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A Majorana fermion is a fermionic particle that is its own antiparticle. Since the theoretical discovery by Ettore
Majorana in 1937, the exotic particle has long been searched in particle physics. In the last few decades, however, it
has attracted renewed interest in condensed matter physics, where it can be realized as an elementary excitation
(quasiparticle) in quantum states of matter, such as the fractional quantum Hall states and topological superconductors.
In this review, we discuss another platform for Majorana fermions, the quantum spin liquid. The quantum spin liquid is a
bizarre quantum phase of insulating magnets, firstly proposed by Philip Anderson in 1973, in which interacting magnetic
moments remain disordered down to the lowest temperature under strong quantum fluctuations. They are characterized
by topological entanglement and fractional excitations, whose possible application to topological quantum computation
is recently discussed intensively. As a prime candidate for such exotic states, we here focus on the Kitaev magnets, a
subgroup of the spin–orbit Mott insulators, which have been a subject of intense research initiated by the seminal works
by Alexei Kitaev in 2006 and by G. Jackeli and G. Khaliullin in 2009. After a brief overview of the Kitaev model and
the fractionalization of spins in the exact ground state, we review recent explosive development in this rapidly growing
field, with a focus on numerical solutions of the Kitaev model at finite temperatures and the comparison with
experiments. The key concept is thermal fractionalization— two types of fractional excitations manifest themselves at
largely different temperatures. This leads to distinct thermodynamics and spin dynamics in a variety of experimentally
measurable quantities. We discuss such peculiar behaviors as the signatures of fractional quasiparticles, in careful
comparison with the available experimental data for the candidate materials of the Kitaev magnets. Our review gives an
overview of the current status of the identification of Majorana fermions in the Kitaev magnets, which would serve as a
basis for further experimental and theoretical studies toward the manipulation of the exotic particles for topological
quantum computation.

1. Introduction

Majorana fermions are charge-neutral spin-1=2 particles
that are their own antiparticles. They were theoretically
discovered by Ettore Majorana in 1937 in a real solution for
the Dirac equation.1) The Majorana fermions are distin-
guished from the ordinary fermions in the complex solution,
called the Dirac fermions. The Dirac fermions are not their
own antiparticles, and can be described by the annihilation
and creation operators, f and f y, respectively. Two Majorana
operators are defined by using f and f y as

!1 ¼
f " f y

i
; !2 ¼ f þ f y: ð1Þ

The definitions immediately yield that their creation and
annihilation are equivalent:

!yi ¼ !i; ð2Þ

and they satisfy the anticommutation relation

f!i; !jg ¼ 2"ij; ð3Þ

where "ij is the Kronecker delta (i; j ¼ 1; 2). Equation (1)
indicates that the occupied and unoccupied states of the Dirac
fermion can be described by a pair of Majorana fermions.
This means that one Majorana fermion carries half degrees of
freedom of one Dirac fermion.

Since the intriguing proposal by Ettore Majorana, the
physical example of the exotic particles has long been sought
in particle physics. Within the standard model, all the
fermionic particles are the Dirac fermions, except for the
neutrino. Thus, the neutrino has long been studied as a prime
candidate for the Majorana fermion, but its nature is not
settled yet.2–4) Another candidates have been discussed for

superpartners in the supersymmetry model, but no evidence
was established to date.

In the last few decades, the Majorana fermions have
attracted renewed interest by their possible realization in
condensed matter physics.5) In this case, they appear not as
elementary particles but as elementary excitations (quasipar-
ticles) in quantum states of matter. In general, quantum
many-body states under electron correlations can host
emergent quasiparticles, which have distinct nature from
the constituent electrons. In some cases, the elementary
excitations are described by more than one types of
quasiparticles, which looks like the electrons are fractional-
ized into several particles. This is called fractionalization.
For instance, in the two-dimensional (2D) fractional quantum
Hall states, the elementary charge −e is fractionalized into
fractional charges, e.g., e=3, and as a result, the elementary
excitations of the system are described by emergent
quasiparticles called anyons that do not obey either Dirac–
Fermi or Bose–Einstein statistics.

In the context of the fractionalization, the emergence of
Majorana fermions has been discussed for several different
quantum states, such as the edge modes in the # ¼ 5=2
fractional quantum Hall state,6–10) the zero modes in p-wave
superconductors,8,11) and the bound states in topological
superconductors.12–15) Since these Majorana fermions origi-
nate from the fractionalization of fundamental particles,
i.e., electrons, they acquire topological entanglement and
intrinsically nonlocal nature. Owing to the unusual proper-
ties, the emergent Majorana fermions have drawn a great
attention for the possible application to topological quantum
computation.16,17)

In this review, we focus on another realization of Majorana
fermions in insulating magnets called Mott insulators. In
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these systems, electrons are spatially localized due to strong
electron correlations, and hence, the charge degree of
freedom is inactive. Instead, what can be fractionalized here
is the spin degree of freedom. Such a possibility of spin
fractionalization has been discussed to take place in the
quantum spin liquid (QSL), which is a quantum disordered
state in the Mott insulators, firstly proposed by Philip
Anderson in 1973.18) In the QSL, any conventional symmetry
breaking is precluded by strong quantum fluctuations, and the
localized spins remain disordered but quantum entangled.
Several types of QSLs have been predicted depending on the
symmetry of the system, and they host their own fractional
quasiparticles.19,20) For instance, in the so-called Z2 QSLs,
the spin excitations are supposed to be fractionalized into two
types of elementary excitations, spinons and visons; the
spinons are charge-neutral spin-1=2 particlelike excitations,
while the visons are topological excitations defined by their
stringlike traces.21,22)

Most of such arguments, however, lack rigorous grounds,
as there are less well-defined QSLs in more than one
dimension. Thus far, tremendous efforts have been made for
geometrically-frustrated antiferromagnets in two and three
dimensions, but there are few examples where the ground
state is rigorously shown to be a QSL.23–26) A main difficulty
lies in the lack of suitable theoretical methods: Any
approximate theories may miss the essential aspects of the
quantum entanglement in QSLs, and numerical methods
require extremely high precisions to select out the true
ground state from other quasi-degenerate states under strong
frustration. Thus, it has remained a big challenge to identify
fractional spin excitations in QSLs.

The situation has been changed dramatically over the past
decade through two breakthroughs. One is the proposal of the
exactly-solvable model in the seminal paper by Alexei Kitaev
in 2006,27) which is now called the Kitaev model. The model
is a spin-1=2 model defined on a 2D honeycomb structure
with bond-dependent interactions. The ground state is exactly
obtained to be a QSL, in which the spin excitations are
fractionalized into two types of quasiparticle excitations:
itinerant spinon-like excitations, which are described by the
Majorana fermions, and localized ones that constitute vison-
like excitations. The other breakthrough was brought by
Jackeli and Khaliullin in 2009.28,29) They pointed out that the
Kitaev model can be materialized in a class of the Mott
insulating magnets with the strong spin–orbit coupling.
Stimulated by their argument, several materials have been
nominated as the candidates for the Kitaev QSL, such as
iridium oxides A2IrO3 (A = Li and Na) and a ruthenium
trichloride α-RuCl3. These two breakthroughs have driven
intense research for the Kitaev QSL from both theoretical and
experimental viewpoints.

In the present article, we give an overview of the recent
progress in this rapidly growing field. Several review articles
are already available for the Kitaev QSL and its candi-
dates.30–36) Here we particularly focus on the finite-temper-
ature (T) aspects of the fractional excitations, which are
relevant to identify them in the candidate materials. Since the
exact solution of the Kitaev model is limited to the ground
state, the authors and their collaborators have developed
several numerical techniques to study the finite-T proper-
ties,37–42) and calculated the experimental observables, such

as the specific heat and entropy, static spin–spin correla-
tions,38) magnetic susceptibility, inelastic neutron scattering
spectra, spin–lattice relaxation rate in the nuclear magnetic
resonance (NMR),39–41) Raman scattering spectra,43) and
longitudinal and transverse components of the thermal
conductivity.44) Through the detailed comparison of the
theoretical results with experimental data, signatures of the
fractional excitations have been accumulated for the Kitaev
candidate materials. We will discuss in detail such compar-
isons in this review.

The structure of this article is as follows. In Sect. 2, we
introduce the Kitaev model and the fractional excitations
derived from the exact solution for the QSL ground state.
After introducing the Hamiltonian in Sect. 2.1, we briefly
discuss the origin of the peculiar bond-dependent interaction
in the Kitaev model in Sect. 2.2. In Sect. 2.3, we describe
a Majorana representation of the spin operators, which is
different from the original one introduced by Kitaev but
useful for numerical techniques developed for finite-T
calculations. After an overview of the exact QSL ground
state and the fractional excitations in Sects. 2.4 and 2.5,
respectively, we discuss the effects of finite T, an external
magnetic field, and other exchange interactions in Sects. 2.6,
2.7, and 2.8, respectively. These additional effects on the
Kitaev QSL are schematically summarized in the potential
phase diagrams in Sect. 2.9.

In Sect. 3, we discuss one of the distinct aspects in the
thermodynamics of the Kitaev model, which we call thermal
fractionalization. In Sect. 3.1, as the prototypical behaviors,
two successive crossovers are discussed for the Kitaev model
on the 2D honeycomb structure. Then, a peculiar phase
transition with time-reversal symmetry breaking is over-
viewed for a 2D triangle-honeycomb structure in Sect. 3.2. In
Sect. 3.3, we showcase several unconventional phase tran-
sitions found for three-dimensional (3D) extensions of the
Kitaev model, which can be regarded as gas–liquid–solid
transitions in terms of the spin degree of freedom. We also
briefly discuss spontaneous breaking of time-reversal sym-
metry in the 3D cases. These crossovers and phase transitions
are summarized in Sect. 3.4.

In Sect. 4, we introduce several candidate materials for the
Kitaev QSL. We discuss the fundamental aspects of quasi-2D
iridium oxides in Sect. 4.1, a ruthenium trichloride in
Sect. 4.2, and 3D iridium oxides in Sect. 4.3.

In Sect. 5, we compare theoretical results for the Kitaev
model with experimental data for the candidate materials,
focusing on the quasi-2D materials. We discuss the two
successive crossovers in the specific heat and entropy in
Sect. 5.1, the saturation of static spin correlations measured
from optical probe in Sect. 5.2, and peculiar T dependence of
the magnetic susceptibility in Sect. 5.3. Then, we turn to the
signatures of the fractional excitations in the spin dynamics:
the dynamical spin structure factor measured in inelastic
neutron scattering in Sect. 5.4 and the NMR relaxation rate in
Sect. 5.5. From the comparison, we discuss the dichotomy
between static and dynamical spin correlations as a signature
of the thermal fractionalization. More direct signatures of
fermionic excitations are discussed for the thermal con-
ductivity in Sect. 5.6 and the Raman scattering in Sect. 5.7;
in the latter, the unusual fermionic nature is clearly identified
in a wide-T range. Finally, in Sect. 5.8, a direct evidence of
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the Majorana nature and the topological state is discussed
for the thermal Hall conductivity. Section 6 is devoted to the
summary and perspectives. In Appendix, we describe the
details of the Majorana-based numerical techniques.

2. Kitaev Model and Majorana Fermions

2.1 Hamiltonian
The Kitaev model is a quantum spin model with localized

spin-1=2 magnetic moments with bond-dependent anisotrop-
ic interactions.27) The model was originally introduced on a
2D honeycomb structure, while it can be extended to any
tricoordinate structures in any spatial dimensions (some
examples will be shown in Sect. 3). We mainly focus on the
honeycomb case in this review. The exchange interactions
are all Ising type, but the spin component depends on the
three types of nearest-neighbor (NN) bonds on the tricoordi-
nate structure. The Hamiltonian is given by

H ¼ "
X

$¼x;y;z
J$
X

hi; ji$

S$
i S

$
j ; ð4Þ

where J$ is the exchange coupling constant on the μ bonds
and S$

i is the μ component of the spin-1=2 operator at site i;
the sum of hi; ji$ is taken for NN spin pairs on the μ bonds. A
schematic picture of the model is shown in Fig. 1.

As it is impossible to optimize all the bond energies
simultaneously, the bond-dependent anisotropic interactions
lead to severe frustration despite the absence of geometrical
frustration in the lattice structure. Indeed, the classical
counterpart of the Kitaev model, where the spins are regarded
as the classical vectors, has an infinite numbers of energeti-
cally degenerate ground states.45) In the quantum case,
however, this macroscopic classical degeneracy is lifted and a
QSL ground state is realized as described in Sects. 2.3 and
2.4.

2.2 Origin of bond-dependent anisotropic interactions
The peculiar form of the interactions in Eq. (4), which is

often called the Kitaev coupling, can be realized in a class
of Mott insulators with strong spin–orbit coupling (SOC).
This intriguing possibility was theoretically pointed out by
Jackeli and Khaliullin,29) following the pioneering work by
Khaliullin.28) They pointed out two requisites for the Kitaev
coupling: (i) localized magnetic moments arising from spin–
orbital entanglement, each of which carries an effective
angular momentum jeff ¼ 1=2, and (ii) quantum interference
between the exchange processes by indirect hoppings of the
localized electrons via ligands.

It was argued that the requisite (i) is satisfied in the low-
spin d5 configuration under the cubic crystalline electric field
and the strong SOC. This is schematically shown in Fig. 2(a).
The tenfold degenerate states (including spin) for the d-
orbital manifold are split by the cubic crystalline electric field
into the low-energy sixfold t2g manifold (dxy, dyz, and dzx)
and the high-energy fourfold eg manifold (d3z2"r2 and dx2"y2 ).
Five d electrons occupy the t2g states in the low-spin state, as
shown in the middle panel of Fig. 2(a). The t2g manifold is
isomorphic to the p-orbital states; the angular momentum for
the t2g manifold is effectively described by lt2g ¼ "lp, where
lp is the l ¼ 1 angular momentum operator obeying the
commutation relations. The bases are explicitly written
as

Jx

Jy
Jz

r a1a2

a

b

c

Fig. 1. (Color online) Schematic picture of the Kitaev model defined on a
honeycomb structure with three kinds of interactions Jx, Jy, and Jz on the x,
y, and z bonds, respectively. a1 and a2 are the primitive translation vectors
and r labels the unit cell including the z bond. The Cartesian coordinate axes
ða; b; cÞ are also shown.

d5

eg
0

t2g
5

CEF SOC

jeff=1/2

jeff=3/2

(a)

(c)

lp = 1

(b)
= +

= +

jz
eff = +1/2 lz

p = 0, sz= +1/2 lz
p = +1, sz  = −1/2

jz
eff = −1/2 lz

p = 0, sz  = −1/2 lz
p = −1, sz  = +1/2

pz

pz

dyz dzx

dzx dyzx

y
z

Fig. 2. (Color online) (a) Energy scheme of the atomic d-orbital states
occupied by five electrons in the presence of the cubic crystalline electric
field (CEF) and the SOC. (b) Pictorial representation of the jeff ¼ 1=2
Kramers doublet in Eq. (7). (c) Schematic picture of the lattice structure
with edge-sharing ligand octahedra (left), and two kinds of the exchange
processes by the indirect d–p–d hoppings yielding the Kitaev coupling
(right). The coordinate axes ðx; y; zÞ, which point from the center to the
corners of an (ideal) octahedron, are shown in the left panel. They are
common to the spin axes set by the SOC in the corresponding Kitaev model.
The objects with blue and red ellipsoids in the right panel represent d and p
orbitals.
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jlzt2g ¼ 0i ¼ jlzp ¼ 0i ¼ jdxyi; ð5Þ

jlzt2g ¼ &1i ¼ jlzp ¼ '1i ¼ 1ffiffiffi
2

p ðjdzxi & ijdyziÞ: ð6Þ

When the angular momentum lp ¼ 1 is coupled with the spin
angular momentum s ¼ 1=2 by the SOC, the t2g manifold is
further split into the low-energy jeff ¼ 3=2 quartet and the
high-energy jeff ¼ 1=2 doublet. Thus, the low-spin d5 state
ends up with the one-hole state in the jeff ¼ 1=2 doublet, as
shown in the right panel of Fig. 2(a). The jeff ¼ 1=2 doublet
comprises a time-reversal Kramers pair, which is described by

jzeff ¼ & 1

2

""""

#
¼

ffiffiffiffi
1

3

r
lzp ¼ 0; sz ¼ & 1

2

""""

#

"
ffiffiffiffi
2

3

r
lzp ¼ &1; sz ¼ ' 1

2

""""

#
: ð7Þ

The schematic pictures are shown in Fig. 2(b). The g factor
of the jeff ¼ 1=2 doublet is isotropic and negative (’"2),
whose sign is opposite to that of the anomalous g-factor of
the electron spin due to the orbital contribution.46)

On the other hand, the requisite (ii) is satisfied in an edge-
sharing network of the ligand octahedra with the d5 cations in
the centers, as shown in the left panel of Fig. 2(c). In this
geometry, there are two different paths for the indirect d–p–d
hopping via two ligands shared by the edge-sharing
octahedra, as shown in the right panel of Fig. 2(c). The
exchange processes by the two paths cause the quantum
interference, which cancels out the isotropic Heisenberg
exchange interactions and makes the higher-order Kitaev
coupling the leading contribution. The Kitaev coupling has a
contribution from the Hund’s-rule coupling in the exchange
process, and therefore, it is expected to be ferromagnetic
(FM).

The two requisites are approximately satisfied, e.g., in the
spin–orbit Mott insulators with Ir4+ and Ru3+ ions. Indeed,
some iridium and ruthenium compounds, such as A2IrO3
(A = Na and Li) and α-RuCl3 have been intensively studied
as the candidates for the model in Eq. (4); see Sect. 4 for
more details. In these compounds, however, other exchange
couplings such as the isotropic Heisenberg ones are also
present due to the deviation from the ideal situation. Effects
of such other interactions will be discussed in Sect. 2.8.

