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Abstract
The phonon spectra of twisted bilayer graphene (tBLG) are analyzed for a series of 692 twisting
angle values in the [0, 30◦] range. The evolution of the phonon bandstructure as a function of twist
angle is examined using a band unfolding scheme where the large number of phonon modes
computed at the Γ point for the large moiré tBLG supercells are unfolded onto the Brillouin Zone
(BZ) of one of the two constituent layers. In addition to changes to the low-frequency breathing
and shear modes, a series of well-defined side-bands around high-symmetry points of the extended
BZ emerge due to the twist angle-dependent structural relaxation. The results are rationalized by
introducing a nearly-free-phonon model that highlights the central role played by solitons in the
description of the new phonon branches, which are particularly pronounced for structures with
small twist angles, below a buckling angle of θB ∼ 3.75◦.

Unconventional superconductivity and magnetism
were not typically associated with graphene until very
recently with the observation of strong electronic cor-
relation in bilayer graphene twisted roughly at the
θ= 1.1◦ magic angle [1–5]. This effect is related to
the emergence of flat electronic bands with narrow
band width [1, 5–9], and theoretical studies have
established the importance of structural relaxation in
the description of these phenomena [6, 8–18]. The
atomic relaxation in twisted bilayer graphene (tBLG)
is linked to the development of strain fields that tend
to minimize the unfavorable AA-stacking regions—
with local buckling—and lead to the formation of tri-
angular domain patterns in the moiré pattern. This
structural re-arrangement can be interpreted as the
formation of solitons in the system [10, 19, 20].

Most of the existing theoretical studies devoted to
tBLGs have focused on electronic properties. How-
ever, tBLGphonons are also expected to be affected by
the formation of themoiré superlattice and its under-
lying strain fields, since they fundamentally corres-
pond to excitations of the lattice [14, 21, 22]. Study-
ing the large unit-cells corresponding to small values
of twisting angles is computationally challenging and
a fine analysis of the tBLG phonons has proven dif-
ficult, since a full treatment requires the calculations
of dynamical matrices of with tens of thousand ele-
ments for structures prepared at a minimum energy

configuration. Angeli and co-workers [22] were able
to identify 10 nearly-flat energy phonon bands—not
present in single- or bi-layer (Bernal) graphene—
among the ∼30 000 phonon modes of one specific
tBLG. At the same time, continuum models have
predicted band gap openings at the zone border of
the tBLG reciprocal lattices [15, 23, 24]. These stud-
ies are promising but need additional refinements to
include buckling. Previous studies have investigated
the Raman profiles of the G and 2D peaks of tBLGs,
both theoretically and experimentally [25, 26]. These
studies however did not consider any change in terms
of phonon band structures theoretically but rather
focused on peak intensity in resonance.

In this Letter, we overcome the technical diffi-
culty of analyzing the large number of phononmodes
of tBLG by adopting an unfolding scheme [27]. The
many phonon modes of the superlattice are unfol-
ded onto the reciprocal lattice of the bottom layer of
graphene. This allows us to demonstrate the exist-
ence of a rich phononic structure, especially for small
twist angles. The present study not only confirms the
emergence of new phonon side-bands at the high-
symmetry points of the graphene reciprocal lattice,
but it also predicts a number of features that are
specific to tBLGs. In particular, our study predicts
very significant band splitting as large as 50 cm−1

for the high-frequency G modes at the zone center
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of structures with small twist angles. A careful mon-
itoring of the high-symmetry phonon modes as a
function of the twist angle reveals the elaborate, but
continuous, evolution of these phonon side-bands for
θ → 0. Notably, the layer breathing mode at the zone
center splits into several bands for decreasing angle—
some showing evanescent character, others featuring
mixed in-plane and out-of-plane characters.

A large number of tBLG superlattices are con-
structed following a procedure similar to the one
presented in reference [28]. Certain discrete twist
angles produce a commensuration between the lay-
ers, described by the equationCBB= L= CTT, where
B and T are matrices whose rows are basis vectors
for each layer’s lattice (bottom and top), L is the
same for the commensuration cell, and CB and CT

are integermatrices. Beginning from this premise and
applying a series of number theoretical arguments,
a one-to-one correspondence can be found between
twist angles θ ∈ [0◦,60◦] and coprime integer pairs
(p, q)with 0≤ p≤ q. These solutions have twist angles
and numbers of graphene unit cell per layer defined
by [28]

cosθ =
3q2 − p2

3q2 + p2
, (1)

N=
3

δ

1

γ2
(3q2 + p2) =

3q2 + p2

( 2
gcd(pq,2) )

2gcd(p,3)
, (2)

where δ= 3/gcd(p, 3) and γ= 2gcd(p, 3)/gcd(pq, 2)
are small positive integers, while gcd stands the
greatest common divisor function. NC = 4 N corres-
ponds the number of carbon atoms in the graphene
unit cell. There are in principle an infinitude of
twist angles that lead to a commensurate structure,
but only 692 of these angles in the range 0◦ ≤
θ ≤ 30◦ produce a structure containing fewer than
20 000 atoms. Those are the systems we investigate in
this work.

