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*Introduction to graphene/bilayer graphene

"VVan Hove singularities in twisted bilayer graphene (TBG) and the flat band

"Emergence of correlated states in magic-angle twisted bilayer graphene
(MATBG)

"0Ongoing research and systems of interest




Meet graphene

=Hexagonal lattice of carbon atoms
= Two triangular sublattices A and B

=Electronic dispersion relation produces two Dirac cones (K, K'), meaning near
charge neutrality, electrons behave like massless Dirac fermions (no gap!)

= Derived entirely from tight-binding approximation:

H = —tZ(|R)(R +1|+|[R(R—a; +1|+|RYR —a, + 1|+ h.c.)
[R)

Perturbation on H is the matrix elements connecting a point in the A sublattice to one of the three
nearest neighbors of the B sublattice with interaction energy t

Patrick Recher and Bjorn Trauzettel, University of Wiirzberg =States captured by pseudospin representation (Dirac-Weyl Hamiltonian)—

superposition of Bloch waves in two sublattices

hg = hvgo - p (|kA))
hg, = —hvgo - p lkg)
" Linear density of states—semimetal with easily tunable Fermi energy
p(E)
" E

E. Y. Andei et al, Electronic Properties of Graphene




Two layers of graphene with a relative twist angle

*Moire superlattice period determined by twist angle:
a
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Brian LeRoy, University of Arizona

E. Y. Andei and A. MacDonald, Graphene
Bilayers with a Twist
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Hybridization
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*Moire pattern in real space represents the development of
a superlattice with a “mini-Brillouin zone” N

=Hybridization of Dirac cones with Van Hove singularities at
saddle points

= Increasing pseudogap as angle decreases

E (eV)
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="At 6 = 1.05° (magic angle), the VHS collapses into two flat
bands

= 4-fold degeneracy per band: 2 valley + 2 spin o
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Y. Cao et al, Unconventional superconductivity in magic-angle
E. Y. Andei and A. MacDonald, Graphene Bilayers with a Twist graphene superlattices




Flat bands
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= Spatially electrons accumulate in AB regions
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*Hubbard model: update on TBA
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G. Li et al, Observation of Van Hove singularities in twisted graphene layers ' .
st =Flat band width w < U
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D = Electron-electron interactions
..'.,.. )t dominate—correlated electronic states

Potentially a better understanding of correlated
electronic states

0=05°
R. Bistritzer and A. MacDonald, Moire bands in
twisted double-layer graphene




Correlated states
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Y. Cao et al, Unconventional superconductivity in magic-angle graphene superlattices
Transport set-up
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sExperimental realization in 2018

= Tuning between insulating, metallic, and
superconducting phase with carrier density n and
temperature T

= Insulating near integer fillings, like with Landau
levels

= Different behaviors in samples with different twist
angles near magic angle

=Competitions of phases: insulating (not
necessarily Mott-insulating), superconducting,
charge density wave, nematic

=Experimental challenges of transport:

= Difficulty controlling twist angle due to twist
inhomogeneities (disorder through inhomogenous
strain) and sample-to-sample lattice relaxation

effects modifying the single particle dispersion
relation

= May not be a superconducting path between leads



Superconducting properties

Normalized carrier density (cm)
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* Heavy-fermion superconductors

¥ Cuprates

Iron pnictides

< Conventional superconductors
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BEC in atoms
Two-dimensional materials
Organic superconductors
AsCqo O NbSe,

Na CoO, @ CaC,
Magic-angle TBG

=Unusually high Z¢ ratio
TF

compared to other
superconductors

= Strong interactions more
characteristic of e-e
correlations than e-ph
correlations in conventional
BCS superconductors




Current research

"Broken symmetries induced in experimental set up with hexagonal boron nitride
= Can address with other 2D insulators that interact less with graphene

" Intentional symmetry breaking with applied B

"Pressure to increase inter-layer coupling

=“Twistronics” Tear and stack method:
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Zhuxing Sun and Yun Hang Hu, How Magical is Magic-Angle Graphene

= Higher twist angles for more stability
= Twisted trilayer graphene (Pablo, 2021)

= Twisted transition metal dichalcogenides
= Twisted WSe, (Pasupathy, 2020)

=*New superlattice structures
= Strain superlattices




Questions?

THANK YOU FOR LISTENING




2D Materials

=1966: David Mermin and Herbert Wagner showed that long-range fluctuations could be created
with little energy cost in materials with d < 2 using the propagator for scalar fields

= Used by many to suggest that 2D materials were impossible to realize due to thermal and quantum
fluctuations

=Theoretical work on graphene in the 20t century mainly as a model and to understand graphite
as layers of graphene

=Discovery of graphene in 2004 by Andre Geim’s group though “micromechanical cleavage”