Recently, the Kitaev coupling was also predicted for other
systems. One is the systems with the high-spin d7

configuration, such as Co2+ ions.47–51) In this case, while
the jeff ¼ 1=2 moments arise from a different energy scheme
from that in the low-spin d5 case, the underlying mechanism
for the exchange processes is basically common, and hence,
the Kitaev coupling is FM. Another candidates are explored
for f-electron compounds.52–56) In particular, for the f1

electron configuration, an antiferromagnetic (AFM) Kitaev
coupling (J$ < 0) was theoretically predicted, in contrast to
the d5 and d7 cases.54) The sign change is brought by the
different atomic energy scheme and the different shapes of
the f orbitals. We will return to this point in Sect. 2.7.

2.3 Majorana representation
In the seminal paper, Kitaev showed that the ground state

of the model in Eq. (4) is exactly obtained by introducing a
Majorana representation of the spin operators.27) In the exact
solution, each spin-1=2 operator is represented by four

Majorana fermion operators. Later, another Majorana repre-
sentation was introduced, which gives the same exact
solution.57–59) In this case, the spin-1=2 operator is repre-
sented by two Majorana fermions. In this article, we briefly
review the latter Majorana representation, as it is used in the
numerical simulations in the later sections. The advantage of
the latter is in the size of the Hilbert space. The former
Kitaev’s representation doubles the Hilbert space and
requires a projection to the original subspace to obtain
physical results. It is not straightforward to deal with the
projection in the numerical methods.60) On the other hand,
such a projection is not necessary in the latter representation,
as the size of the Hilbert space is retained.

In the Majorana representation, we first apply the Jordan–
Wigner transformation to the model in Eq. (4), by regarding
the system as a one-dimensional chain composed of the x and
y bonds; see Fig. 3. In the Jordan–Wigner transformation, the
spin operators are rewritten by spinless fermion operators as

Sþ
i ¼ ðS"

i Þ
y ¼ Sx

i þ iSy
i ¼

Yi"1

i0¼1
ð1 " 2ni0 Þayi ;

Sz
i ¼ ni "

1

2
; ð8Þ

where ayi and ai are the creation and annihilation operators
for the spinless fermions, respectively, and ni ¼ ayi ai is the
number operator; ayi and ai satisfy the anticommutation
relations as

fayi ; ajg ¼ "ij; fayi ; a
y
j g ¼ 0; fai; ajg ¼ 0; ð9Þ

where "ij is the Kronecker delta. Then, by considering that
the honeycomb structure is bipartite, the Hamiltonian in
Eq. (4) is transformed into

H ¼ Jx
4

X

hr 0;w;r;bix

ðar 0;w " ayr 0;wÞðar;b þ ayr;bÞ

"
Jy
4

X

hr;b;r 0;wiy

ðar;b þ ayr;bÞðar 0;w " ayr 0;wÞ

" Jz
4

X

r

ð2nr;b " 1Þð2nr;w " 1Þ; ð10Þ

where the subscripts b and w label the two sublattices in the
r th unit cell with one z bond (see Figs. 1 and 3); the sums of
r; b and r 0; w in the first and second terms are taken for all
NN pairs on the x and y bonds, colored by blue and green in
Fig. 3, respectively. Note that the so-called boundary terms

Jx Jy

Jz

1 2 3 4

r

r,b

r,w

Fig. 3. (Color online) Schematic picture of the one-dimensional chains
consisting of the x and y bonds, which are shown by the thick blue and green
lines, respectively. The honeycomb structure in Fig. 1 is deformed into a
brick-wall structure. The dotted square represents the unit cell including the
r th z bond; the two sites are denoted as r; b and r; w [see Eqs. (10) and (13)].
In the Jordan–Wigner transformation in Eq. (8), the sites are numbered from
the bottom left as partly shown in the figure.
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appear in the Jordan–Wigner transformation for the systems
under periodic boundary conditions. The boundary terms are
nonlocal and hard to treat in the numerical simulations. One
way to avoid this is to consider the systems under open
boundary conditions. Another is just to neglect the boundary
terms; their contributions are expected to be negligible in the
thermodynamic limit.

Next, we replace the spinless fermion operators by
Majorana fermion operators. This is done by

!r;w ¼
ar;w " ayr;w

i
; !!r;w ¼ ar;w þ ayr;w; ð11Þ

!r;b ¼ ar;b þ ayr;b; !!r;b ¼
ar;b " ayr;b

i
; ð12Þ

where γ and !! are the Majorana fermion operators. These are
the same as Eq. (1). By using Eqs. (11) and (12), Eq. (10) is
rewritten into

H ¼ iJx
4

X

hr 0;w;r;bix

!r 0;w!r;b "
iJy
4

X

hr;b;r 0;wiy

!r;b!r 0;w

" iJz
4

X

r

%r!r;b!r;w; ð13Þ

where %r in the last term is defined on the z bond as

%r ¼ i !!r;b !!r;w: ð14Þ

The bond variable %r in Eq. (14) satisfies the following
relations:

½H; %r) ¼ 0; %2r ¼ 1 for all r; ð15Þ
½%r; %r 0) ¼ 0: ð16Þ

This means that each %r is a constant of motion and takes &1.
Thus, f%rg are Z2 conserved quantities. It is worth noting that
they are related with another conserved quantities called the
Z2 fluxes denoted by Wp, which were introduced in the paper
by Kitaev.27) Wp is defined for each hexagonal plaquette on
the honeycomb structure as

Wp ¼
Y

j2p
& !$
j ; ð17Þ

where the product is taken for the six sites on the plaquette p
in the clockwise manner [see Fig. 4(a)]; !$ is the index for the
bond connected to the site j which is not included in the sides
of p, and & $

j is the μth component of the Pauli matrices
(S$

j ¼ ħ
2 &

$
j , where ħ is the reduced Planck constant and taken

to be unity hereafter). By using the algebra of the Pauli
matrices and the equations above, Wp is also expressed as

Wp ¼
Y

r2p
%r; ð18Þ

where the product is taken for the two z bonds belonging to
the hexagonal plaquette p [see Fig. 4(b)].

2.4 Quantum spin liquid ground state
The Majorana representation of the Hamiltonian in

Eq. (13) shows that the original spin model in Eq. (4) is
mapped to the system with itinerant Majorana fermions f!jg
coupled with the Z2 conserved variables f%rg or the Z2 fluxes
fWpg via Eq. (18). The situation is schematically shown in
Fig. 5. The Hamiltonian is in a bilinear form of f!jg, namely,
there is no quantum interactions between the Majorana
fermions f!ig; they interact only with the Z2 variables f%rg.
This means that the Hamiltonian can be written in a block
diagonalized form classified by different configurations of
f%rg or fWpg as follows. The total Hamiltonian matrix with
the dimension 2N is decomposed into a direct sum of the
sectors specified by fWpg configurations. The number of
fWpg configurations is 2N=2. The block Hamiltonian in each
sector has thus the dimension 2N=2N=2 ¼ 2N=2, and it is
represented by a N * N bilinear form of Majorana operators
with hopping matrix elements including fWpg as c-numbers.
This decomposition enables one to find the ground state, in
principle, by comparing the energies in all the sectors, as the
energy in each sector is easily obtained for the noninteracting
fermion problem.

For this problem, a mathematical proof, called Lieb’s
theorem, offers the exact solution for the lowest energy
state.61) This theorem tells the flux configuration which gives
the lowest energy state in the systems with mirror symmetry
with respect to the plane not including the lattice sites. In the
present model on the honeycomb structure, we can apply this

p
σ1
x

1

2 4

6

5

3σ2
y

σ3
z

σ6
z

σ5
y

σ4
x

p
1

2 4

6

5

3

ηb1 ηb2

(a) (b)

Fig. 4. (Color online) Representations of the Z2 flux Wp for a plaquette p
by using (a) the spin operators & ~$

j at the six vertices [Eq. (17)] and (b) the Z2

variables %r on the two z bonds [Eq. (18)].

(a) (b)

Fig. 5. (Color online) Schematic figures of the Kitaev model in (a) the spin representation in Eq. (4) and (b) the Majorana representation in Eq. (13). The
arrows in (a) represent the spins Si. In (b), the itinerant Majorana fermions !i are represented by the pink spheres, and the localized Z2 variables %r taking +1
(−1) are by the white (blue) spheres. The gray hexagons in (b) stand for the excited fluxes with Wp ¼ "1.
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theorem to the cases when at least two of three J$ are equal.
The exact ground state for these symmetric cases is given in
the sector with all Wp ¼ þ1, which is called the flux-free
state. On the other hand, Lieb’s theorem does not apply to the
cases with generic J$. Nevertheless, by comparing the
energies for different configurations of fWpg, the flux-free
state is deduced to be the ground state in the entire parameter
space of J$.27)

The flux-free state is a QSL. This was explicitly shown by
calculating the spin correlations.62) The spin correlations have
nonzero values only for the μ components on the NN μ bonds
as well as the same sites, namely,

hS$
i S

#
j i ≠ 0 only for $ ¼ # and i; j 2 hi; ji$: ð19Þ

All other spin correlations vanish. This is concluded from
the fact that a spin operator S$

i flips two neighboring Wp

sandwiching the μ bond including the site i; only the
combinations of S$

i and S#
j satisfying the condition in

Eq. (19) conserve the flux-free configuration of Wp (see
Fig. 6). Thus, the spin correlations are extremely short-
ranged in the flux-free state. This means that the flux-free
ground state does not break any symmetry of the system, and
hence, it is a rare realization of the exact QSL in more than
one dimension.

Note that Eq. (19) holds for arbitrary flux configurations.
This suggests that spin correlations other than those in
Eq. (19) are always zero even at finite T where fluxes with
Wp ¼ "1 are thermally excited. This is indeed confirmed by
numerical studies introduced in Sect. 2.6 and Appendix.

2.5 Fractional excitations
For the flux-free ground state, there are two types of

excitations. One is the excitations in terms of the itinerant
Majorana fermions f!jg, and the other is for the Z2 fluxes
fWpg. These are quasiparticle excitations arising from the
fractionalization of the spin degree of freedom.

The former excited states are constructed by exciting
complex fermions f f yk g, which are comprised as linear
combinations of Majorana fermions f!jg with complex
amplitudes (see Appendix A.1). They are noninteracting
fermions traversing on the honeycomb structure with the NN
hopping. The dispersion relation is given by27)

EðkÞ ¼ j"ðkÞj; ð20Þ
where

"ðkÞ ¼ 1

2
fJx expðik + a1Þ þ Jy expðik + a2Þ þ Jzg: ð21Þ

Here, a1 ¼ 1
2 ;

ffiffi
3

p

2

$ %
and a2 ¼ " 1

2 ;
ffiffi
3

p

2

$ %
are the primitive

translation vectors (see Fig. 1), whose lengths are taken to be
unity. The dispersion relation in Eq. (20) is depicted in Fig. 7
for several sets of the parameters Jx, Jy, and Jz. In the
isotropic case with Jx ¼ Jy ¼ Jz, EðkÞ becomes gapless at the
point nodes located at the corners of the Brillouin zone (K
and KA points), as shown in the upper panel of Fig. 7(d). Near
the gapless nodal points, EðkÞ has a linear dispersion, similar
to the Dirac nodes in the dispersion of π electrons in
graphene, as shown in the inset of Fig. 7(d). This leads to the
ω-linear dependence of the density of states (DOS) in the
low-energy limit, as shown in the lower panel of Fig. 7(d).
The gapless nature is retained for small anisotropy in Jx, Jy,
and Jz, despite a shift of the nodal points; see Figs. 7(c) and
7(e). The two nodal points approach each other while
increasing the anisotropy by increasing jJzj, and finally
merge at some point, as exemplified for jJzj ¼ jJxj þ jJyj in
Fig. 7(b). With a further increase of the anisotropy, EðkÞ is
gapped in the entire Brillouin zone, as exemplified in
Fig. 7(a).

−1 −1+1 +1

+1 +1 +1

+1 +1 +1 +1

+1 +1 +1

+1 +1 +1

Si
z
i

(a)

+1 +1

−1

−1 +1

+1 +1

+1 +1

+1 +1

+1 +1 +1

+1 +1 +1

Sj
yj

(b)

Fig. 6. (Color online) Configurations fWpg for the states (a) Sz
i j"i and (b)

Sy
j j"i, where j"i represents the flux-free state. S$

i flips twoWp on both sides
of the μ bond connected to the site i. As the states with different fWpg are
orthogonal to each other, h"jSz

i S
y
j j"i ¼ 0.

(a) |Jx|=|Jy|=0.6, |Jz Jx|=|Jy|=0.75, |Jz Jx|=|Jy|=0.8, |Jz Jx|=|Jy|=|Jz|=1.8 (b) | |=1.5 (c) | |=1.4 (d) | |=1.0 (e) |Jx|=|Jy|=1.2, |Jz|=0.6

Fig. 7. (Color online) Dispersion relations of the complex fermion band in the first Brillouin zone and the density of states D0ð!Þ for the flux-free state at
several sets of the exchange parameters with jJxj þ jJyj þ jJzj ¼ 3. The inset of (d) shows the extended plot of the Dirac-like linear dispersion around the K
point.
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The magnitude of the excitation gap #! is plotted in the
entire parameter space in Fig. 8(a). #! is zero in the center
triangle defined by the conditions jJxj , jJyj þ jJzj, jJyj ,
jJzj þ jJxj, and jJzj , jJxj þ jJyj (dashed lines in the figure).
Meanwhile, #! becomes nonzero in the other three outer
triangles and increases as increasing the anisotropy in the
Kitaev coupling; the contours are parallel to the gapless-
gapped boundaries. The Jz dependence of the gap is shown in
Fig. 8(b) along the center vertical line in Fig. 8(a) [Jx ¼
Jy ¼ ð3 " JzÞ=2], indicating that #! increases linearly with
Jz in the gapped phase for Jz > 1:5. Thus, there are two
different phases with respect to the fermionic excitations
associated with the itinerant Majorana fermions: the gapless
phase including the isotropic point and the gapped one
including the anisotropic limits.

On the other hand, the other types of excitations are
generated by flipping Wp from the flux-free ground state.27) It
turns out that they are always gapped and dispersionless
reflecting the localized nature of Wp. The lowest-energy
excited state is given by a pair flip of neighboring two Wp.
The excitation gap #f is plotted on the Jx–Jy–Jz phase
diagram in Fig. 8(c). The gap is nonzero in the entire
parameter space, except for the anisotropic limits at the three
corners of the phase diagram; it remains small in the gapped
phases in Fig. 8(a) but becomes large rapidly in the gapless
phase. As shown in Fig. 8(d), along the center vertical line in
Fig. 8(c), #f becomes maximum at the isotropic point with
Jx ¼ Jy ¼ Jz.

Thus, the two different types of the fractional excitations
have distinct excitation spectra. The fermionic excitations
from the itinerant Majorana fermions are dispersive and
become both gapless and gapped depending on the
anisotropy in the exchange coupling constants. Meanwhile,
the Z2 flux excitations are always gapped with a flat
dispersion. The energy scales are also largely different for

these two excitations; the bandwidth for the former is roughly
set by half of the sum of three J$, while the excitation gap
for the latter is much smaller by more than one order of
magnitude. This large difference in the energy scales affects
the thermodynamics and the spin dynamics in a peculiar
fashion, as discussed in the later sections.

2.6 Effect of finite temperature
The exact solution and related arguments above are limited

to zero temperature (T ¼ 0). At finite T, the Z2 flux
excitations are generated by thermal fluctuations, and the
exact solution is no longer available. As discussed in
Sect. 2.4, however, the model in Eq. (13) is defined by
noninteracting fermions coupled with thermally-fluctuating
Z2 variables f%rg. As f%rg are regarded as classical variables
taking &1, the situation is similar to the Falicov–Kimball
model63) and the double-exchange model with Ising
spins.64,65) This enables us to study the finite-T properties
by developing numerical techniques similar to those used for
such fermion models. The authors and their collaborators
have developed the quantum Monte Carlo (QMC) method
free from the negative sign problem37,38,42) and the cluster
dynamical mean-field theory (CDMFT).39,40) These
Majorana-based techniques are efficient to compute thermo-
dynamic quantities, but they cannot be applied to the
quantities not commuting with f%rg, e.g., dynamical spin
correlations. To overcome this difficulty, the authors and their
collaborators have also developed the continuous-time QMC
(CTQMC) method based on the Majorana representa-
tion.39–41) The details of each method are presented in
Appendix.

As will be described in detail in Sect. 3, an interesting
finding at finite T is that the two distinct fractional excitations
manifest themselves clearly in the thermodynamic behavior
of the system. Specifically, in the 2D honeycomb case, the

|Jx| = 3, |Jy| = |Jz| = 0 |Jy| = 3, |Jz| = |Jx| = 0

|Jz| = 3, |Jx| = |Jy| = 0
(a)
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Fig. 8. (Color online) (a) Excitation gap in the itinerant fermion band in the flux-free ground state, #!, on the plane of jJxj þ jJyj þ jJzj ¼ 3. The cyan dot at
the center stands for the isotropic point and the dotted lines represent the boundaries between the gapless and gapped phases. (b) Jz dependence of #! with
Jx ¼ Jy ¼ ð3 " JzÞ=2 corresponding to the cut along the vertical line through the isotropic point in (a). (c) and (d) Corresponding plots for the flux gap #f,
which is defined by the lowest energy change by flipping two neighboring Wp. See the phase diagram in Fig. 5 in Ref. 27.
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two largely different energy scales lead to two crossovers
at largely different temperatures. One appears at T ¼ TH in
the order of the characteristic energy scale of the itinerant
Majorana fermions [more precisely, the center of mass
(COM) of the DOS for the fermion band; see Sect. 3], and
the other takes place at T ¼ TL in the order of the excitation
gap in terms of the localized Z2 fluxes. These two character-
istic temperatures show up in many observables, not only
thermodynamic quantities, but also the spin dynamics, as
discussed in the later sections.

2.7 Effect of a magnetic field
Let us return to the flux-free ground state and discuss the

effect of an external magnetic field at T ¼ 0. The Zeeman
coupling to the magnetic field, "h +

P
i Si, spoils the exact

solvability, because it makes the flux operators Wp in
Eq. (17) and %r in Eq. (14) no longer conserved. (Note that
the sign of the g factor is opposite to that for electron spins,
as discussed in Sect. 2.2.) Nonetheless, Kitaev suggested an
interesting possibility by using the perturbation theory with
respect to the field strength.27) In the perturbation theory, the
lowest-order relevant term is in the third order of h as

H0 ¼ " ~h
X

fi; j;kg
Sx
i S

y
j S

z
k / "

hxhyhz
J2

X

fi; j;kg
Sx
i S

y
j S

z
k; ð22Þ

where h ¼ ðhx; hy; hzÞ and the Kitaev couplings are set to
be isotropic, Jx ¼ Jy ¼ Jz ¼ J, for simplicity; here, all the
intermediate states are assumed to have an excitation energy
of J. The sum of fi; j; kg is taken for neighboring three sites
[see Fig. 9(a)]. Note that fWpg and f%rg remain conserved
within the perturbation theory since the flux configurations
are identical between the initial and final states by definition.