We use classical force-fields for structural relax-
ation and to compute the corresponding phonons
in the harmonic approximation. Intralayer forces are
computed using the second-generation REBO poten-
tial [29], while interlayer forces aremodeled using the
registry-dependent Kolmogorov–Crespi (KC) poten-
tial [30], in its local normal formulation. All atomic
positions and lattice parameters of the superlat-
tice are optimized with a conjugate gradient (CG)
algorithm. The latter are found to vary in a negli-
gible manner compared to the rigidly-stacked case.
After CG convergence of all force components within
10−3 eV/atom, the dynamical matrix at Γ is com-
puted using finite differences and then diagonal-
ized. The presence of many local extrema makes the
accurate relaxation of tBLG tedious. However, we
take advantage of the phonon calculation to oper-
ate an iterative assessment of dynamical stability.
In practice, when modes are found with negative

eigenvalues (and if they are not translational acous-
tic modes), CG is performed again in a reduced para-
meter spacewhere each parameter corresponds to one
of the negativemodes. This accelerated procedure can
in theory be repeated until all negative modes are
removed from the system. Unfortunately, suppress-
ing the entirety of the negative modes for the small
twist angle structures has been found to be particu-
larly challenging (> 11 iterations required); however,
the imaginary frequencies of thesemodes have amag-
nitude< 4 cm−1 and are thus assumed to have negli-
gible influence on the oncoming discussion.

Similar to previous studies [6, 10–16], accom-
modation between the layers is observed in order to
minimize the AA-stacking region, which proves espe-
cially significant for small twist angles. Buckling is
found to occur for certain structures with twist angles
that are below some critical buckling angle θB, defined
here as the angle below which negative modes are
observed for the corresponding structure after one
full CG relaxation. This definition accounts for the
fact these non-zero modes are responsible for the
buckling of the system. Here, we find θB ∼ 3.75◦,
meaning that all structures below this angle buckle,
with the notable exception of a few structures
(e.g. 3.482◦ and 3.150◦, with (p, q)= (1, 19) and
(p, q)= (1, 21), respectively) that have particularly
small unit cells. The variation of the interlayer dis-
tance can be quite significant for small misalignment
angles, i.e. as large as ∼0.23 Å for the 1.085◦ struc-
ture (see figure 1(d)). The magnitude of this vari-
ation is comparable to previous studies with classical
potentials [11, 17, 18] and DFT computations [9].

As a reference, figure 1(a) represents the phonon
band structure of Bernal-stacked bilayer graphene as
computed with the REBO+KC potential. This poten-
tial has difficulty describing the dispersion of the
high-frequency branch [31], but all of the other
branches of graphene are qualitatively reproduced.
Note that it also appears to somewhat underestim-
ate the strength of the interlayer interactions: the
shear mode for AB-stacked graphene is found to be
19.7 cm−1 (versus 32cm−1 from experiment [32]),
and the layer-breathing mode in structures around
12◦ is found to be∼79 cm−1 (versus∼95 cm−1 from
experiment [33]).

Analyzing the effect of twist angle on the phonon
modes in tBLGs is particularly difficult since each
structure has a very large number (3 N) of normal
modes, and this number varies among all structures
considered. To address this issue, the phonon data
calculated at the supercell zone center ΓL (i.e. Γ in
the small BZ of the tBLG) are unfolded onto the
BZ of reciprocal cell of the primitive cell of one of
the layers, producing a band structure in the single-
layer first Brillouin zone (FBZ) [27]. This process
is fuzzy in the sense that a mode in the supercell
is usually expressed a linear combination of single-
layer modes with different wavevectors. Note also
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that the images of ΓL in the reciprocal cell of one
layer are not compatible with the translational sym-
metry of the other layer; thus, the unfolding process
exclusively considers the projections of the normal
modes onto a single layer. Applying the unfolding
method requires the construction of translation oper-
ators T̂(R) for R in the quotient group LB/LL, where
LB is the real-space lattice of the bottom layer, and LL
is the moiré lattice. Ideally, we apply these operators
to a Bloch function represented in the form of a 3 N-
dimensional vectoruK (for someK in themoiré FBZ),
containing Cartesian components at each site in the
moiré cell.

