,k+q+G1〉〈ψm,k+q+G2 |ei(q+G′)·r|ψn,k+G2〉

(S38)
G, G′, G1 and G2 are moiré reciprocal lattice vectors, k and q are in the first moiré Brillouin zone, A is area, g = 4
includes spin and valley degeneracies.
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FIG. S15. Static polarization function Π0(q) and dielectric function ε(q) of 2.3◦-TDBG for different displacement fields ∆V =
0− 40 meV. The dielectric function decreases with ∆V.

The characteristic wavelength of the Fermi surface near charge neutrality is much longer than the moiré period, we
can therefore consider only the polarization function matrix element of G = G′ = 0:

Π0(q) =
g

A

∑
n,m,k
G1,G2

f(εn,k)− f(εm,k+q)

εn,k − εm,k+q
〈ψn,k+G1 |e−iq·r|ψm,k+q+G1〉〈ψm,k+q+G2 |eiq·r|ψn,k+G2〉 (S39)

and the static dielectric constant stemmed from the interband transitions is

εi(q) = 1− V (q)

εb
Π0(q) (S40)

V (q) is the bare Coulomb potential and εb is the background dielectric constant coming from surrounded dielectrics.
In TDBG encapsulated by hBN substrates, we use εb = 6 for hBN. The total dielectric constant incorporated in
self-consistent Hartree Fock calculation is

ε(q) = εb − V (q)Π0(q) (S41)

We show the static polarization function Π0(q) and dielectric constant ε(q) of 2.3◦-TDBG for different ∆V in Fig. S15.
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