By using the Majorana representation in Sect. 2.3,
Eq. (22) is written in the form

H0 ¼ " i ~h

8

X

p

ð!p1!p3 þ %b2!p3!p5 þ %b1!p5!p1

þ !p4!p6 þ %b1!p6!p2 þ %b2!p2!p4Þ; ð23Þ
where the sites p1–p6 and the bonds b1 and b2 are defined for
the plaquette p as shown in Fig. 9(b).44) Equation (23) shows
that the weak magnetic field induces the complex second-
neighbor hopping of the itinerant Majorana fermions coupled
with the Z2 bond variables f%rg. This modulates the
dispersion relation from Eq. (20) to27)

EðkÞ ¼ &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j"ðkÞj2 þ#ðkÞ2

p
; ð24Þ

where

#ðkÞ ¼
~h

2
f"sinðk + a1Þ þ sinðk + a2Þ

þ sin½k + ða1 " a2Þ)g: ð25Þ
Thus, while the fermionic excitation in the isotropic case with
Jx ¼ Jy ¼ Jz has the gapless nodal points at the K and KA
points [see Fig. 7(d)], the magnetic field opens a gap
proportional to ~h / hxhyhz as #! ¼ 3

4

ffiffiffi
3

p
~h (see Fig. 10).

On the other hand, the flux gap #f is almost independent of ~h.
These behaviors are plotted in Fig. 11.

Interestingly, the model in the presence of the second-
neighbor hopping in Eq. (23) is formally equivalent to a
Majorana fermion version of the model for the spontaneous
quantum Hall effect proposed by Duncan Haldane.66) This

Jx

Jy
Jz

i j k

(a)

p

(b)

b1 b2

1 3

5

2

46

Fig. 9. (Color online) (a) Six kinds of neighboring three sites fi; j; kg in
Eq. (22). (b) Second-neighbor hoppings of Majorana fermions in Eq. (23).
The color of the arrows indicates the corresponding type of the three-site
terms in (a).

(a) (b)

Fig. 10. (Color online) (a) Dispersion relation of the complex fermion
band in the first Brillouin zone for the isotropic case Jx ¼ Jy ¼ Jz ¼ J with
the effective magnetic field ~h ¼ 0:05J. The inset shows the extended plot of
the gapped dispersion around the K point. (b) Corresponding DOS.
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Fig. 11. (Color online) Gaps in the itinerant fermion band, #!, and for the
flux excitation, #f, as functions of the effective magnetic field ~h in the
isotropic case Jx ¼ Jy ¼ Jz ¼ J. The same plot is found in the Supplemental
Material for Ref. 44.
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equivalence shows that the gapped fermion band in the
magnetic field is topologically nontrivial. The gapped state is
a Majorana Chern insulator with the Chern number C ¼ &1
(the sign is set by that of hxhyhz27)). Thus, similar to other
topologically-nontrivial insulators with nonzero Chern num-
bers, the gapped topological state in the weak magnetic field
is predicted to possess gapless chiral edge modes.27) In
contrast to the integer quantum Hall states, such chiral edge
currents cannot be detected by electromagnetic measure-
ments, as the Majorana fermions do not carry any electric
charges; however, they could be observed by heat measure-
ments (see Fig. 12). There are two distinct features in this
thermal Hall effect by the Majorana fermions. One is that the
thermal Hall conductivity divided by T is predicted to be
quantized at half of that for the integer quantum Hall state.27)

This is because each Majorana fermion carries half degrees of
freedom of an electron, as mentioned in Sect. 1. The other
feature is that the half-quantized thermal Hall effect can be
induced by the magnetic field in any direction, even in-plane
directions. This is because the chiral Majorana edge currents
are induced by the Zeeman effect enhanced on the spins near
the edges (see Sect. III in Supplemental Material in Ref. 44),
in contrast to the electric edge currents from skipping orbits

by the Lorentz force. This interesting phenomenon specific to
the Majorana fermions will be discussed in Sect. 5.8.

Beyond the perturbation theory, any rigorous argument is
not available thus far. Nonetheless, many numerical studies
have been performed to clarify the effect of the magnetic field
at T ¼ 0. One of the earliest studies was done by the density
matrix renormalization group for the Kitaev–Heisenberg
model (see Sect. 2.8).67) The Kitaev coupling was assumed to
be isotropic and FM (Jx ¼ Jy ¼ Jz ¼ J > 0), and the
magnetic field was applied along the [111] direction with
the strength h. The results indicate that the topologically-
nontrivial QSL state predicted by the perturbation theory
survives up to the critical field hc ’ 0:018J, and turns into a
topologically-trivial forced FM state above hc. This has been
confirmed, e.g., by the exact diagonalization and other
density matrix renormalization group calculations.68–72)

Recently, considerable attention has been drawn to the
case with AFM Kitaev couplings. While the perturbation
theory above is common to the FM and AFM cases, different
aspects appear between the two cases when going beyond the
perturbation. The most intriguing aspect is the possibility
of another topological QSL in the intermediate-field
region.69–71,73–76) It was argued that the AFM Kitaev model
undergoes successive phase transitions from the low-field
QSL connected to the topological QSL in the perturbed
region to another topological QSL, and to the forced FM
state, while increasing the field. Although candidate materials
with the AFM Kitaev couplings have not been identified thus
far, this interesting possibility has attracted much interest.
Note that recently there are several theoretical proposals
for material realization of the AFM Kitaev couplings, for
instance, by using f electrons54) and polar asymmetry
perpendicular to the honeycomb plane.77)

Finite-T calculations under a magnetic field are more
difficult. For instance, we cannot apply the sign-free
Majorana-based QMC method, since it assumes the con-
servation of fWpg and f%rg. Nonetheless, one can study
finite-T properties of the Hamiltonian with the effective
magnetic field in Eqs. (22) and (23) derived from the
perturbation, by using the sign-free Majorana-based QMC
method. Such applications will be discussed in Sect. 5.8. In
addition, a CTQMC technique has recently been developed
and applied to the region where the negative sign problem is
not severe, as discussed in Sects. 5.1, 5.4, and 5.5.78)

2.8 Effect of other exchange interactions
As briefly mentioned in Sect. 2.2, in reality, there

exist other types of the exchange couplings. A generic
Hamiltonian proposed for realistic compounds is given
by

Hgeneric ¼
X

hi; ji
ST
i Ĵ$ijSj; ð26Þ

where $ij denotes the type of ij bond, and the 3 * 3 matrix Ĵ$ij
is parametrized, e.g., for the z bond as

Ĵz ¼
JHeis $ $0

$ JHeis $0

$0 $0 JHeis þ Jz

0

B@

1

CA: ð27Þ

Here, JHeis is the coupling constant for the isotropic
Heisenberg interaction, and Γ and $0 are for the symmetric

(a)

or

or

or

electron

(b) Majorana
fermion

flux & Majorana zero mode

Fig. 12. (Color online) Schematic pictures of (a) the integer quantum Hall
effect and (b) its Majorana counterpart expected for the Kitaev model under
the magnetic field. In (a), under the magnetic field h perpendicular to the
sample plane, an electric field E (thermal gradient "rT ) causes unbalance in
the edge electric (thermal) currents Jhigh (JhighQ ) and Jlow (JlowQ ), which leads
to the quantized (thermal) Hall effect. In contrast, in (b), the Majorana
fermions do not carry electric charge, and hence, edge electric currents do not
appear under the electric field; however, edge thermal currents can appear
under a thermal gradient. In this case, the magnetic field is not necessarily
perpendicular to the plane; any direction, even in the plane, leads to the
thermal Hall effect. In this situation, each excited flux is associated with a
Majorana zero mode as schematically shown in (b), which behaves as a
nonabelian anyon (see Sect. 6).
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off-diagonal interactions. Ĵx and Ĵy are obtained by C3

rotations.
In the early stage of the research of the Kitaev QSL, the

case with $ ¼ $0 ¼ 0 has been intensively studied. The
model is called the Kitaev–Heisenberg model. Figure 13
displays the ground-state phase diagram obtained by the
exact diagonalization.79,80) In this case, the model exhibits
at least four magnetically-ordered phases in addition to two
regions of the Kitaev QSLs: FM, zigzag, Néel, and stripy
phases. An important finding in this phase diagram is that the
Kitaev QSL is found in narrow but finite parameter windows
with nonzero JHeis in both FM and AFM Kitaev cases. The
result suggests that the Kitaev QSL is not a singular property
limited to the pure Kitaev model but survives against
additional exchange couplings. This has encouraged material
exploration for the Kitaev QSL.

Through such experimental exploration as well as
computational studies of the spin Hamiltonians on the basis
of first-principles calculations, it has been realized that beside
the Heisenberg interaction, the symmetric off-diagonal
interaction Γ plays a role. Indeed, Γ can be larger than JHeis
from the perturbative argument.81) Thus, the model including
Γ has also been studied,81,82) for which the ground-state phase
diagram becomes richer. The effect of $0 was also studied.82)

From the materials perspectives, the crucial question is
how these other exchange interactions affect the QSL
behavior in the exact solution for the Kitaev model.
Unfortunately, in most of the candidate materials found thus
far, the lowest-T state shows a magnetic order, such as the
zigzag type and an incommensurate noncollinear type (see
Sect. 4). An exception was recently found for H3LiIr2O6.83)

The absence of long-range ordering in this material was
discussed on the basis of the stacking manner of the
honeycomb layers,84) the role of the hydrogens,85,86) and
the relevance of disorder in the exchange interactions,87) but
it remains unclear how to reconcile the sharp NMR lines
observed down to the lowest T 83) to these scenarios.

2.9 Schematic phase diagram
Figure 14 summarizes the arguments in the previous

sections into the schematic phase diagrams. The phase
diagrams are displayed for both cases with the FM and AFM
Kitaev couplings, in the parameter space of temperature T,
external magnetic field h, and other non-Kitaev interactions;
the origin corresponds to the QSL ground state found in the
exact solution for the Kitaev model.

Let us first discuss the FM case shown in Fig. 14(a), which
is believed to be relevant to most of the existing candidate
materials. As discussed in Sect. 2.8, the Kitaev QSL state
survives in a finite region in the ground state against the
non-Kitaev interactions. Above the threshold, the ground
state exhibits some magnetic ordering whose spin structure
depends on the detailed forms of the non-Kitaev interactions.
The magnetic order is expected to survive at finite T due to
the spin anisotropy as well as the three dimensionality, and
the critical temperature Tc will rise as the non-Kitaev
interactions increase.

On the other hand, while raising T in the QSL region
below the threshold, the system undergoes two crossovers as
briefly mentioned in Sect. 2.6 (the details will be discussed in
Sect. 3). Considering the realistic value of J - 200{300K
for A2IrO3

88–91) and J - 100{200K for α-RuCl3,68,91–94) the
high-T crossover takes place at TH - 80{110K and -40{
80K, respectively. The temperature scales are significantly
higher than Tc for these compounds, Tc - 15K and ∼7K,
respectively. On the other hand, TL - 1{2K and -0:5{1K
are lower than TN. Thus, we expect that the candidate

Neel

stripy

ϕ

liquid

liquid

zigzag

FM

Fig. 13. (Color online) Phase diagram of the Kitaev–Heisenberg model
with J=JHeis ¼ 2 tan’ obtained by the exact diagonalization of the 24-site
cluster, where J and JHeis are the Kitaev and Heisenberg exchange constants,
respectively. Reprinted with permission from Ref. 80 © 2013 the American
Physical Society.
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Fig. 14. (Color online) Schematic phase diagrams while changing temperature T, magnetic field, and non-Kitaev interactions for the cases with (a) FM and
(b) AFM Kitaev couplings. The yellow circle at the origin represents the exact QSL ground state for the Kitaev model.
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materials are located at the vertical dashed line in Fig. 14(a).
If this is the case, there is a considerable T window between
TH and Tc, where one can expect unconventional behavior
arising from the fractionalization; this will be discussed in
detail in Sect. 5.1.

When applying the external magnetic field, as discussed in
Sect. 2.7, the QSL survives up to a nonzero field strength, but
it is taken over by the forced FM state in the larger field
region. An interesting question is whether the QSL behavior
can be captured in the candidate materials after the magnetic
order is suppressed by the magnetic field. We depict
Fig. 14(a) so that there is a narrow but nonzero window for
such field-induced QSL. This intriguing possibility has
attracted upsurge interest in α-RuCl3, as will be described
in Sects. 5.4, 5.5, and 5.8.

Figure 14(b) represents the corresponding phase diagram
for the AFM Kitaev case. The overall structure is similar to
the FM case in Fig. 14(a), but there is a qualitative difference
in the behavior in the magnetic field. As described in
Sect. 2.7, in the AFM Kitaev case, the system appears to
exhibit two successive phase transitions including the
intermediate QSL phase.69–71,73–76) Note that the scale of
the magnetic field is almost ten times larger compared to the
FM case (this is also indicated by the large difference in the
magnitude of the magnetic susceptibility in Sect. 5.3).
Although no realistic compounds with the AFM Kitaev
coupling are at hand thus far, the peculiar phase diagram is
worth investigating and will stimulate further material
exploration.

3. Thermal Fractionalization

In this section, we discuss a distinguished thermodynamic
property of the Kitaev model, which we call thermal
fractionalization.38) As discussed in Sect. 2.5, the exact
QSL ground state hosts two types of quasiparticles, itinerant
Majorana fermions and localized Z2 fluxes, which have
largely separated energy scales. The two energy scales show
up in the thermodynamic behavior as two characteristic
temperatures. The higher characteristic temperature TH is
related with the itinerant Majorana fermions, which is
roughly set by the COM of the fermion DOS (see Fig. 7).
At T ’ TH, the system exhibits a crossover irrespective of the
spatial dimensions as well as the details of the model.
Meanwhile, the lower one TL is related with the localized Z2

fluxes, which is roughly set by the Z2 flux gap [see Fig. 8(b)].
In contrast to the universal crossover at TH, the behavior
at T ’ TL depends on the nature of the localized Z2 flux
excitations in each system; it can be either a crossover or a
phase transition. Thus, the Kitaev model, in general, exhibits
three distinct states: a conventional paramagnetic (PM) state
for T ≳ TH, an unconventional PM state for TL ≲ T ≲ TH,
and the (asymptotic) QSL state for T ≲ TL. We call the
intermediate T region the fractional PM state, where the
thermal fractionalization makes the system distinct from the
conventional PM state.

We discuss these intriguing behaviors by the thermal
fractionalization in this section. They have been unveiled by
the recently-developed numerical methods based on the
Majorana representation of the Kitaev model at zero field. In
Sect. 3.1, we present the results for the 2D Kitaev model
on the honeycomb structure, which provides a canonical

example of two successive crossovers at TH and TL. We also
discuss a variant of the Kitaev model in two dimensions in
Sect. 3.2, which exhibits a phase transition to a chiral spin
liquid (CSL), instead of the low-T crossover at TL. In
Sect. 3.3, we present the results for the Kitaev models
defined on several 3D tricoordinate lattices, in which various
types of the phase transitions take place between three states
of matter in terms of the spin degree of freedom. Finally, in
Sect. 3.4, we summarize the phase diagrams for the cross-
overs and phase transitions found in the 2D and 3D Kitaev
models.

3.1 Successive crossovers in the 2D honeycomb case
3.1.1 Crossovers caused by thermal fractionalization

Let us begin with the original Kitaev model defined on the
honeycomb structure. Figure 15 shows the T dependences of
the internal energy E, specific heat Cv, and entropy S per site
for the isotropic Kitaev coupling Jx ¼ Jy ¼ Jz ¼ J38) (the
results are common to the FM and AFM Kitaev couplings).
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Fig. 15. (Color online) T dependences of (a) the internal energy E, (b) the
specific heat Cv, and (c) the entropy S per site normalized by ln 2 for the
honeycomb Kitaev model with isotropic coupling Jx ¼ Jy ¼ Jz ¼ J. The data
are obtained by the Majorana-based QMC simulations for the clusters with
N ¼ 2L2 spins (L ¼ 12 and 20). The vertical dotted lines represent TL and
TH. The inset in (a) is an extended plot around TL. The reddish and bluish
shades in (b) and (c) show the contributions from the itinerant Majorana
fermions and the localized Z2 fluxes, respectively. The horizontal dotted line
in (c) represents 1

2 ln 2. The data for L ¼ 12 were taken from Ref. 38, and the
data for the specific heat for L ¼ 20 were taken from Ref. 44. The data for
L ¼ 20 in (a) and (c) as well as the decomposition into the two types of
fractional quasiparticles are newly added in (b) and (c).
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The calculations were performed by using the QMC
simulations based on the Majorana representation for the
clusters with N ¼ 2L2 spins (see Appendix A.1). As shown
in Fig. 15(a) and its inset, the internal energy E decreases
rapidly at two temperatures, TH ’ 0:375J and TL ’ 0:012J,
while the decrease at TL is much smaller than that at TH.
Correspondingly, the specific heat Cv exhibits two peaks as
shown in Fig. 15(b), both of which show no significant
system-size dependence, indicating that these are crossovers.
Interestingly, as plotted in Fig. 15(c), the entropy S is
released successively by half ln 2 at each crossover. This
peculiar behavior is considered to originate from the thermal
fractionalization in which the original spin degree of freedom
carrying the entropy of ln 2 is fractionalized into the two
types of quasiparticles each carrying the entropy of half ln 2.
This is confirmed by the decomposition of Cv and S into the
contributions from the itinerant Majorana fermions and
the localized Z2 fluxes, as shown in Figs. 15(b) and 15(c)
[see Eqs. (A·16) and (A·17) in Appendix A.1].