Prior to relaxation, it can be seen that each
translation operator may take the form T̂(R)uK =
QK,RPRuK, where PR is a permutation matrix
(obtained by recognizing that the translation is a
symmetry of the atomic coordinates in this layer),
and QK,R is a diagonal matrix of corrective phase
factors (fixing the Bloch phases for atoms that are
translated between different images of the moiré
cell). Strictly speaking, after relaxation, these quo-
tient group translations are no longer symmetries of
the atomic coordinates within the layer. However, we
may continue to use the above result by taking as an
approximation that the atoms vibrate around their
unrelaxed positions for the purpose of unfolding.
This assumption is violated somewhat in small angle
structures, especially due to out-of-plane buckling.
However, this out-of-plane motion is not expected to
meaningfully affect the unfolding probabilities onto
points that lie in the plane.

We find that even at a moderately-sized angle of
9.737◦ (not shown here), the unfolded band struc-
ture exhibits no features significantly different from
those of Bernal stacking, except for the shear mode
frequency (which is much lower than that of Bernal
bilayer graphene due to a reduced effective inter-
layer force constant). In stark contrast, at small
nonzero twist angles, several additional prominent
features appear in the unfolded bands. For instance,
figure 1(e) depicts the unfolded representation for the
phonons of the 1.085◦ ((p, q)= (1, 61)) twist-angle
structure. This phonon band structure exhibits the
basic features of the AB-stacked bilayer graphene,
including the prominent splitting of the out-of-plane
acoustic (ZA) band to produce a layer-breathing
mode. In addition, there is splitting of the G band at
the single-layer Γ, by about 60 cm−1 at θ= 1.085◦. In
addition to this splitting, branches form in a number
of side-bands around the single-layerM andK points.
Structural relaxation plays a critical role in all of these
effects; for comparison, band plots are included for
structures with and without relaxation in figures 1(e)
and (b), respectively. A plot of the in-plane displace-
ment fields minimizing the AA-stacking region is
shown in figure 1(c), while the variation of the inter-
layer distance is provided in figure 1(d) to highlight
the buckling in the vicinity of the AA-stacking region.

Clearly, without relaxation, none of the side band
effects are apparent, and the phonon band structure
is extremely similar to the case of Bernal graphene
bilayer, except for a reduced shear mode frequency.
In contrast to what previous theoretical works pre-
dict [23, 24], we do not find any particularly pro-
nounced renormalization of the speed velocity in
twisted bilayer graphene.

The plots in figure 2 focus on specific high-
symmetry points in the single-layer Brillouin Zone
and compare the unfolded bands between different
structures. Figure 2 (a) shows the evolution of the
bands at MB with respect to changing angle. In this
plot, only data from ΓL point is used. MB is not an
image of ΓL under the moiré reciprocal lattice; thus,
for each structure, the data at the nearest image of
ΓL is used. For many of these structures (particularly
those with smaller commensurate cells), this image
may be far away from MB, resulting in poor-quality
data; therefore, we omit structures where the nearest
image of ΓL is further than 0.01× 2πÅ

−1
from MB.

The in-plane transverse acoustic (TA) and longitud-
inal acoustic (LA) bands can be observed to split
into increasingly many side bands as angle decreases
(though there is no splitting at 0◦).

Unfolded probability data at ΓB are available for
all 692 structures, and are shown in figures 2(b) and
(c). Astonishingly, all the modes do not undergo a
continuous transformation from 30◦ to 0◦. Perhaps
most strikingly is what happens to the layer breath-
ing mode (figure 2(b) around 80 cm−1), which is
well defined at large angles but splits into several
branches for decreasing angles. One of them shows a
linear dependency that can be extrapolated onto the
shearmode at 0◦, implying that thismode shows both
in-plane and out-of-plane characters for small twist
angles. The others are evanescent and show complex
behavior as a function of twist angle. Nevertheless,
their general trend seems to follow the expectation
value of the dynamical matrix for the layer breathing
mode in the system (i.e.matrix element of the dynam-
ical matrix for a pure breathing mode; red curve in
figure 2(b)), and appears to eventually converge to the
value of the layer breathing mode in Bernal graphene
bilayer for θ→ 0◦.

