Twisted Bilayer Graphene

EXCITING ELECTRONIC PROPERTIES WITH AN ARTIFICIAL SUPERLATTICE

SKANDA RAO

Outline

- •Introduction to graphene/bilayer graphene
- Van Hove singularities in twisted bilayer graphene (TBG) and the flat band
- Emergence of correlated states in magic-angle twisted bilayer graphene (MATBG)
- Ongoing research and systems of interest

Meet graphene

- Hexagonal lattice of carbon atoms
 - Two triangular sublattices A and B
- Electronic dispersion relation produces two Dirac cones (K, K'), meaning near charge neutrality, electrons behave like massless Dirac fermions (no gap!)
 - Derived entirely from tight-binding approximation:

$$H = -t \sum_{|R\rangle} (|R\rangle\langle R + \tau| + |R\rangle\langle R - a_1 + \tau| + |R\rangle\langle R - a_2 + \tau| + h.c.)$$

Perturbation on H is the matrix elements connecting a point in the A sublattice to one of the three nearest neighbors of the B sublattice with interaction energy t

States captured by pseudospin representation (Dirac-Weyl Hamiltonian) superposition of Bloch waves in two sublattices

$$h_{K} = \hbar v_{F} \sigma \cdot p \qquad (|k_{A}\rangle)$$

$$h_{K'} = -\hbar v_{F} \sigma \cdot p \qquad (|k_{A}\rangle)$$

Linear density of states—semimetal with easily tunable Fermi energy

E. Y. Andei et al, Electronic Properties of Graphene

Two layers of graphene with a relative twist angle

•Moire superlattice period determined by twist angle:

$$a_M = \frac{a}{2\sin\frac{\theta}{2}}$$

- Alternating areas of AA, AB, and BA alignment
 - AA: perfectly aligned
 - AB: A sublattice on top aligned with B sublattice in the bottom layer, B sublattice in top layer has no corresponding ion in bottom layer

E. Y. Andei and A. MacDonald, *Graphene Bilayers with a Twist*

Brian LeRoy, University of Arizona

Hybridization

- •Moire pattern in real space represents the development of a superlattice with a "mini-Brillouin zone"
- Hybridization of Dirac cones with Van Hove singularities at saddle points
 - Increasing pseudogap as angle decreases
- •At $\theta \approx 1.05^\circ$ (magic angle), the VHS collapses into two flat bands
 - 4-fold degeneracy per band: 2 valley + 2 spin

E. Y. Andei and A. MacDonald, Graphene Bilayers with a Twist

Y. Cao et al, *Unconventional superconductivity in magic-angle* graphene superlattices

Flat bands

STS set-up

G. Li et al, Observation of Van Hove singularities in twisted graphene layers

R. Bistritzer and A. MacDonald, *Moire bands in twisted double-layer graphene*

- Experimental verification of VHS at magic angle and theoretical prediction of flat Moire bands in 2010
 - Spatially electrons accumulate in AB regions
- •Hubbard model: update on TBA

$$\hat{H} = -t \sum_{i,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \hat{c}_{i+1,\sigma}^{\dagger} \hat{c}_{i,\sigma}
ight) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

- •Flat band width $w \ll U$
 - High U/t
 - Electron-electron interactions dominate→correlated electronic states

Potentially a better understanding of correlated electronic states

Correlated states

Y. Cao et al, *Unconventional superconductivity in magic-angle graphene superlattices* **Transport set-up**

- Experimental realization in 2018
 - ullet Tuning between insulating, metallic, and superconducting phase with carrier density n and temperature T
 - Insulating near integer fillings, like with Landau levels
 - Different behaviors in samples with different twist angles near magic angle
- Competitions of phases: insulating (not necessarily Mott-insulating), superconducting, charge density wave, nematic
- Experimental challenges of transport:
 - Difficulty controlling twist angle due to twist inhomogeneities (disorder through inhomogenous strain) and sample-to-sample lattice relaxation effects modifying the single particle dispersion relation
 - May not be a superconducting path between leads

Superconducting properties

- * Heavy-fermion superconductors
- Cuprates
- Iron pnictides
- Conventional superconductors
- BEC in atoms
- Two-dimensional materials
- Organic superconductors
- A₃C₆₀ □ NbSe₂
- △ Na_xCoO₂ CaC₆
- Magic-angle TBG

- •Unusually high $\frac{T_c}{T_F}$ ratio compared to other superconductors
 - Strong interactions more characteristic of e-e correlations than e-ph correlations in conventional BCS superconductors

Current research

- Broken symmetries induced in experimental set up with hexagonal boron nitride
 - Can address with other 2D insulators that interact less with graphene
 - Intentional symmetry breaking with applied B
- Pressure to increase inter-layer coupling
- "Twistronics"
 - Higher twist angles for more stability
 - Twisted trilayer graphene (Pablo, 2021)
 - Twisted transition metal dichalcogenides
 - Twisted WSe₂ (Pasupathy, 2020)
- New superlattice structures
 - Strain superlattices

Tear and stack method:

Zhuxing Sun and Yun Hang Hu, How Magical is Magic-Angle Graphene

Questions?

THANK YOU FOR LISTENING

2D Materials

- •1966: David Mermin and Herbert Wagner showed that long-range fluctuations could be created with little energy cost in materials with $d \le 2$ using the propagator for scalar fields
 - Used by many to suggest that 2D materials were impossible to realize due to thermal and quantum fluctuations
- Theoretical work on graphene in the 20th century mainly as a model and to understand graphite as layers of graphene
- Discovery of graphene in 2004 by Andre Geim's group though "micromechanical cleavage"