The role of the two fractional quasiparticles in the two
crossovers is shown in more explicit way by calculating the
quantities associated with each quasiparticle. Figure 16(a)
plots the measure of the kinetic energy of the itinerant
Majorana fermions, Kx ¼ "ih!i!jix, where the thermal
average h+ + +ix is calculated on the x bond. Note that this
quantity is related with the internal energy as E ¼ " 3

2 Kx in
the isotropic case. Also, it is equivalent to the spin correlation
on the x bonds, 4hSx

i S
x
j ix. The result indicates that the

measure of the Majorana kinetic energy increases rapidly
around T ¼ TH, and does not change largely in the lower-T
region. This suggests that the Fermi degeneracy of the
complex fermions composed of the itinerant Majorana
fermions sets in at T ’ TH. On the other hand, Fig. 16(b)

displays the thermal average of the Z2 flux, hWpi. While it
becomes nonzero from high T around TH, it grows rapidly
around T ¼ TL and approaches hWpi ¼ 1 (the value in the
flux-free ground state) below TL.

These results clearly show that the crossover at TH is
caused by the itinerant Majorana fermions, and that at TL is
by the localized Z2 fluxes. The former corresponds to the
Fermi degeneracy of the complex fermions composed of the
itinerant Majorana fermions, and the latter to the asymptotic
freezing of the Z2 fluxes into the flux-free state. Thus, these
two crossovers are manifestations of the thermal fractional-
ization in thermodynamics. While decreasing T, the fraction-
alization of the spin degree of freedom sets in around TH with
the entropy release of half ln 2 by the Fermi degeneracy, and
the system enters into an unconventional PM state, dubbed
the fractional PM state, below T ’ TH. In the fractional PM
region, the Z2 fluxes remain disordered as the states with
flipped Wp are thermally excited beyond the flux gap. By
approaching TL with a further decrease of T, however, the
thermal excitations of the Z2 fluxes are suppressed, and the
system crosses over into the asymptotic QSL state below
T ’ TL with the entropy release of the rest half ln 2 by the
freezing of Wp. The picture of the successive crossovers will
be further discussed in Sect. 3.4.

3.1.2 Crossovers temperature scales
What determines the values of the two crossover temper-

atures TH and TL? From the above arguments, it is naturally
expected that TH is set by the Fermi degeneracy temperature,
which is roughly given by the COM of the fermion DOS, and
that TL is set by half of the gap for the lowest excitation of the
Z2 fluxes (the flux gap is defined for a two-flux excitation);
see Sect. 2.5. In the isotropic case with Jx ¼ Jy ¼ Jz ¼ J, the
COM of the fermion DOS is at ’0:762J and the half of the
flux gap is ’0:0328J. Note that the COM of the fermion
DOS is less sensitive to the flux sector, but here we use the
value for the disordered flux configuration, which we call G!,
corresponding to the high-T limit, as the fluxes are almost
disordered near TH as shown in Fig. 16(b). Considering that
the specific heat peak in the two-level system with a gap of
unity appears at T ¼ ' ’ 0:417, we note that the numbers
0:762J * ' ’ 0:318J and 0:0328J * ' ’ 0:0136J are very
close to TH ’ 0:375J and TL ’ 0:012J, respectively, which
confirms the above expectation.

We can further examine these correspondences by varying
the anisotropy of the Kitaev coupling. Figure 17 shows the
contour plot of the entropy per site, S, normalized by ln 2
while changing Jz with Jx ¼ Jy and Jx þ Jy þ Jz ¼ 3. The
two white regions with S=ln 2 ’ 0:75 and ’0:25 roughly
corresponds to TH and TL, respectively. As shown in the
figure, TH does not show a drastic change against Jz, whereas
TL does: TL has a peak around the isotropic point with Jz ¼ J
and rapidly decreases by increasing the anisotropy with both
Jz ! 0 and Jz ! 3. For comparison, we plot the effective
activation temperatures defined by the COM of the fermion
DOS for the disorder flux configuration, 'G!, and the Z2 flux
gap, 1

2 '#f, by the solid and dashed curves in Fig. 17. The
former does not change so much for Jz similar to TH (see
Fig. 18), while the latter depends largely on Jz similar to TL

[see Figs. 8(c) and 8(d)]; in the entire range of Jz, 'G!, and
1
2 '#f coincide well with TH and TL, respectively. The results
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Fig. 16. (Color online) T dependences of (a) the measure of the kinetic
energy of itinerant Majorana fermions, Kx, and (b) the thermal average of the
Z2 flux, hWpi. Note that Kx ¼ " 2

3 E ¼ 4hSxi Sx
j i for the isotropic case. The

data for L ¼ 12 were taken from Ref. 38. The data for L ¼ 20 are newly
added.
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further confirm the correspondences of TH and TL to the
energy scales of the itinerant Majorana fermions and the
localized Z2 fluxes.

3.1.3 Majorana metal
Let us discuss the excitation spectrum of the itinerant

Majorana fermions while changing T. Figure 19 shows the T

dependence of the fermion DOS. While the overall structure
of the DOS below TL is similar to that in the flux-free ground
state as shown in Fig. 19(b), the DOS rapidly changes its
form above TL. In particular, in the low-energy region, the
energy-linear behavior at the lower band edge is quickly
smeared out and the DOS at zero energy becomes nonzero,
as shown in Fig. 19(a).38,95) This is due to the thermal
excitations of the Z2 fluxes, which disturb the Dirac-like
linear dispersion in the flux-free ground state. The nonzero
DOS at the band bottom indicates that the fractional PM state
above TL is regarded as a “Majorana metal”, in analogy with
the 2D conventional metal that has nonzero DOS at the band
edges. Needless to say, the present system is an insulator
with localized magnetic moments, and hence, the particles
traversing the system are not electrons but the Majorana
fermions. This is why we call the unconventional state the
Majorana metal. An interesting consequence of this Majorana
metallic state is observed in the specific heat Cv. As shown in
Fig. 20, Cv shows T-linear dependence in the T window
between TL and TH, reflecting the “metallic” nature of the
system.38) The itinerant quasiparticles also contribute heat
conductions, as will be discussed in Sects. 5.6 and 5.8.

3.2 Phase transitions to 2D chiral spin liquids
Let us turn to a variant of the Kitaev model in two

dimensions, which is defined on a modified lattice structure,
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Fig. 17. (Color online) Contour plot of the entropy per site normalized by
ln 2 as functions of T and Jz with Jx ¼ Jy ¼ ð3 " JzÞ=2 for the L ¼ 12
cluster. The solid and dashed curves represent 'G! and 1

2 '#f, respectively,
where G! and #f are the COM of the fermion DOS for the disordered flux
configuration corresponding to the high-T limit and the flux gap for the flux-
free ground state, respectively; ' ’ 0:417 is the peak temperature of the
specific heat in the two-level system with a gap of unity. The factor 1=2 in
1
2 '#f is introduced since #f means the energy cost to excite two neighboring
fluxes. The data of the entropy were taken from Ref. 38. The two curves are
newly added.
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called the triangle-honeycomb structure. The structure is
obtained by replacing all the vertices of the honeycomb
structure by triangles, as shown in Fig. 21. The Kitaev model
can be extended straightforwardly to this tricoordinate lattice
structure,27) and one can define two different sets of the
Kitaev coupling, ðJx; Jy; JzÞ and ðJ 0x; J 0y; J 0zÞ, for the two types
of NN bonds, intra-triangle and inter-triangle ones, respec-
tively (see Fig. 21).96) In the following, we consider the case
with Jx ¼ Jy ¼ Jz ¼ J and J 0x ¼ J 0y ¼ J 0z ¼ J 0.

The most important difference from the honeycomb model
is that the lattice structure includes the elementary loops with
odd number of sites. As pointed out in the seminal paper by
Kitaev,27) the Kitaev model defined on the lattices with such
odd cycles may break time-reversal symmetry spontaneously,
as the flux operator defined on an odd-cycle plaquette
describes a time-reversal pair. Indeed, Yao and Kivelson
showed that the ground state of the triangle-honeycomb
Kitaev model becomes a CSL with spontaneous breaking of
time-reversal symmetry.96) Interestingly, there are two differ-
ent CSLs: topologically-nontrivial one for J 0=J <

ffiffiffi
3

p
and

topologically-trivial one for J 0=J >
ffiffiffi
3

p
. For the topologically

nontrivial (trivial) CSL, the flux excitations obey non-
Abelian (Abelian) statistics. The topologically nontrivial
phase is characterized by a nonzero Chern number in the
band structure, and exhibits a chiral Majorana edge state

under open boundary conditions. The topological nature was
also explained by the fact that the low-energy effective model
in the limit of J 0=J ! 0 has a similar form to the effective
Hamiltonian for the honeycomb model in a magnetic field
with the three-spin term in Eq. (22).97)

Thermodynamic properties of this model were studied by
using the Majorana-based QMC simulations.98) In contrast to
the honeycomb case in Sect. 3.1, the model exhibits a finite-T
phase transition instead of the crossover at TL. This is due to
the spontaneous breaking of time-reversal symmetry by the
freezing of the Z2 fluxes; while the freezing does not break
any symmetry in the honeycomb case, it breaks time-reversal
symmetry in the triangle-honeycomb case because of the
odd-cycle plaquettes on the triangles. Interestingly, the
transition was found to be continuous in the topologically-
nontrivial region for J 0=J ≲

ffiffiffi
3

p
(the estimated critical

exponents are close to those of the 2D Ising universality
class), but discontinuous in the topologically-trivial region
for J 0=J ≳

ffiffiffi
3

p
. This suggests the existence of the tricritical

point in between, while the precise location and the nature are
not fully identified. The obtained phase diagram is presented
in Fig. 22.

Then, what happens to the high-T crossover at TH found in
the honeycomb case? It was shown that while the crossover
takes place also in the triangle-honeycomb case, the amount
of entropy released in the crossover can be different from the
honeycomb case depending on the parameter J 0=J.98) In the
topologically-trivial region for J 0=J ≳

ffiffiffi
3

p
, the entropy

release is the same as in the honeycomb case, half ln 2. But
in this case, the system exhibits another crossover at a lower
T, where the entropy of 1

6 ln 2 corresponding to fluxes on the
dodecagons is released. Finally, the rest of entropy 1

3 ln 2
corresponding to fluxes on the triangles is released at the
phase transition to the CSL. The typical T dependences of the
specific heat Cv and the entropy S per site are shown in
Fig. 23. On the other hand, in the topologically-nontrivial
region for J 0=J ≲

ffiffiffi
3

p
, the entropy release at the high-T

crossover is 1
3 ln 2; the remaining entropy 2

3 ln 2 corresponds
to fourfold degeneracy in each triangle in the isolated triangle
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limit (J 0=J ! 0). In this case, the system exhibits two
additional crossovers, at each of which the entropy of 1

6 ln 2 is
released; see the typical behavior in Fig. 23. As mentioned
before, in the isolated triangle limit, the system is effectively
described by the honeycomb Kitaev model in a weak
magnetic field, and hence, these two crossovers correspond
to TH and TL in the honeycomb Kitaev model. Note that the
lowest-T crossover appear to merge into the phase transition
for J 0=J ≳ 0:1 (see Fig. 22).

Thus, the complicated behaviors are found in the high-T
crossovers depending on two types of the Kitaev coupling,
J and J 0. Nonetheless, the important point is that the highest-
T crossover occurs at the temperature almost independent
of J 0=J (T. in Fig. 22). This originates from the Fermi
degeneracy of the complex fermions composed of the
itinerant Majorana fermions, similar to the honeycomb case
in Sect. 3.1. Hence, the comparison between the honeycomb
and triangle-honeycomb cases implies that the high-T
crossover arising from the itinerant Majorana fermions is
commonly seen in the variants of the Kitaev model, while the
low-T one from the localized Z2 fluxes may appear differently
depending on the nature of the Z2 flux in each system. We
will further examine this conjecture in several examples in
three dimensions in Sect. 3.3.

3.3 Phase transitions in three dimensions
In this section, we discuss the thermodynamic behaviors in

some variants of the Kitaev model in three dimensions. In
Sect. 3.3.1, we present the results for the 3D Kitaev model on
the so-called hyperhoneycomb structure. In this model, the
low-T crossover at TL in the 2D honeycomb case in Sect. 3.1
is replaced by a phase transition as in the triangle-honeycomb
case in Sect. 3.2; however, the low-T phase is not a CSL but
the Kitaev QSL in this case. We discuss the origin of the
phase transition to the QSL on the basis of the distinct nature
of the Z2 flux excitations in three dimensions. In Sect. 3.3.2,
we present the results for the model which exhibits a phase
transition to a conventional magnetically-ordered phase in
addition to that to the QSL. Finally, we discuss the phase
transitions to 3D CSLs on a lattice structure with odd-cycle
plaquettes, dubbed the hypernonagon lattice in Sect. 3.3.3.

3.3.1 Phase transition by loop proliferation: Gas–liquid
transition

Mandal and Surendran discussed a variant of the Kitaev
model on a 3D lattice structure,99) which was later called
the hyperhoneycomb structure shown in Fig. 24. The lattice
is in a series of extensions of the honeycomb structure
to three dimensions,100) and surprisingly, it is realized in
a candidate material β-Li2IrO3

101) (see Sect. 4.3 for the
details). Mandal and Surendran showed that the hyper-
honeycomb Kitaev model retains the exact solvability and
the ground state offers a 3D exact QSL. They also argued
the peculiar nature of the Z2 flux excitations, which we will
discuss below.

Finite-T behavior of this 3D model was studied by the
Majorana-based QMC simulations.37) T dependences of the
specific heat and entropy are presented in Fig. 25 for the
isotropic case with Jx ¼ Jy ¼ Jz ¼ J. Although the overall
behaviors are similar to those for the 2D honeycomb case in
Figs. 15(b) and 15(c), clear differences appear at low T; while
the low-T peak in the specific heat does not depend on the
system size in the 2D case, the height becomes higher and the
width gets narrower in the present 3D case as increasing the
system size [see also the inset of Fig. 25(a)]. This signals a
phase transition instead of the crossover. A similar phase
transition was also found by larger-scale simulations for the
effective model in the anisotropic limit of the Kitaev
coupling, called the Kitaev toric code.102) In the present
case, however, in contrast to the transition to the CSL in
Sect. 3.2, the freezing of the Z2 fluxes does not break time-
reversal symmetry, as the lattice structure does not include
odd cycles. Then, what happens in this finite-T phase
transition?

The phase transition is caused by a change of topological
nature in the excitations of the Z2 fluxes.37,102) In the 3D case,
the localized Z2 fluxes cannot be flipped independently
because of the local constraint arising from the lattice
geometry.99) Any 3D lattices have closed volumes composed
of several plaquettes. For any closed volume, the product
of the Z2 flux operators Wp becomes an identity because of
the algebra of the Pauli matrices.99) This gives the local
constraint that does not allow to flip the Z2 fluxes
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structure where the 3D Kitaev model is defined.

J. Phys. Soc. Jpn. 89, 012002 (2020) Invited Review Papers Y. Motome and J. Nasu

012002-15 ©2020 The Physical Society of Japan©2020 The Author(s)

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by Rutgers University on 02/19/20



independently: The excitations are only allowed in a form of
closed loops composed of flipped Wp. This is in contrast with
the 2D cases where there is no local constraint (there
is a global constraint

Q
p Wp ¼ 1, but it does not affect

thermodynamics).
What happens in the 3D case is as follows. While raising T

from the flux-free QSL ground state, the localized Z2 fluxes
are thermally excited in the form of closed loops. At low T,
the loop lengths are short compared to the system size. With a
further increase of T, however, excitation loops with their
lengths comparable to the system size are proliferated at
some T because of the entropic gain, which leads to the
topological transition. The critical temperature Tc is set by the
loop tension arising from the excitation energy proportional
to the loop length.103) Thus, the finite-T phase transition in
this 3D Kitaev model is caused by the loop proliferation. The
picture of this topological transition will be further discussed
in Sect. 3.4.

The phase transition takes place between the high-T PM
state and the low-T QSL state. The former is regarded as
“gas” in terms of the spin degree of freedom, while the latter
is regarded as “liquid”, both of which preserve the symmetry
of the system. Therefore, the phase transition is regarded as a
“gas–liquid” transition in the spin degree of freedom. In
contrast to the conventional gas–liquid transition, which is
discontinuous in general, the numerical results in Fig. 25 do
not find any discontinuity. The analysis of the effective model
in the anisotropic limit concludes that the phase transition is
continuous and belongs to the inverted 3D Ising universality

class; the confined loops are favored in the low-T (high-T)
phase in the 3D toric code (Ising model). Note that the closed
loops in the 3D Ising model are composed of interacting
spins, which appear in the high-T expansion and contribute to
the partition function. The order parameter of this peculiar
transition is not described by any local quantities but it can be
identified by a global quantity called the Wilson loop, which
is given by the product of all Wp on the plane defined by a
given loop.37) Note that the Wilson loop measures the parity
of the total number of the excited Wp lines penetrating the
plane. Thus, this phase transition caused by the loop
proliferation evades from the conventional Landau–
Ginzburg–Wilson theory for the continuous phase transitions.

A similar phase transition was found also for another 3D
Kitaev model defined on the so-called hyperoctagon lattice.42)

The origin of the phase transition is common. This suggests
that the loop proliferation works as a common mechanism for
the gas–liquid phase transition in 3D Kitaev models. The
comparative study between the hyperhoneycomb and hyper-
octagon cases confirmed the correlation between Tc and the
loop tension.42)

3.3.2 Three states of matter: Gas–liquid–solid transition
Stimulated by the finding of the gas–liquid phase transition

in the spin degree of freedom, the phase transitions for three
states of matter, gas, liquid, and solid, were investigated for
the Kitaev toric code with additional ferromagnetic Ising
interaction.104) In this model, while increasing the Ising
interaction, the QSL ground state is taken over by a FM
ordered state, which is regarded as “solid”. Hence, one can
expect the phase transitions between the three states of
matter. Figure 26(a) shows the phase diagram obtained by
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Fig. 25. (Color online) T dependences of (a) the specific heat and (b) the
entropy per site normalized by ln 2 for the 3D Kitaev model on the
hyperhoneycomb lattice with isotropic coupling Jx ¼ Jy ¼ Jz ¼ J. The data
are obtained by the Majorana-based QMC simulations for the clusters with
N ¼ 4L3 spins (L ¼ 3{6). The extended plot around the low-T peak is shown
in the inset of (a). The horizontal dotted line in (b) represents 1

2 ln 2. The data
are taken from Ref. 37.