Finally, the high-frequency modes at the tBLG
zone center are represented in figure 2(c). Similar to
the modes shown in figure 2(a), more and more side
bands emerge for decreasing angles. Notably, there
are several branches that take values higher than that
of the G mode computed in Bernal graphene bilayer.
It should be emphasized that this is the most striking
signature of twisting angle and it could, in principle,
be used as a fingerprint of a specific twisting angle.

Wewill now discuss the fundamental origin of the
tBLG-specific phonon side bands, starting from the
Frenkel-Kontorova (FK) model [19, 35]. This clas-
sical model considers a 1D chain of atoms placed
into a periodic external potential whose period differs
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Figure 1. (a) Phonon band structure of graphene bilayer in the Bernal stacking configuration. (b) Unfolded phonon band
structure of twisted bilayer graphene structure with rotation angle 1.085◦ prior to relaxation. The B subscripts denote that the
high symmetry path is taken along the Brillouin zone of the bottom layer, and each position on the x-axis displays data unfolded
onto the nearest point that is an image of ΓL, ML, or KL. (c) In-plane displacement field in the bottom layer of the 1.085◦

twist-angle structure. Close to the AA-stacking region, this layer tends to rotate clockwise in order to minimize the region of AA
stacking. (d) Variation of the interlayer distance for the 1.085◦ twist-angle structure. The most pronounced variations are
observed close the AA-stacking region, indicating local buckling of the layers. (e) Unfolded phonon band structure of the 1.085◦

twist-angle structure after relaxation. Compared to the unrelaxed case (panel (c)), significant splitting can be seen at M, K, and in
the G band.

from the one of the chain. In general, its ground state
consists of the periodic repetition of solitons that sep-
arate regions where the atoms sit in the close neigh-
borhood of potentialminima [19]. Those solitons can
be interpreted as new quasi-particles of the system,
and they behave relativistically since their dynamics
are dictated by the Sine-Gordon equation [34]. Note
that in addition to a soliton solution, the formal prob-
lem admits another type of quasi-particle solution
called breathers. These consist of non-linear waves
oscillating in time but localized in space [34].

Investigating the dynamics of breathers and
solitons is a problem of interest on its own. However,
we shall here focus on examining how their static con-
figuration affect the phonons. The soliton network
deforms the lattice periodically, generating a poten-
tial that is felt by the otherwise-free (i.e. independ-
ent) phonons. While the analytical expression of this
potential can be exactly derived within the FKmodel,
we will simply write it here in terms of its Fourier
series for sake of simplicity:

Vsol(xn) =
∑
t

Ṽte
jtQxn , (3)

where xn is the position of the nth atom of the 1D
chain, Ṽt are the Fourier components of the decom-
position and Q is the superlattice wave vector. The Ṽt

coefficients are thus taken here as parameters. This
soliton potential acts on the motion of phonons as
follows:

mω2un = λ(2un − un−1 − un+1)+Vsol(xn)un, (4)

wherem is the mass of the atoms of the chain, ω is the
phonon frequency, un the atomic displacement and
λ the spring constant of the chain. The first term of
the right-hand side of the equation is nothing more
than the force felt by the atom n in the isolated 1D
chain. Let us suppose now that this soliton potential
is weak and thus can be treated perturbatively. Then,
one can solve equation (4) using perturbation theory.
This problem strongly resembles the one described by
the nearly-free electron (NFE)model [35], except that
the electrons and the ionic potential are replaced by
the phonons and the soliton potential, respectively.
Insights into the phonons under the soliton potential,
hereby referred to as the NFPmodel, can therefore be
extracted from the nearly-free electron (NFE) model.
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Figure 2. (a) Phonon bands unfolded from the moiŕe Γ point onto the single-layer M point at a variety of twist angles. Of the 692
tBLG structures with under 20000 atoms per cell, only 617 of them have an image of ΓL that lies within 0.01× 2πÅ−1 from MB;
the rest are not shown (except for the data at 0◦, which is computed without unfolding). (b)-(c) Phonon bands unfolded onto the
single-layer Γ point for all 692 structures at (b) low and (c) high frequencies (i.e. including graphene’s G band). The low
frequency plot includes the frequencies derived from the expectation value of a pure layer-breathing mode (red). The lower
frequency values correspond to shear-like modes. Structures below θB = 3.75◦ are found after CG to have buckling modes that
produce more energetically favorable structures. Relaxation is performed along these modes up to three times.