8

 0.0  0.1  0.2  0.3  0.4  0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 0.0

 0.4

 0.8

 1.2

6

4

2

0
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Kitaev toric code with the FM Ising interaction Jxx. )B is the coupling
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extensive QMC simulations (in this case, not the Majorana-
based QMC but the continuous-time world-line QMC in the
original spin representation).104) The result indicates that the
gas–liquid transition described in Sect. 3.3.1 survives against
the FM Ising interaction with a slight decrease of the critical
temperature, but at some point, it changes into a phase
transition between the high-T PM state and the low-T FM
state, which is a gas–solid transition. The first-order transition
line between the QSL and FM phases extends from T ¼ 0 to
the tricritical points on the gas–liquid and gas–solid transition
lines (the former is not identified within the numerical
precision). In the PM state near the bifurcation of the phase
boundaries, an interesting proximity effect was found in the
flux loop excitations.104)

Similar study was conducted also for the 2D case.104) The
result is shown in Fig. 26(b). In contrast to the 3D case in
Fig. 26(a), the QSL phase is limited to zero T, while there is a
crossover at finite T. The crossover T decreases as the Ising
interaction increases, and finally goes to zero at the quantum
critical point. For larger Ising interactions, the FM state
evolves with continuous growth of Tc. The phase transition at
Tc is continuous and belongs to the 2D Ising universality
class. Thus, the phase transitions for three states of matter in
the spin degree of freedom look qualitatively different
between the 3D and 2D cases, owing to the distinct nature
of the Z2 flux excitations.

The above study of three states of matter has been limited
to the toric code corresponding to the anisotropic limit of the
Kitaev coupling. The issue in a more realistic parameter
region remains for future study, which is potentially relevant
to understanding of the properties of 3D candidate materials
for the Kitaev model (see Sect. 4.3). The 2D case is also
worth investigating;105) indeed, in a weakly anisotropic case,
an interesting liquid–liquid phase transition between the
Kitaev QSL and a spin-nematic quantum paramagnet was
found before entering the FM ordered state.106)

3.3.3 Phase transitions to 3D chiral spin liquids
In Sect. 3.2, we discussed finite-T phase transitions to 2D

CSLs with spontaneous breaking of time-reversal symmetry.
Similar transitions in three dimensions were studied for the
3D Kitaev model defined on the lattice structure with odd
cycles, dubbed the hypernonagon structure.107,108) In the 3D
case, there is an interesting possibility of successive phase
transitions, since the 3D Kitaev models can exhibit a
topological transition by the loop proliferation discussed in
Sect. 3.3.1, in addition to the spontaneous time-reversal
symmetry breaking. Such a possibility was studied for two
anisotropic limits of the Kitaev coupling in the hypernonagon
Kitaev model.107) The numerical results indicate that the
system exhibits a single discontinuous phase transition with
simultaneous occurrence of the loop proliferation and time-
reversal symmetry breaking. Interestingly, however, the low-
T CSL state is not a flux-free state but shows a nonuniform
spatial order of the Z2 fluxes. The study was extended to
other parameter regions apart from the anisotropic limits, and
at least five distinct phases with different nonuniform flux
orders were discovered.108)

Most of the studies of CSLs thus far have been limited to
two dimensions since the pioneering work by Kalmeyer and
Laughlin.109) The above results offer the examples of 3D

CSLs that allow detailed studies of their nature and the phase
transitions owing to the exact solvability of the Kitaev model.
Further development on this interesting issue will be
expected by using the extensions of the Kitaev model.

3.4 Phase diagram
As a brief summary of Sect. 3, we show schematic phase

diagrams at finite T for the Kitaev models in both two and
three dimensions. Figure 27(a) displays the 2D honeycomb
case,38) which will be common to other 2D cases without odd
cycles in the lattice structure. In this case, the system exhibits
two crossovers at T ¼ TH and TL. The former temperature
scale is set by the COM of the itinerant fermion DOS, and the
latter by the excitation gap for the localized Z2 fluxes. The
finite-T state is separated into three by these two crossovers:
the conventional PM for T ≳ TH, the fractional PM for
TL ≲ T ≲ TH, and the asymptotic QSL for T ≲ TL. The
schematic picture of each region is shown in the lower panels
of Fig. 27(a).

Meanwhile, Fig. 27(b) displays the 3D counterpart,
inferred from the results for the 3D hyperhoneycomb37,102)

and hyperoctagon cases.42) In this case, while the high-T
crossover at TH remains in a similar manner, the low-T one is
replaced by the phase transition of gas–liquid type caused by
the loop proliferation. The difference arises from the distinct
nature of the localized Z2 flux excitations. The schematic
picture in terms of the excited loops is shown in the lower
panels of Fig. 27(b).

T
TL TH(a) 0

T
Tc TH(b) 0

PMfractional PMQSL

PMfractional PMQSL

T
Tc TH(c) 0

PMfractional PMCSL

Fig. 27. (Color online) Schematic finite-T phase diagrams of the Kitaev
models for (a) the 2D cases like the honeycomb case in Sect. 3.1, (b) the 3D
cases like the hyperhoneycomb case in Sect. 3.3.1, and (c) the 2D and 3D
cases like the triangle-honeycomb case in Sect. 3.2 and the hypernonagon
case in Sect. 3.3.3, respectively. In (a), the systems exhibit three states
separated by two crossovers at TL and TH: the asymptotic QSL for T ≲ TL,
the fractional PM for TL ≲ T ≲ TH, and the conventional PM for T ≳ TH.
The lower panels show the schematic pictures of the three states. The
magenta spheres, the gray hexagons, and the arrows represent the itinerant
Majorana fermions, the flipped localized Z2 fluxes, and the spins,
respectively (see Fig. 5). In (b), the systems undergo a “gas–liquid” phase
transition at Tc from the low-T QSL to the fractional PM and a crossover at
TH to the conventional PM. In the schematic picture in the lower panels, the
cyan and purple lines represent short and extended loops composed of the
flipped localized Z2 fluxes, respectively. In (c), the phase transition at Tc

occurs between the low-T CSL and the fractional PM states.
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Figure 27(c) presents the schematic phase diagram in the
presence of odd cycles in the lattice structure. In this case, the
system can show a finite-T phase transition to a CSL with
spontaneous breaking of time-reversal symmetry. The
transition is a single phase transition from the fractional
PM state to the CSL for the 2D triangle-honeycomb98) and
the 3D hypernonagon cases.107,108) It can be split into
multiple transitions in the latter as discussed in Sect. 3.3.3,
but such behavior has not been found thus far.

4. Material Candidates

In this section, we briefly overview candidates for
materialization of the Kitaev QSL. We here focus on some
of 4d- and 5d-electron compounds. Readers who are
interested in more details including other candidates are
referred to other review articles.31,32,35)

4.1 Quasi-2D iridates
As discussed in Sect. 2.2, Jackeli and Khaliullin pointed

out two requisites for materialization of the Kitaev coupling.
They nominated A2BO3-type layered compounds as a good
candidate. Following this proposal, Chaloupka and his
coworkers have pointed out that this is indeed the case for
the quasi-2D honeycomb iridium oxides, Na2IrO3 and α-
Li2IrO3.79) These two compounds have a common quasi-2D
lattice structure with the honeycomb layers composed of
edge-sharing IrO6 octahedra,110–112) as shown in Fig. 2(c);
the crystal symmetry belongs to space group C2=m. (We put
the prefix α only for Li2IrO3 since it has polymorphs as
introduced in Sect. 4.3.) In these compounds, the formal
valence of the Ir ions is 4+, and hence, the outermost 5d shell
is partially occupied by five electrons. As described in
Sect. 2.2, this leads to the low-spin 5d5 state under the cubic
crystalline electric field, and furthermore, comprises the
jeff ¼ 1=2 pseudospin with the influence of the strong spin–
orbit coupling [see Figs. 2(a) and 2(b)]. The importance of
both spin–orbit coupling and Coulomb interaction and the
formation of the jeff ¼ 1=2 state have been confirmed by
spectroscopic measurements.113,114) The pseudospins are
expected to interact with each other via the Kitaev coupling
through the perturbation processes in the edge-sharing
geometry [see Fig. 2(c)]. The predominant Kitaev coupling
was experimentally confirmed for Na2IrO3 by using diffuse
X-ray scattering115) and torque magnetometry.116) It was also
supported by theoretical estimates based on first-principles
calculations.88–91)

Despite the presence of the predominant Kitaev coupling,
these candidates do not show QSL behavior in the low-T
limit; instead, they undergo a phase transition to a magneti-
cally-ordered phase at low T. Na2IrO3 exhibits a zigzag-
type AFM ordering at the critical temperature TN ’
15K,110,117,118) while α-Li2IrO3 exhibits an incommensurate
spiral ordering at almost the same T.111,112,119) The magnetic
orders are considered to be induced by non-Kitaev couplings
in the honeycomb layer as well as interlayer couplings, which
are weaker than the Kitaev coupling. Thus, it is widely
believed that the compounds are proximate to the Kitaev
QSL, whereas the low-T properties are hindered by the
parasitic magnetic orders.

There have been several efforts to realize the Kitaev QSL
by suppressing the non-Kitaev interactions. Theoretically,

it was proposed that a thin film90) and a heterostructure91)

might be helpful for this purpose. Also, experimentally, the
chemical substitutions of A-site ions locating between the
honeycomb layers were attempted, and A0

3LiIr2O6 with A0 =
Ag, Cu, and H were synthesized.83,120,121) These compounds
have a different stacking manner from Na2IrO3 and α-Li2IrO3.
Among them, H3LiIr2O6 is intriguing since it does not show
any magnetic ordering down to the lowest T,83) while
disorder effects have been argued, as discussed in the end of
Sect. 2.8. In addition, Cu2IrO3 was recently nominated as a
candidate, but in this case also the effect of chemical disorder
was pointed out.122–125)

4.2 α-RuCl3
Another candidate is a ruthenium trichloride α-RuCl3,

which was firstly pointed out in Ref. 126. This compound has
a similar quasi-2D layered honeycomb structure with edge-
sharing RuCl6 octahedra, but the crystal symmetry is
controversial among P3112, C2=m, and !R3 depending on
the samples.94,127–132) This might be related with the fact that
the honeycomb layers are weakly coupled with each other via
the van der Waals interaction.133) The formal valence of the
Ru ions is 3+, and hence, the 4d5 electron configuration offers
a playground for the Kitaev coupling similar to the iridium
oxides in the previous section. The formation of the jeff ¼ 1=2
state was confirmed, e.g., by the spectroscopic measurements
with the help of first-principles calculations.68,91,126,134,135)

Unfortunately, this compound also exhibits a magnetic
order of zigzag type at low T.131,132,136) The critical temper-
ature is, however, scattered between TN ’ 6:5K and ’14K
depending on the samples. It is believed that the samples with
stacking faults show rather high TN; the lowest TN ¼ 6:5K
was reported for a single crystal with !R3 symmetry.94)

One of the advantages in α-RuCl3 is the feasibility of
inelastic neutron scattering, which is a powerful tool to probe
spin dynamics (note that Ir is a neutron absorber). Recently,
several measurements have been done in a wide range of
energy and wave vector. The results will be discussed in
comparison with theoretical results for the Kitaev model in
Sect. 5.4.

Another advantage is that the zigzag magnetic order in α-
RuCl3 can be suppressed by an external magnetic field of
∼8T applied within the ab plane.130,131) This opens an
interesting possibility to realize QSL behavior in the field-
induced PM region. We will discuss the recent development
on this issue in Sects. 5.4, 5.5, and 5.8.

Last but not least, α-RuCl3 has a unique aspect owing to
the fact that this compound is a van der Waals material: The
weak interlayer coupling allows to fabricate the samples in a
thin film form.137–140) More recently, interesting electronic
properties were observed for heterostructures between a thin
film of α-RuCl3 and graphene.141–144) Such fabrication of thin
films and heterostructures will stimulate further studies on
interesting physics arising from the potential fractional
excitations in this Kitaev candidate magnet.

4.3 3D iridates
Finally, we introduce two polymorphs of Li2IrO3: β-

Li2IrO3 and γ-Li2IrO3. These two compounds have 3D
networks of the edge-sharing IrO6 octahedra, instead of the
quasi-2D layered one in α-Li2IrO3. β-Li2IrO3 has the so-
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called hyperhoneycomb structure with space group Fddd
[Fig. 28(a); see also Fig. 24],101) and γ-Li2IrO3 has the
stripy-honeycomb structure with space group Cccm
[Fig. 28(b)].100) Both structures belong to a series of the
harmonic honeycomb structures.100) In both cases, the local
coordination is common to α-Li2IrO3, and the Ir ions
comprise tricoordinate lattices, for which the Kitaev model
can be extended in a straightforward manner. Thus, these
polymorphs have attracted attention as candidates for the 3D
Kitaev QSL discussed in Sect. 3.3.1.145,146) However, they
show spiral magnetic ordering at rather high temperature
TN - 40K.100,101,147,148) Interestingly, the magnetic orders
can be suppressed by applying relatively small magnetic
fields149,150) as well as external pressure.151,152)

5. Comparative Study between Theory and Experiment

In this section, we discuss the signatures of thermal
fractionalization in the Kitaev QSL through the comparison
between theory and experiment. On the theoretical side, we
concentrate on the Kitaev model in Eq. (4) defined on the
honeycomb structure, neglecting other additional interactions
discussed in Sect. 2.8, as it allows to obtain reliable results by
well-controlled numerical techniques. All the following
results are for the isotropic Kitaev coupling Jx ¼ Jy ¼ Jz ¼ J.
Meanwhile, on the experimental side, we present the data for
three candidates: the honeycomb iridium oxides, Na2IrO3 and
α-Li2IrO3, and the ruthenium trichloride α-RuCl3.

5.1 Specific heat and entropy
Let us first begin with the comparison for the specific heat

and entropy. Figure 29(a) displays the experimental data for
a candidate material for the Kitaev model, Na2IrO3.153) The
specific heat exhibits a broad peak around 110K, in addition
to a sharp anomaly at TN ’ 15K associated with the
magnetic ordering. While decreasing T, the entropy is
released corresponding to the high-T broad peak, and shows
an interesting T dependence with inflection points; the
decrease becomes slow around 60K, where the entropy is
roughly half R ln 2 (R is the gas constant). With a further
decrease of T, the entropy is continuously released, and
finally, decreases rapidly at the magnetic phase transition at
TN ’ 15K. Qualitatively similar behaviors were observed for
the related compound α-Li2IrO3

153) and another candidate α-

RuCl3,130) as shown in Figs. 29(b) and 29(c), respectively. In
addition, in a recent study for α-RuCl3,94) T-linear behavior of
the specific heat was reported in the intermediate T region, as
suggested for the Majorana metal in Sect. 3.1.3.

At first glance, these experimental data look similar to
the theoretical results for the Kitaev model presented in
Sect. 3.1.1, except for the sharp anomaly at the magnetic
transition temperature. Then, it is natural to ask whether the
similarities provide experimental evidence for the thermal
fractionalization arising from the Kitaev QSL. The answer is
that although they look consistent with theory, it is difficult to
admit them as strong evidence. On one hand, the broad peak
in the specific heat at high T is in fact commonly seen in
frustrated magnets; the suppression of magnetic ordering by
the frustration leaves development of short-range spin

(a) (b)

Fig. 28. (Color online) Schematic pictures of (a) the hyper- and (b) stripy-
honeycomb structures with edge-sharing octahedra, which are realized in β-
and γ-Li2IrO3, respectively.

(a)

(b)

(c)

Fig. 29. (Color online) T dependences of the specific heat (Cmag) and
entropy (Smag) for (a) Na2IrO3, (b) α-Li2Ir3, and (c) α-RuCl3. In (c), the
specific heat divided by T is plotted. The magnetic contributions are extracted
by subtracting the data for the nonmagnetic compounds, (a) Na2SnO3,
(b) Li2SnO3, and (c) ScCl3. The figures (a) and (b) are reprinted with
permission from Ref. 153 © 2017 the American Physical Society. The figure
(c) is reprinted with permission from Ref. 130 © 2015 the American Physical
Society.
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correlations, which gives rise to the entropy release in the
high-T region. This is also the case in the Kitaev model: As
shown in Fig. 16(a), the crossover at T ¼ TH is related with
the growth of NN spin correlations. Hence, the broad peak of
the specific heat alone cannot be evidence of the thermal
fractionalization. On the other hand, the approximately half
R ln 2 entropy at the shoulderlike feature also looks
consistent with the theoretical result, but this is again not
conclusive, considering that in general it is not easy to
precisely estimate the lattice contributions in experiments.
Also, theoretically, it is difficult to predict how non-Kitaev
interactions, which are inevitably present in real materials,
affect the behavior of the entropy at low T.154,155)

Then, what could be evidence in these thermodynamic
quantities? A specific feature to the Kitaev QSL is the low-T
crossover at T ¼ TL by the freezing of the localized Z2 fluxes.
Unfortunately, in the candidate materials shown above,
TL ’ 0:012J is considered to be around 1K, which is lower
than the critical temperatures. Thus, the interesting behavior
associated with the Z2 fluxes, if any, is hindered by the
parasitic magnetic ordering caused by non-Kitaev interac-
tions. A potential route to unveil the crossover behavior is to
suppress the magnetic order by applying an external magnetic
field, as discussed in Sect. 2.7. Such an experiment was
indeed performed for α-RuCl3, and a peak was observed in
the region where the magnetic order is suppressed by the
magnetic field.156–158) Meanwhile, the specific heat in the
magnetic field was recently calculated for the Kitaev model
by using a newly-developed CTQMC method;78) a similar
peak was obtained in the high-field region, while the data at
low T and low field are lacked because of the negative sign
problem. Further detailed comparison is necessary to identify
the signature of the Z2 fluxes.