Figure 3. (a)-(b) Schematic representation of the predictions of the NFE and nearly-free phonon (NFP) models, truncated to the
first potential harmonic for the sake of legibility. The dashed blue lines represent the unperturbed spectra, i.e. the free electrons
and free phonons, while the red lines correspond to the perturbed solutions. Both models predict a band gap opening either at the
lattice Brillouin zone a∗/2 (NFE model) or at the superlattice Brillouin zone L∗/2 (NFP model). In addition, the NFP model
leads to the transformation of the acoustic phonon into an optical one. (Right) Schematic representation of the Brillouin zones of
the rotated graphene lattice and of the superlattice. Due to the geometry of the problem, a high-symmetry point lying on the
superlattice Brillouin zone corresponds exactly to the difference in terms of position between the corresponding high-symmetry
points in the bottom and top layers (e.g. ML, MB and MT).

The NFE model accounts for the opening of
band gaps in the electronic band structure, located
at the zone borders for the odd harmonics of the
ionic potential and at the zone center for the even

harmonics (see figure 3(a)). The mean value of the
potential is generally discarded since it simply leads
to a rigid energy shift. Restricting the analysis to the
first harmonic of the potential, the band gap opening
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at zone borders is associated with the formation of
stationary waves: the electrons are either localized
around the nuclei (lower energy state) or away from
them (upper energy state).

The results for phonons in the NFP model are
unsurprisingly similar to the ones derived in the NFE
model for electrons with the emergence of band gaps
associated with stationary waves involving the dis-
placement (or pinning) of the soliton cores. The the-
oretical details will be detailed elsewhere but themain
results are shown in figure 3(b). A number of differ-
ences with respect to the NFEmodel should be noted.
First, the spectra of free electrons and free phonons
differ: the former is unbound (E∝ k2, where E is the
energy and k the electron wavenumber) while the
latter is bound (ω2 ∝ sin2 (q/2), where ω is the fre-
quency and q the phonon wavenumber). This trans-
lates into noticeable differences in the dispersion rela-
tions of the two nearly-free models. Second andmore
fundamentally, the acoustic mode present in the isol-
ated 1D chain is transformed into an optical mode
in the NFP model (∆ω(0) opening in figure 3). This
comes from the fact that the mean value of the poten-
tial cannot be discarded in the case of phonons since
the soliton perturbation is acting over the square of
the frequency (see equation (4)). This contrasts with
the NFE model, where the perturbation acts directly
on the energy and could therefore be disposed of.

The emergence of phonon side bands instead of
band gaps as predicted by the NFP model is a par-
ticularity of the twisted bilayer system. To under-
stand this, it is useful to inspect the BZ of the con-
stituent layers with respect to that of the superlattice
(see figure 3(c)). By geometrical construction, the
superlattice reciprocal vectors correspond exactly to
the difference between the reciprocal vectors of the
bottom and top layers [6, 23]. As a consequence,
the phonons at the ML superlattice high-symmetry
points correspond to phonon states at the MB and
MT high-symmetry points in the bottom and top lay-
ers, respectively. The same reasoning holds for the
KL high-symmetry point. As discussed before, the
NFP model indicates that a band gap is expected to
open at the high-symmetry points of the superlat-
tice Brillouin zone. It follows that the first soliton
potential harmonic opens a band gap at the ML point
with amplitude∆ω(1) and the third harmonic opens
a band gap of amplitude ∆ω(3) at the same point,
etc The mechanism hinges on the fact that, in con-
trast to electronic potential, the dispersion relation
of phonon is bound: the band gap openings always
affect the same initial phonon state, leading to the cre-
ation of different phonon side bands around the same
frequency window. This explains the origin of the
numerous phonon side bands presented in figure 1,
which can thus be understood as the intrinsic signa-
ture of solitons in the system.

To summarize, we find the rich phononic
structure for small twist angles in tBLGs is closely

associated with the formation of a soliton network
and can be explained in terms of the NFP model
introduced here. Fundamentally, compared to the
NFE model, the role of electrons and nuclear poten-
tial are fulfilled by the phonons and soliton potentials
in the NFP model, respectively. The general frame-
work allows us to contrast the results of the NFP
and NFE models, in term of the different dispersion
relations adopted by the phonons and electrons.

One should mention that, while we chose the
single-layer FBZ as a support for unfolding, themech-
anism of band unfolding is not unique and can be
applied to other choices of BZ. For this reason, a num-
ber of bands cannot be directly seen in plots such as
those presented in figure 1. For example, the R bands
described by Jorio et al in reference [36] do not lie
along the high symmetry path chosen here but can be
obtained in a way similar to the procedure described
in this Letter. This effect is outside of the scope of
the present study and will be discussed in details
elsewhere.
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