5.2 Spin correlation
The equal-time spin correlation was indirectly obtained for

α-RuCl3 by an optical measurement.159) In this experiment,
several peaks were identified in the optical conductivity
above the Mott gap ∼1 eV, as shown in Fig. 30(a). Among
them, the lowest-energy peak just above the Mott gap,
denoted as α in Fig. 30(a), shows considerable T dependence.
As this excitation reflects virtual motions of electrons beyond
the Mott gap, the T dependence is considered to contain
the information on the development of spin correlations
originating from the virtual exchange processes. The T
dependence of the spectral weight of the peak α is shown in
Fig. 30(b). The data show that, while decreasing T, the
spectral weight grows down to ∼40K, whereas it almost
saturates in the lower-T region, even below the critical
temperature TN. This behavior resembles the T dependence
of the NN spin correlations in the Kitaev model plotted
in Fig. 16(a), where TH - 35K by assuming J - 8meV.
Nevertheless, the change of the weight in Fig. 30(b) is rather
small (∼10%), which might be due to contributions from
other excitations in the optical spectrum and the T inde-
pendent contributions in the virtual exchange processes. It is
desired to make further quantitative comparison and also to
perform more direct measurement of the spin correlations.

5.3 Magnetic susceptibility
The magnetic susceptibility for the Kitaev model was

calculated by Majorana-based numerical techniques,39–41) by
using the formula

*$# ¼ 1

N

X

i; j

Z +

0

hS$
i ð,ÞS

#
j i d,; ð28Þ

where + ¼ 1=ðkBTÞ is the inverse temperature (we set the
Boltzmann constant kB ¼ 1), and hSz

i ð,ÞSz
j i is the dynamical

spin correlation in the (2 þ 1)-dimensional space, where
S$
i ð,Þ ¼ e,HS$

i e
",H (τ is the imaginary-time). Figure 31

shows the results obtained by the combined technique
between the Majorana-based QMC and CTQMC methods41)

(see Appendix A.1 and A.3). Note that all the off-diagonal
components *$# with $ ≠ # vanish in the Kitaev model,62)

and * xx ¼ * yy ¼ * zz ¼ * in the isotropic case.
As shown in Fig. 31, although the T dependence as well as

the overall magnitude is different between the cases with FM
and AFM Kitaev coupling, the two cases share the following
features. (i) At sufficiently high T, χ obeys the Curie–Weiss
law as in other magnets, but it starts to deviate below T - J.
The Curie–Weiss behavior is given by * ¼ 1=ð4T " JÞ for
the FM case and * ¼ 1=ð4T þ JÞ for the AFM case. (ii) χ
exhibits a peak in the fractional PM region between TL and

(a)

(b)

Fig. 30. (Color online) (a) Real part of the optical conductivity obtained
for α-RuCl3 at several T. The inset shows the low-energy detail around the
peak α; the data for 100, 200, and 300K are offset for clarity. (b) T
dependence of the spectral weight of the peak α in (a) integrated in the
energy range between 0.9 to 1.4 eV. The data are normalized by that at 4K.
In (b), TH is shown by assuming J ¼ 8meV, and TN denotes the critical
temperature for the magnetic ordering of this sample. Reprinted with
permission from Ref. 159 © 2016 the American Physical Society.
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TH. The peak temperature is at T ’ 0:02J in the FM case and
T ’ 0:1J in the AFM case. (iii) χ decreases rapidly around
TL with showing an inflection point. This suppression is
attributed to the freezing of Z2 flux excitations with the gap
opening. (iv) In the low-T limit, χ approaches a nonzero
value. Similar asymptotic behavior is commonly seen in the
magnetic systems in which the total spin is not conserved. In
the present case, owing to the Dirac-like linear dispersion in
the fermionic excitations, the asymptotic behavior is expected
to be proportional to T3 up to a constant, but it is hard to
extract such behavior from the present numerical results.160)

For comparison, we showcase the experimental data for
the candidate materials in Fig. 32. The data for Na2IrO3 in
Fig. 32(a) shows that the susceptibility obeys the Curie–
Weiss law above ∼150K, but starts to deviate at lower T.110)

Similar behavior was observed also for α-Li2IrO3
111) [see also

Fig. 32(b)112)]. In both cases, a peak appears at a slightly
higher T than the critical temperature TN ’ 15K. Below the
peak, the susceptibility turns to decrease and exhibits an
inflection point around TN, and finally approaches a nonzero
constant at the lowest T. These behaviors appear to be at least
qualitatively similar to the theoretical results in Fig. 31,
although one cannot compare the data below TN. Similar
behaviors were observed for α-RuCl3130,136) [see Fig. 32(c)].

Meanwhile, a readily-seen discrepancy between theory and
experiment is the magnetic anisotropy in the experimental
data, as shown in Fig. 32. The theoretical results are isotropic
for the isotropic case, and it is also difficult to explain the
magnetic anisotropy by the anisotropy in the Kitaev
coupling.40) The importance of additional non-Kitaev inter-
actions as well as the anisotropy of the g factor was pointed

out for the magnetic anisotropy.68,161–163) It remains as a
future issue to quantitatively explain the T dependence of the
anisotropic susceptibility and to determine the magnitude and
sign of the Kitaev coupling. We will comment on the sign of
the Kitaev coupling in Sect. 5.4.

Can we say that the comparison between theory and
experiment for the magnetic susceptibility provides evidence
for the proximity to the Kitaev QSL? As in the case of the
specific heat and entropy in Sect. 5.1, the similarity found in
the T dependence is suggestive but not sufficient to draw

0
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Fig. 31. (Color online) T dependence of the magnetic susceptibility for the
honeycomb Kitaev model with isotropic coupling Jx ¼ Jy ¼ Jz ¼ J obtained
by combining the Majorana-based QMC and CTQMC methods. (a) and (b)
correspond to the cases with FM and AFM Kitaev coupling, respectively.
The dashed curves represent the Curie–Weiss behaviors. The data are taken
from Ref. 41.

(a)

(b)

(c)

Fig. 32. (Color online) T dependences of the magnetic susceptibility for
single crystals of (a) Na2IrO3, (b) α-Li2IrO3, and (c) α-RuCl3. In (a), the red
curve represents the fitting by the Curie–Weiss law for the high-T data. The
inset displays the enlarged plot for the low-T part around the critical
temperature TN. The data for powder samples are also plotted in (a) and (b).
The figure (a) is reprinted with permission from Ref. 110 © 2010 the
American Physical Society. The figure (b) is reprinted from Ref. 112. The
figure (c) is reprinted with permission from Ref. 130 © 2015 the American
Physical Society.
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conclusions. This is because the deviation from the Curie–
Weiss behavior and the broad peak structure at a lower T are
commonly observed in a wide class of frustrated magnets as a
consequence of the growth of short-range spin correlations
under the frustration. A more decisive feature would be an
experimental observation of the rapid decrease around TL

with the inflection point originating from the freezing of the
localized Z2 fluxes. This is, however, hindered again by the
magnetic ordering in the real compounds.

5.4 Inelastic neutron scattering
Inelastic neutron scattering is a powerful experimental tool

to probe the spin dynamics. The scattering intensity is
proportional to the dynamical spin structure factor which
includes the information on the spin dynamics as a function
of wave vector q and frequency ω. Figure 33(a) displays the
theoretical results for the QSL ground state of the Kitaev
model for both FM and AFM cases.164,165) Here, the
dynamical spin structure factor is calculated by

S$#ðq; !Þ ¼ 1

N

X

i; j

Z 1

"1

dt

2-
hS$

i ðtÞS
#
j ie

ið!t"q+rijÞ; ð29Þ

where rij is the vector connecting the sites i and j, and S$
i ðtÞ

is the Heisenberg representation of S$
i . In the following,
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Fig. 33. (Color online) Dynamical spin structure factor Sðq; !Þ calculated for the honeycomb Kitaev model with isotropic coupling Jx ¼ Jy ¼ Jz ¼ J for
both cases with FM and AFM Kitaev coupling: (a) at T ¼ 0 and (b) for finite T. The finite-T results are obtained by combining the Majorana-based QMC and
CTQMC methods. Note that the energy scale in (a) is four-times different from the definition in this article used in (b): !=Jz ¼ 4 in (a) corresponds to !=J ¼ 1
in (b). The figure (a) is reprinted with permission from Ref. 165 © 2015 the American Physical Society. The data in (b) are taken from Ref. 41.
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we mainly discuss the sum of the diagonal components,
Sðq; !Þ ¼ Sxxðq; !Þ þ Syyðq; !Þ þ Szzðq; !Þ.

There are several interesting features in the results shown
in Fig. 33(a). (i) The q dependence is weak. This is due to the
fact that the Kitaev model possesses extremely short-ranged
spin correlations, as discussed in Sect. 2.4. (ii) The intensity
vanishes below the rather strong response at low energy
! - 0:4Jz which corresponds to ! - 0:1J in our definition
(see the figure caption). This is due to the gap opening in the
flux excitations. As discussed in Sect. 2.5, the spins are
fractionalized into the Majorana fermions and the Z2 fluxes,
meaning that the elementary spin-flip excitation is given by a
composite of the Majorana fermion excitation and the Z2 flux
excitation. Hence, the spin excitation spectrum in Sðq; !Þ
reflects the gap opening in the fractional excitations of the Z2

fluxes. At the same time, this suggests that the strong
intensity above the gap predominantly originates from the Z2

flux excitations. (iii) In addition to the low-energy response,
the spectrum has a broad incoherent intensity in the high-
energy region extending up to ! - 6Jz corresponding to
! - 1:5J in our definition. This reflects mainly the itinerant
Majorana fermion excitations, which has the bandwidth
-1:5J as shown in Sect. 2.5.

Recently, the inelastic neutron scattering measurements
have been intensively performed for α-RuCl3. In an early
experiment for powder samples, an unusual incoherent
intensity was observed in the energy range of ! ¼ 6{8meV,
in both below and above the critical temperature TN, as
shown in Figs. 34(a) and 34(b), respectively.93) This is
clearly distinguished from the strong response at a lower
energy only appearing below TN [indicated by the white
arrow in Fig. 34(a)] which is regarded as the spin-wave
excitations in the ordered phase. The incoherent response at
high energy has a resemblance to that in the theoretical result
at T ¼ 0 shown in Fig. 33(a). More interestingly, it remains
visible up to ∼70K, which is much higher than TN, as shown
in Fig. 34(c).93) Nevertheless, at this stage, there was no
theory for the T dependence for comparison.

The T dependence of the dynamical spin structure factor
Sðq; !Þ was computed by using the combined techniques
between the Majorana-based CDMFT and CTQMC,39,40)

and the Majorana-based QMC and CTQMC methods41)

(see Appendix). The calculations were done by

S$#ðq; !Þ ¼ 1

N

X

i; j

S$#
i; j ð!Þe

"iq+rij ; ð30Þ

where S$#
i; j ð!Þ is obtained by solving

hS$
i ð,ÞS

#
j i ¼

Z
S$#
i; j ð!Þe

"!, d!; ð31Þ

by using the maximum entropy method with the Legendre
polynomial expansion (see Ref. 40 for the details).

The results obtained by the Majorana-based QMC and
CTQMC method are shown in Fig. 33(b). There are several
interesting features. (i) At sufficiently high T in the conven-
tional PM region above TH [lowest two panels in Fig. 33(b)],
Sðq; !Þ has an almost q-independent broad peak centered
around ! ¼ 0. (ii) While approaching TH with a decrease of
T, however, an incoherent response gradually grows at high
energy centered at ! - J [middle-lower two panels in
Fig. 33(b)]. This high-energy incoherent response persists

down to the lowest T, gradually developing a weak q
dependence. (iii) With a further decrease of T toward TL, a
quasi-elastic response grows in the low-energy region [center
and middle-upper panels in Fig. 33(b)]. (iv) Below TL, this
quasi-elastic response is shifted to the ! > 0 region with
opening of a small gap [upper two panels in Fig. 33(b)], and
the entire spectrum smoothly converges to the T ¼ 0 results
shown in Fig. 33(a).

The contrasting T dependence between the high-energy
incoherent response and the low-energy quasi-elastic re-
sponse reflects the distinct nature between the two types of
fractional excitations arising from the thermal fractionaliza-
tion. As discussed in Sect. 3.1, the crossovers at T ¼ TH and
TL are caused by the itinerant Majorana fermions and the
localized Z2 fluxes, respectively. Therefore, the growth of the
high-energy incoherent response in Sðq; !Þ below T ’ TH

(a)

(b)

(c)

Fig. 34. (Color online) Inelastic neutron scattering data measured for a
powder sample of α-RuCl3: the spectra at (a) T ¼ 5K below TN and (b) T ¼
15K just above TN (TN ’ 14K in this sample), and (c) the spectral weight
integrated between 6 and 7meV for several T. Reprinted with permission
from Ref. 93 © 2016 Springer Nature.
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is considered to be dominated by the itinerant Majorana
fermions, while that of the quasi-elastic response toward
T ’ TL as well as the gap opening below TL is by the
localized Z2 fluxes. This is consistent with the assignment
discussed above for the T ¼ 0 results in Fig. 33(a).

After the theoretical studies for T > 0, inelastic neutron
scattering experiments were performed for single crystals of
α-RuCl3.94,166) An example is shown in Fig. 35. As observed
in the theoretical results in Fig. 33(b), an unconventional
incoherent response appears in a wide range of energy up to
∼12meV below ∼100K. (The differences in the energy and
T scales from Fig. 34 might be ascribed to the sample
difference.94,167)) The detailed comparison with theory in
Fig. 35 indicates that, in the wide-T range from the
conventional PM region to just above TN, the overall q and
ω dependences of the spectra can be accounted for by the
theoretical results for the Kitaev model with isotropic FM
coupling. Although the growth of the quasi-elastic response
toward TL as well as the gap opening below TL predicted by
theory was not observed in experiments because of the
magnetic ordering at TN, the agreement strongly suggests that
the candidate material α-RuCl3 is in proximity to the Kitaev
QSL.168)

Despite the overall good agreement, there remain some
discrepancies between theory and experiment, especially at
low T and low ω. A representative feature is a star shape in
the q dependence of the scattering intensity at low ω above
TN.94,166) The numerical results for the Kitaev model show a
round shape, unlike the star one.94) The coexistence of such a
low-energy feature and the high-energy incoherent response
was discussed by considering the role of additional non-
Kitaev interactions.166,170–173)

Let us briefly comment on the sign of the Kitaev coupling.
The comparison in Fig. 35 indicates that the FM Kitaev
coupling well accounts for the weak q dependence in the
experimental data. In the earlier studies,93,166) however, the

AFM Kitaev coupling was deduced from the comparison
between experiment and theory for the weak q dependence of
the high-energy continuum. The AFM Kitaev coupling was
also suggested by theory based on first-principles calcula-
tions.174) On the other hand, other theoretical studies based
on quantum chemistry electronic-structure calculations68) and
first-principles calculations91) suggest the FM Kitaev cou-
pling. We note that, in a later experimental study by the same
group,175) the FM Kitaev coupling was deduced from the
careful analyses of the spectral weights.

More recently, inelastic neutron scattering experiments
have been done in a magnetic field.175,176) The experimental
data for a powder sample of α-RuCl3 are shown in Fig. 36.
The results show that the spin excitation spectrum in the
region where the magnetic order is suppressed by the
magnetic field [Fig. 36(b)] is qualitatively similar to that
above TN at zero field [Fig. 36(a)]; the low-energy
contribution from magnon excitations observed in the
ordered phase [Fig. 36(c)] is absent, and the high-energy
incoherent response is commonly observed in Figs. 36(a) and
36(b). This suggests that an unconventional state potentially
described by the Kitaev QSL is realized in the field-induced
PM region [see the phase diagram in Fig. 36(d); see also
Fig. 14(a) in Sect. 2.9].

Theoretically, it is hard to obtain reliable results in a
magnetic field since the exact solvability is lost and the
Majorana-based numerical techniques cannot be applied
straightforwardly, as described in Sect. 2.7. However, the
spin dynamics was recently obtained by a CTQMC method in
a wide range of field and T.78) It was shown that Sðq; !Þ
preserves the unconventional features reflecting the fractional
excitations in the wide-field range before entering the forced
FM region in the high field and low T. This may explain
the unconventional spectrum in the field-induced PM state
discovered in the experiment above. Moreover, the theoret-
ical result unveiled a crossover behavior from the fractional

(a)

(b)

(c)

(d)

Fig. 35. (Color online) Comparison of the dynamical spin structure factors between experiment and theory. (a) and (c) show the experimental data for single
crystals of α-RuCl3, and (b) and (d) are the theoretical results for the honeycomb Kitaev model with isotropic FM coupling calculated by using the combined
technique between the Majorana-based CDMFT and CTQMC methods. (c) and (d) display the T and ω dependences of the spectra at the Γ point q ¼ 0. The
Bose factor correction is applied to both experimental and theoretical results. The figure is reprinted from Ref. 94.
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quasiparticle picture to the conventional magnon picture
while increasing the magnetic field, which is one of the
confinement-deconfinement phenomena.78) Similar issue was
studied by the exact diagonalization of a 24-site cluster for
a model including non-Kitaev interactions.177) While an
experiment was performed recently,176) further detailed
comparison between theory and experiment is highly desired
for these interesting issues.

5.5 Nuclear magnetic resonance
In addition to the inelastic neutron scattering, the NMR

is an important probe of the spin dynamics. The NMR
relaxation rate is a measure of the dynamical spin suscepti-
bility through the formula178)

1

T1
/ T

X

q

jAqj2
Im *?ðq; !0Þ

!0
; ð32Þ

where Aq is the hyperfine coupling constant, *?ðq; !0Þ is the
dynamical susceptibility for the spin component perpendic-
ular to the field direction, and !0 is the resonance frequency
in the NMR measurement. Note that the dynamical suscepti-
bility *ðq; !Þ is related with the dynamical spin structure
factor discussed in the previous section through the
fluctuation-dissipation theorem, as

Sðq; !Þ ¼ 1

-ð1 " e"+!Þ
Im *ðq; !Þ: ð33Þ

In the NMR measurements, !0 is in general negligibly small
compared to the typical energy scale of the system, J in the
present case. Thus, by taking the limit of !0 ! 0 in Eq. (32)
and using Eq. (33), one can obtain

1

T1
/
X

q

jAqj2S?ðq; ! ¼ 0Þ; ð34Þ

where S?ðq; !Þ is the dynamical spin structure factor for the
spin components perpendicular to the field.

The NMR relaxation rate 1=T1 was calculated for the
Kitaev model by using the Majorana-based numerical
techniques.39–41) The calculations were done in the limit of
zero field, which correspond to the nuclear quadrupole
resonance (NQR) in experiments. Considering the fact that
the Kitaev model has nonzero spin correlations only for the
same site and between the NN sites (see Sect. 2.4), 1=T1 for
the magnetic field along the z direction is computed by
Eq. (34) as

1=Tz
1 ¼ a0;xS

xx
j; jð! ¼ 0Þ þ a0;yS

yy
j; j ð! ¼ 0Þ

þ a1;xS
xx
NNð! ¼ 0Þ þ a1;yS

yy
NNð! ¼ 0Þ; ð35Þ

where S$$
NNð!Þ represents the NN component on the μ bond

[see also Eqs. (30) and (31)]. In Eq. (35), the coefficients
a0;x, a0;y, a1;x, and a1;y are determined by the hyperfine
coupling constant Aq depending on the details of the actual
compounds.

Figure 37 shows the results for (a) the onsite and (b) NN-
site components separately, defined as

1=Tz
1 ¼ Sxx

j; j ð! ¼ 0Þ þ Syy
j; j ð! ¼ 0Þ; ð36Þ

1=Tz
1 ¼ &fSxx

NNð! ¼ 0Þ þ Syy
NNð! ¼ 0Þg; ð37Þ

respectively; here we omit the coefficients a0;x, a0;y, a1;x, and
a1;y. In Eq. (37), the sign is + (−) for the FM (AFM) case
[S$$

NNð! ¼ 0Þ changes sign but the absolute value is the same
for both cases]. Note that 1=Tx

1 ¼ 1=Ty
1 ¼ 1=Tz

1 ¼ 1=T1 for
the isotropic case. Comparison to experiments can be made
for the superpositions with appropriate coefficients deter-
mined by Aq. The results in Fig. 37 unveil the following
characteristic behaviors. (i) In the conventional PM region
above TH, the onsite component is almost independent of T,
while the NN-site one decreases to zero while increasing T.
The almost constant behavior of the onsite component is
consistent with PM spin fluctuations governed by J.179) (ii)
Below TH, the onsite and NN-site components show almost
the same T dependence. This indicates that the dynamical

(c)

(a)

(b)

(d)

Fig. 36. (Color online) Inelastic neutron scattering spectra measured for a
powder sample of α-RuCl3 at (a) 15K and 0T, (b) 2K and 8T, and (c) 2K
and 0T. (d) displays the magnetic phase diagram determined by the T
dependence of the magnetic susceptibility shown in the inset. The figures are
reprinted with permission from Ref. 175 © 2018 by Springer Nature.
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spin correlations are almost the same for the two components
after the fractionalization sets in. (iii) While decreasing T
below TH, both components grow in the fractional PM region
and show a broad peak at T ’ 0:04J. (iv) Both components
are rapidly suppressed around TL. This is ascribed to the gap
opening in the Z2 flux excitations, as observed in Sðq; !Þ in
Sect. 5.4. Indeed, the low-T behaviors are well fitted by the
activation-type function proportional to expf"a#f=ðkBTÞg,
where #f is the flux gap and a is a coefficient.160)

An interesting feature among these behaviors is the growth
of 1=T1 in the fractional PM region below TH. This means
that the dynamical spin correlations are developed in this T
region. On the other hand, as discussed in Sects. 3.1.1 and
5.2, the equal-time spin correlations are almost saturated
below TH and do not show significant T dependence. These
observations indicate that the Kitaev model exhibits distinct T
dependences between the dynamical and static spin correla-
tions below TH where the thermal fractionalization sets in.
Such dichotomy is hardly seen in conventional magnets,
except for critical behaviors in magnetic ordering. Thus, the
strong enhancement with the broad peak in 1=T1 under the
saturated static spin correlations would be an indication of the
thermal fractionalization in the Kitaev QSL.

Related to this enhancement, let us make a remark on the
Korringa law. As introduced in Sect. 2.5, the system is
described by noninteracting Majorana fermions coupled to
the Z2 fluxes. Indeed, the T-linear specific heat is observed in
the fractional PM region, which we call the Majorana metal
in Sect. 3.1.3. From this picture, one might expect the
Korringa law, 1=ðT1T*2Þ - constant, which holds for free
fermion systems, in the same T region. The numerical data,
however, do not support this expectation.40) This might be

due to the fact that the spin-flip excitation is a composite of
both itinerant Majorana fermions and localized Z2 fluxes, as
discussed in Sect. 5.4.

NMR measurements have been done for α-RuCl3 by
several groups.180–183) The representative data are shown in
Fig. 38. In the low-field region for ≲9T where the magnetic
ordering takes place at low T, 1=T1 grows gradually while
decreasing T, and shows a sharp anomaly at the critical
temperature TN, followed by a rapid decrease below TN. On
the other hand, in the higher-field region where the magnetic
order is suppressed, 1=T1 grows gradually but turns to
decrease after showing a broad peak, as shown in Fig. 38(a).
While increasing the magnetic field, the peak height is
gradually decreased and the peak temperature is shifted to
higher T. The low-T decrease is well fitted by the activation-
type function, as shown in Fig. 38(b), while 1=T1 appears to
approach a nonzero constant or show a slight increase at the
lowest T measured in this experiment. We note, however, that
the low-T behaviors of 1=T1 are scattered among the data
from different groups. For instance, in Ref. 181, the power-
law T dependence was observed in some range of the
magnetic field, from which the existence of gapless
excitations was concluded. Meanwhile, from the measure-
ment down to 0.4K in Ref. 183, another exponential
decrease was found at the lower-T region than measured in
the previous studies, from which two gap structure was
identified.

As mentioned above, the theoretical results in Fig. 37 are
obtained in the zero-field limit, which correspond to NQR,
and hence, the direct comparison with the experimental data
is not straightforward.184) Nevertheless, it is interesting to
point out that the experimental data in the high-field PM
region look similar to the theoretical results in the points (iii)
and (iv) raised above, while the low-T asymptotic behaviors
are controversial in experiments. This suggests the possibility
that the fractional PM state is realized in the magnetic field.
Indeed, in Ref. 182, the authors proposed an empirical
function for the T dependence of 1=T1 by analyzing the
theoretical results at zero field, and showed that it fits well the
experimental data in a wide range of the magnetic field, as
presented in Fig. 38(c). Interestingly, the estimates of the gap
by this fitting procedure appear to be consistent with the
prediction from the perturbation theory in Sect. 2.7: The gap
is proportional to h3 up to a constant.

Theoretical analysis was recently extended to nonzero-
field regions by a CTQMC method.78) The results indicate
that the overall behavior of 1=T1 is retained in a wide range
of T and field; in particular, the broad peak structure is
preserved with a decrease of the peak height and a shift of the
peak temperature to a higher T while increasing the magnetic
field. These behaviors are apparently consistent with the
experimental data shown in Fig. 38. The agreement suggests
that the Kitaev model qualitatively explain the behavior of
1=T1 in the field-induced PM region, and furthermore, that
the fractional PM state appears to extend to a wide-field
region in the candidate material α-RuCl3.

5.6 Thermal conductivity
In Sects. 5.4 and 5.5, we have discussed the signatures of

the thermal fractionalization in spin dynamics. As mentioned
above, however, a spin-flip excitation is a composite
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Fig. 37. (Color online) T dependence of the NMR relaxation rate 1=T1 for
the honeycomb Kitaev model with isotropic coupling Jx ¼ Jy ¼ Jz ¼ J in the
zero-field limit. The results are obtained by a combined technique of the
Majorana-based QMC and CTQMC methods. (a) and (b) display the
contributions from onsite and NN sites [Eqs. (36) and (37)], respectively.
The data are taken from Ref. 41.
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excitation of the itinerant Majorana fermion and the localized
Z2 flux. It is therefore not straightforward to observe the two
types of fractional quasiparticles in a well-separated manner
in spin dynamics, despite their signatures in the characteristic
T, q, and ω dependences. Then, what kinds of physical
quantities are suitable for such a separate observation?

One suitable probe is thermal transport. This is because in
the Kitaev QSL heat is carried solely by the itinerant
Majorana fermions, as the Z2 fluxes are completely localized.
The thermal response is measured as the thermal conductivity
.(+, which is defined by J(Q ¼ .(+r+T, where J(Q is the
thermal current flowing in the α direction induced by the
thermal gradient applied to the β direction, r+T. Here, (; + ¼
x; y, which correspond to the a and b directions of the
Cartesian coordinate shown in Fig. 1.

In order to capture the itinerant nature of Majorana
fermions, the longitudinal component of the thermal
conductivity, . ¼ .((, was measured for α-RuCl3.185) The
results are shown in Fig. 39(a) for several samples.
Figure 39(b) shows the results after careful subtraction of
the contributions from phonons. The data indicate that there
are additional contributions in a wide-T range centered at
∼100K.

Theoretical results were obtained for the Kitaev model
almost at the same time by using the Majorana-based QMC
method.44) In the calculations, the thermal current JQ is
defined by the time derivative of the energy polarization PE

as

JQ ¼ @PE

@t
¼ i½H;PE); ð38Þ

where PE is introduced from the Hamiltonian by replacing
the exchange constant J$ on the bond hiji to J$Rij with
Rij ¼ 1

2 ðri þ rjÞ. Using the above definitions, the longitudi-
nal thermal conductivity was computed by the Kubo formula
given as

.(( ¼ 1

TV

Z 1

0

dt eið!þi"Þt
Z +

0

d)hJ(Qð"i)ÞJ
(
QðtÞij!;"!0; ð39Þ

where J(QðtÞ is the Heisenberg representation of J(Q, and V is
the volume of the system. Note that the thermal current

Fig. 39. (Color online) (a) T dependence of the thermal conductivity κ for
α-RuCl3 and (b) the data after the subtraction of the contributions from
phonons. #1–#5 denote different samples. (c) T dependence of the magnetic
specific heat Cmag. The inset of (c) shows the T dependence of the mean free
path estimated from the analysis of κ and Cmag. Reprinted with permission
from Ref. 185 © 2017 the American Physical Society.

(a)

(b)

(c)

Fig. 38. (Color online) T dependences of the NMR relaxation rate 1=T1

for α-RuCl3. In (a) and (b), the magnetic field is applied along the direction
parallel to the electric field gradient at a Cl ion, while in (c), it is tilted from
the c axis by the angle θ with fixed magnitude at 9.4 T. The arrows indicate
the critical temperatures TN for magnetic ordering. The lines in (b) represent
the fitting by 1=T1 / expð"#=TÞ. The colored curves in (c) are the fittings
by an empirical function 1=T1 / ð1=TÞ expf"0:67#=ðkBTÞg for the data in
the blue hatched area. The figures (a) and (b) are reprinted with permission
from Ref. 180 © 2017 by the American Physical Society. The figure (c) is
reprinted with permission from Ref. 182 © 2018 Springer Nature.
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operator JQ commutes with all the Z2 bond variables %r in the
Hamiltonian in Eq. (13), and therefore, Eq. (39) can be
calculated by using the sign-free Majorana-based QMC
technique in Appendix A.1.

Figure 40 shows the longitudinal thermal conductivity in
the isotropic case of the honeycomb Kitaev model. Note that
.xx ¼ .yy and the result is common to the FM and AFM
cases. The result indicates that the thermal conductivity
exhibits a broad peak around TH. This is a direct consequence
of the thermal fractionalization; the itinerant Majorana
fermions appear in the system when the thermal fractional-
ization sets in by approaching TH from high T, but their
thermally-activated population decreases with a further
decrease of T because of the Fermi degeneracy. The
theoretical result resembles qualitatively the experimental
data in Fig. 39.

5.7 Raman scattering
The comparison of the thermal conductivity in the

previous section suggests the existence of heat carriers in
the insulating material besides phonons. However, it is not
straightforward to conclude that the carriers are Majorana
fermions. In this section, we discuss another measurement,
the Raman scattering, which could probe the Majorana
fermions more directly.

The Raman scattering is a powerful tool to identify the
magnetic excitations by using light. Theoretically, the
intensity of the Raman scattering spectrum is calculated as186)

Ið!Þ ¼ 1

N

Z 1

"1
dt ei!thRðtÞRi: ð40Þ

Here, R is the Loudon–Fleury operator187) given by

R ¼
X

hiji$

ð!in + d$Þð!out + d$ÞJ$S$
i S

$
j ; ð41Þ

where !in and !out are the polarization vectors of the
incoming and outgoing lights, and d$ is the vector connecting
a NN μ bond for the sites i and j. Note that, in the isotropic
case with Jx ¼ Jy ¼ Jz ¼ J assumed here, there is no
polarization dependence.186)

Figure 41 shows the Raman scattering intensity Ið!Þ
calculated for the exact QSL ground state of the Kitaev
model.186) The spectrum includes a broad incoherent
response in a wide-energy range up to about 3J [note that
the energy scale in Fig. 41 is four-times larger than the
present definition, as in Fig. 33(a)]. Equations (40) and (41)
indicate that on the basis of the Loudon–Fleury approach187)

the Raman response originates solely from the itinerant
Majorana fermions in the Kitaev QSL, as S$

i S
$
j are written by

the Majorana operators !i and !j and do not affect the Z2

variable configurations f%rg.186) Hence, the broad response in
Fig. 41 is a direct consequence of the fermionic excitations
with the wide bandwidth shown in Sect. 2.5.

Figure 42(a) displays the experimental result measured for
α-RuCl3 at 5K.92) In addition to the sharp peaks around 14
and 20meV, which are presumably from phonon excitations
through the spin–lattice coupling, the spectrum exhibits a
broad incoherent response ranging up to ∼25meV, as
indicated by the blue shade in Fig. 42(a). This incoherent
response is similar to that found in the theoretical result at
T ¼ 0 in Fig. 41, suggesting the existence of the itinerant
Majorana fermions.

Figure 42(b) displays the magnetic contributions for
several T, and Fig. 42(c) plots the T dependence of the
intensity integrated between 2.5 and 12.5meV.92) In conven-
tional magnets, T dependence of the intensity is usually well
fitted by using the Bose–Einstein distribution function nð!Þ,
since the excitations are given by magnons and phonons,
both of which obey the Bose–Einstein statistics. The result
plotted in Fig. 42(c) shows that this is not the case for
α-RuCl3: There are additional contributions that cannot be
fitted by using nð!Þ in the wide-T range. This peculiar T
dependence could be evidence of the Majorana fermions, but
there was no theoretical result at finite T at this stage.

Finite-T behaviors of the Raman scattering intensity for the
Kitaev model were obtained by using the Majorana-based
QMCmethod.43) Note that this dynamical quantity can also be
calculated by the sign-free QMC technique in Appendix A.1,
since the Loudon–Fleury operator R commutes with all %r as
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Fig. 40. (Color online) T dependence of the longitudinal thermal con-
ductivity .xx for the honeycomb Kitaev model with isotropic coupling
Jx ¼ Jy ¼ Jz ¼ J, obtained by the Majorana-based QMC method. The result
is common to the FM and AFM cases. The data are taken from Ref. 44.

Fig. 41. (Color online) Intensity of the Raman scattering spectrum
calculated for the exact QSL ground state of the honeycomb Kitaev model
with isotropic coupling. Note that the energy scale is four-times different, as
in Fig. 33(a). The result is common to the FM and AFM cases. The green
curve represent the result for the Kitaev model, while the red and blue dashed
curves show the contributions from additional exchange interactions; the
black curve displays the summation of the three contributions. Reprinted
with permission from Ref. 186 © 2014 the American Physical Society.
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the thermal current operator JQ in Sect. 5.6. Figure 43(a)
displays the results for the T and ω dependence. While
increasing T from the ground state, the incoherent nature of
the spectrum is retained, but the weight distribution changes
gradually; the low-ω weight increases continuously up to
T ’ TH and saturates above TH, while the weight around
! ¼ J shows a slight increase up to T ’ 0:05J, which is
slightly above TL, but turns to decreases at higher T.43)

Figure 43(b) presents the comparison between theory and
experiment. In this comparison, the experimental spectrum
is assumed to be a simple summation of the magnetic
contribution from the Kitaev model and that from (unidenti-
fied) bosonic excitations. The result in Fig. 43(b) shows that
the T dependence of the Raman intensity integrated in the
middle-energy range from 5 to 12.5meV is well reproduced
by the theoretical result in a wide-T range by assuming
J ¼ 10meV. Furthermore, the theoretical calculations
showed that the dominant contribution in this T range comes
from pair creations and annihilations of the emergent
fermions composed of the Majorana fermions.43) This is
indeed seen from the fact that the theoretical result is well
reproduced by a simple function ð1 " f Þ2, where f is the
Femi–Dirac distribution function, as indicated by the green
dashed curve in Fig. 43(b). The good agreement between
theory and experiment strongly suggests the existence of
fermionic excitations in the experimental data in the wide
PM region above TN, which are absent in conventional
magnets.

After this surprising result, similar analyses were per-
formed for another candidates, iridium oxides β- and γ-
Li2IrO3

188) (see Sect. 4.3). Despite the 3D honeycomblike

structures in these compounds, the Raman scattering intensity
exhibits similar T dependence, which is well fitted by
ð1 " f Þ2. This suggests that the fermionic excitations are
commonly present in the candidate materials for the Kitaev
QSL. Also, we note that contributions of non-Kitaev
interactions189,190) and an external magnetic field191) were
recently discussed.

5.8 Thermal Hall conductivity
The unconventional contribution in the Raman intensity

strongly suggests the existence of fermionic excitations, but
it is still difficult to conclude that the excitations are nothing
but the Majorana fermions, especially solely from the
experimental data. To prove the existence of the Majorana
fermions, one needs to explicitly identify the consequence
from their peculiar nature, e.g., the equivalence between the
particle and its anti-particle. In this section, we discuss one of
such direct consequences discovered in the recent measure-
ments of the thermal Hall transport.

As discussed in Sect. 2.7, Kitaev showed by using the
perturbation theory that a weak magnetic field induces a
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Fig. 43. (Color online) (a) T and ω dependence of the Raman scattering
intensity for the honeycomb Kitaev model with isotropic coupling at several
T, obtained by the Majorana-based QMC method. The result is common to
the FM and AFM cases. (b) Comparison between the theoretical result and
the experimental data in Fig. 42. The experimental data are obtained by
integrating the intensity between 5 and 12.5meV (shown in the inset), and
correspondingly, the theoretical results are integrated in the hatched energy
range in (a) by assuming the isotropic Kitaev coupling J as 10meV. The
orange shaded area in the inset of (b) represents the bosonic contribution
subtracted for comparison. The green dashed curve in the main panel
represents the fitting by ð1 " f Þ2, where f is the Fermi–Dirac distribution
function. The figures are reprinted from Ref. 43.
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gapped topologically-nontrivial state showing the half-
quantized thermal Hall effect due to the chiral Majorana
edge mode27) (see Fig. 12). As the half quantization is a
direct consequence of the fact that the Majorana fermions
carry half degrees of freedom of the electrons, its measure-
ment provides a smoking gun for the Majorana nature.

Prior to experiments, T dependence of .xy was numerically
calculated by using the Majorana-based QMC method for the
effective model derived by the perturbation theory given by
Eqs. (13) and (23).44) In the calculations, a contribution from
“the gravitational magnetization” was taken into account in
addition to the Kobo formula similar to the longitudinal case
given in Eq. (39).192,193) Figure 44 shows the results. While
decreasing T, .xy=T increases gradually below T - J, and
approaches rapidly the half quantized value -=12 below TL.
The low-T asymptotic behavior is fitted by / expð"#f=TÞ,
where #f is the flux gap. Interestingly, .xy=T shows
nonmonotonic T dependence in the intermediate-T region,
originating from thermal fluctuations of the localized Z2

fluxes which scatter the itinerant Majorana fermions.44)

The corresponding experiment was performed for α-
RuCl3.194) The results are shown in Fig. 45(a). The T
dependence above TN is qualitatively similar to that in the
theoretical results replotted in Fig. 45(b); .xy=T becomes
nonzero below ∼80K and shows a broad peak above TN.
While further decreasing T, however, the experimental data
decrease and change the sign to negative below TN. In this
experiment, the magnetic field was applied along the c axis,
which cannot suppress the magnetic order in the field range
measured, and hence, the half quantization, if any, is
hindered by the magnetic ordering.

Recently, .xy=T was measured in the magnetic field tilted
from the c axis, which can suppress the magnetic order-
ing.195) Note that α-RuCl3 has strong easy-plane anisotropy
as shown in Fig. 32(c). The typical experimental data for the
T dependence are shown in Fig. 46(a). As shown in the inset,
.xy=T increases from zero below ∼60K and once overshoots

the half quantized value below ∼20K. With a further
decrease of T, .xy=T turns to decrease, and below ∼5.5K, it
becomes almost T independent as shown in the main panel;
the asymptotic constant value indeed coincides with the half
quantized value within the experimental errors. The field
dependences at low T are presented in Fig. 46(b). The results
clearly show that the half quantization appears in a narrow
but finite range of the magnetic field. These results strongly
suggest the existence of the chiral Majorana edge mode in the
topologically-nontrivial state in the field-induced PM region.

We note, however, that the T dependence of .xy=T
is different from the theoretical results in Fig. 44 both
quantitatively and qualitatively. The experimental data
exhibits the overshoot above the half quantization value,
which is not obtained in the theoretical results. Moreover, the
set-in temperature of the half quantization is considerably
high compared to the theoretical prediction: The asymptotic
convergence in theory appears well below TL, which roughly
corresponds to ∼1K, as shown in Fig. 44. One of the reasons
for such discrepancies is that the theoretical results were
obtained for the effective model which is justified in the
weak-field limit. More sophisticated theory beyond the
perturbation is highly desired. Furthermore, non-Kitaev
interactions may play an important role in the topological
phenomena. Indeed, it was pointed out that a symmetric off-
diagonal interaction contributes to the stabilization of the
gapped topological state.72,196) Another caveat is the
contribution from phonons. The large value of the longi-
tudinal thermal conductivity .xx at low T suggests the
dominant phonon contribution.197) The possibility of the
observation of quantized .xy even in such a situation was
theoretically discussed.198,199)

Figure 47 summarizes the field-T phase diagram elabo-
rated by the experiments. In the field region between ∼7 and
∼9T after the magnetic order is suppressed (red area in
Fig. 47), the half quantization of .xy=T is observed below
∼5K. This is the region where the Majorana topological state
is suggested to be realized. Thus, the results offer strong
evidence of the Kitaev-type QSL with a gapped excitation in
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the field-induced PM state [see also the schematic phase
diagram in Fig. 14(a) in Sect. 2.9].

The half quantization of .xy=T has attracted great attention
since it can be regarded as the direct evidence of the
spin fractionalization in the Kitaev system, especially the
Majorana fermionic nature. Moreover, it is intriguing as
the set-in temperature is rather high compared to other
topological phenomena like the quantized anomalous Hall
effect in magnetic topological insulators.200,201) Theoretically,
it was pointed out that nonabelian anyons emergent in the
topological state can be utilized for fault-tolerant quantum
computation.16,17) Thus, the experimental finding of the half
quantization may offer a first step toward topological
quantum computing based on peculiar quasiparticles in
magnets.

6. Summary and Perspectives

In this article, we have overviewed the recent development

in the research of the Kitaev quantum spin liquids and their
experimental realization. We have reviewed finite-T proper-
ties of the Kitaev model, including the spin dynamics, which
have been revealed by the Majorana-based numerical
techniques developed by the authors and their collaborators.
In the Kitaev model, the spin degree of freedom is
fractionalized into two different types of quasiparticles:
itinerant Majorana fermions and localized Z2 fluxes. They
have largely different energy scales and affect the thermody-
namics and spin dynamics in a peculiar manner, which we
call thermal fractionalization. We have discussed a number of
fingerprints of the thermal fractionalization in experimentally
observable quantities, and compare them with available
experimental data for the candidate materials. Let us
summarize the main points, focusing on the 2D honeycomb
case:
• The Kitaev model exhibits two characteristic temper-

atures corresponding to the two types of quasiparticle
excitations. They define two crossovers at largely
different temperatures TH and TL (TH / TL), signaled
by two broad peaks in the specific heat and correspond-
ing successive releases of the entropy by half ln 2
(Sect. 3.1.1). Similar behavior corresponding to the
high-T crossover was observed experimentally in
candidate materials, Na2IrO3, α-Li2IrO3, and α-RuCl3
(Sect. 5.1).

• The high-T crossover at T ¼ TH is caused by the
itinerant Majorana fermions, while the low-T one at
T ¼ TL is by the localized Z2 fluxes. The temperature
scales TH and TL are set by the center of mass of the
density of states for the complex fermion band and the
Z2 flux gap, respectively (Sect. 3.1.2).

• The two crossovers define three distinct regimes: the
conventional paramagnetic state for T ≳ TH, the frac-

Fig. 47. (Color online) Phase diagram of α-RuCl3 in a magnetic field. The
red area indicates the region where the half quantization of .xy=T is observed,
while the brown area shows the magnetically-ordered phase. The yellow and
green areas represent the fractional PM region and the topologically-trivial
PM state at high fields. The figure is reprinted from Ref. 195.

(a)

(b)

Fig. 46. (Color online) (a) T dependence of .xy=T for α-RuCl3 in a
magnetic field tilted from the c axis to the a axis by the angle θ. The
horizontal dashed line represents the half quantization value. The inset
displays the data in a wider-T range. (b) Field dependences of .xy=T for three
temperatures at / ¼ 60°. The figures are reprinted from Ref. 195.
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tional paramagnetic state for TL ≲ T ≲ TH, and the
asymptotic quantum spin liquid state for T ≲ TL [see
Fig. 27(a)].

• In the fractional paramagnetic state in the intermediate
T range, the specific heat shows T-linear behavior,
because the fermion density of states becomes nonzero
at zero energy by thermally-fluctuating Z2 fluxes. We
call this state the Majorana metal (Sect. 3.1.3).

• While decreasing T, the static spin correlations grow
rapidly around T ¼ TH, and almost saturate at lower T
(Sect. 3.1.1). Similar behavior was inferred from the
optical measurement for a candidate material α-RuCl3
(Sect. 5.2).

• The magnetic susceptibility deviates from the Curie–
Weiss law below T - J (J is the Kitaev coupling),
shows a peak in the intermediate-T region between
TL and TH. Similar behaviors were observed for the
candidate materials. Theoretically, the susceptibility
shows a rapid decrease around T ¼ TL and approaches
a nonzero value in the low-T limit, but these behaviors
are hindered by the magnetic ordering in the real
compounds (Sect. 5.3).

• The dynamical spin structure factor Sðq; !Þ shows a
characteristic T dependence. Below T ’ TH, Sðq; !Þ
develops an incoherent response at ! ’ J with less q
dependence, which persists down to the lowest T. The
overall T, q, and ω dependences agree well with the
experimental data by inelastic neutron scattering for α-
RuCl3. Theoretically, while approaching TL, an addi-
tional quasielastic response grows rapidly, and it is
gapped out below TL reflecting the gap opening in the
flux excitations. But, these behaviors are not observed
in experiments due to the magnetic ordering (Sect. 5.4).

• The NMR relaxation rate 1=T1 increases below TH,
where the static spin correlations are almost saturated.
This dichotomy between dynamical and static spin
correlations is a possible indication of the thermal
fractionalization. 1=T1 exhibits a broad peak above TL,
and decreases exponentially below TL reflecting the flux
gap opening. Similar behaviors were observed in
experiments under a magnetic field, suggesting the
potential realization of the Kitaev quantum spin liquid
in the field-induced paramagnetic state (Sect. 5.5).

• The itinerant Majorana fermions can contribute to heat
transport. Indeed, in the Kitaev model, the longitudinal
thermal conductivity shows a broad peak around
T ¼ TH. Similar behavior was observed in experiments
(Sect. 5.6).

• The Kitaev model predicts an incoherent Raman
response because of the Majorana fermions. This was
indeed observed in experiments for α-RuCl3. Further-
more, an unconventional T dependence of the scattering
weight was unveiled in the experiments, and well
explained by the theoretical results for the Kitaev
model. This provides strong evidence for the existence
of unconventional fermionic excitations in α-RuCl3.
Similar behaviors were observed also for the 3D
candidates β- and γ-Li2IrO3 (Sect. 5.7).

• An external magnetic field opens a gap in the
quasiparticle band and makes it topologically nontrivial
(Sect. 2.7). Reflecting the topological nature, the

thermal Hall conductivity is asymptotically quantized
at low T below TL. The quantization value is half of that
in the integer quantum Hall state reflecting that the heat
carriers are Majorana fermions. Such a half quantization
of the thermal Hall conductivity was observed in α-
RuCl3, which has recently gathering tremendous
attention as direct evidence of the Majorana fermions
and their topological state (Sect. 5.8).

We have also discussed interesting signatures of the thermal
fractionalization for the Kitaev models with some extensions
from the original honeycomb one. There appear a variety of
phase transitions and crossovers, as schematically summa-
rized in Fig. 27 in Sect. 3.4. We list the key aspects in the
following, which await for the experimental confirmation:
• In the 3D Kitaev model, the nature of the Z2 flux

excitations is qualitatively different from that in two
dimensions. Because of the local constraint on the Z2

fluxes, the excitations are allowed only in the form of
closed loops in three dimensions. This changes the
low-T crossover in the 2D cases into a phase transition.
This transition takes place between the high-T para-
magnet and the low-T quantum spin liquid, which can
be regarded as a gas–liquid transition in terms of the
spin degree of freedom of insulating magnets
(Sect. 3.3.1).

• When extending the Kitaev model by adding non-
Kitaev interactions, the system may undergo phase
transitions among three states of matter— gas, liquid,
and solid. The phase diagram is distinct between the 2D
and 3D cases, reflecting the different nature of the Z2

flux excitations (Sect. 3.3.2).
• When the Kitaev model is defined on the lattice

structures with odd-site loops, the ground state can be
a chiral spin liquid. In this case, the low-T crossover is
replaced by a finite-T phase transition with breaking
of time-reversal symmetry caused by Z2 flux ordering
(Sects. 3.2 and 3.3.3).

Despite the clarification of many intriguing aspects of the
thermal fractionalization in the Kitaev model and the
successful comparison with experimental data, there remain
a number of open issues in this rapidly growing field. We
hope that the present review will be helpful for studying the
following issues in future studies.
• Further theoretical understanding of the Kitaev model

and its extensions:
- It is highly desired to clarify the effect of the external
magnetic field on the phase diagram, the topological
properties of the elementary excitations, and the
excitation spectra. This is crucially important for
comparison with experimental data, especially the
remarkable properties discovered in the field-induced
paramagnetic state in α-RuCl3.

- In the magnetic field, the case of the antiferromag-
netic Kitaev coupling is also intriguing, since an
additional topological phase was predicted theoret-
ically, as discussed in Sect. 2.7. It is also important to
find the candidate materials for the antiferromagnetic
Kitaev coupling, by pushing forward the recent
efforts introduced in Sect. 2.7.

- Development of new theoretical techniques is a key
to breakthrough in understanding of the effects of the
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magnetic field and non-Kitaev interactions listed
above.

- It is also important to clarify the effects of non-Kitaev
interactions which exist in real compounds, as
mentioned in Sect. 2.8. In particular, it is crucial to
study such effects in sufficiently large system sizes
with high resolution in both energy and momentum,
since the subdominant interactions can lead to keen
competitions between different phases and fine
structures in the excitation spectra.

- It is worth extending the analyses to other lattices,
especially in three dimensions. Besides the hyper-
honeycomb, hyperoctagon, and hypernonagon struc-
tures discussed in Sect. 3.3, a variety of extensions
were discussed for other lattices.202) Interestingly,
depending on the underlying lattice structures, the
itinerant Majorana fermions form Majorana Fermi
surfaces, nodal lines, or topologically-protected Weyl
nodes. In addition, the Z2 flux configurations can be
suffered from frustration.203) A comprehensive study
of finite-T properties for such extensions will deepen
our understanding of the Kitaev quantum spin liquids
and fractionalization.

- It would also be interesting to consider extensions of
the Kitaev model to larger spins. The local conserved
quantity on each plaquette exists also in the larger spin
cases.45) Recently, thermodynamic properties were
studied numerically.204–207) While the realization of
such systems was theoretically proposed,208) the search
for the candidate materials has just begun.209,210)

• Further quantitative comparison with experiments:
- Further experimental identification of fractional
quasiparticles is an important issue. In particular, the
Z2 flux excitations have not been identified clearly
thus far. It would be helpful to further study the field-
induced paramagnetic state in α-RuCl3 at lower T.

- Regarding the potential topological quantum spin
liquid in the field-induced paramagnetic state, the
crucial questions are what kind of the gap protects the
topological state, how large the gap is, and how it
depends on the field. Extensive experiments have
been done for the excitation gap in the magnetic field,
for instance, the specific heat,156–158) NMR,180–183)

electron spin resonance,211) terahertz spectrosco-
py,212–214) inelastic neutron scattering,175,176) and
thermal conductivity measurements,197,215,216) but
there still remains controversy, even among the
results obtained by the same experimental probes.
Although the theoretical study in the field is also very
difficult, close comparison between experiment and
theory on this gap issue will be crucial to deeper
understanding of the field-induced state.

- It is important to precisely estimate the additional
non-Kitaev interactions for each candidate material
by further comparison between theory and experi-
ment. This issue has been addressed by the analyses
of, e.g., the magnon spectra in the ordered
phases.217,218) The gap problem above would also
be helpful to this issue. Also, further detailed analysis
on the magnetic anisotropy would play an important
role, as stated in Sect. 5.3.

- It is also important to discuss the effect of disorder,
which is inevitably present in real compounds, on
the physical observables at finite T. This includes
nonmagnetic=magnetic impurities,219–221) disloca-
tions,222) chemical inhomogeneity, and so on.

• Coupling to other degrees of freedom:
- Given the fractional quasiparticles, it will be very
interesting to consider the coupling to other degrees
of freedom, for instance, the electric charge. The
dynamics of a single hole doped into the Kitaev
quantum spin liquid was studied.223,224) It was also
predicted that carrier doping to the Kitaev model and
its extensions may lead to topological superconduc-
tivity, reflecting the exotic nature of the Kitaev
quantum spin liquid.225–227) Theoretical studies be-
yond the mean-field calculations as well as the
experimental realization are highly desired.

- It will also be intriguing to study the proximity effect
to other magnets, metals, and superconductors.
Recent development in the heterostructure of α-RuCl3
and graphene, which was introduced in Sect. 4.2, is a
good example in this direction. The coupling between
the fractional quasiparticles and other degrees of
freedom, such as mobile electrons, Cooper pairs,
magnons, and phonons, may lead to unprecedented
physics. Indeed, the coupling to mobile electrons was
discussed for the Kitaev–Kondo model, and topo-
logical superconductivity was predicted.228,229) In
addition, effects of lattice strain are also worth
investigating as a source of exotic states.230,231)

• Further materialization of Kitaev quantum spin liquids:
- As partly reviewed in this article, the candidate
materials for the Kitaev spin liquids are still limited.
Further exploration is needed. In particular, highly
desired are candidates which show the Kitaev spin
liquid nature at zero or weaker magnetic field.
Materials with the AFM Kitaev coupling are also
desired, as mentioned above.

- Material design for new lattice structures is important.
In particular, 3D materials are desired for studying the
intriguing physics listed above. Interesting proposals
were made by using metal organic frameworks.232,233)

In addition, quasi-one-dimensional candidates, e.g.,
with a ladder structure, are also interesting to further
clarify the nature of fractional quasiparticles.

- It would also be important to explore candidates in
the form of thin films and heterostructures, especially
for studies of the proximity effects mentioned above.

• Control of fractional quasiparticles:
- In the topologically nontrivial phase under the
magnetic field, each excited flux in the bulk
accompanies a Majorana zero mode, which obeys
nonabelian statistics [see Fig. 12(b)]. Toward topo-
logical quantum computation by using the non-
abelian anyons, it is a crucial task to invent a way
for controlling them, e.g., braiding and fusion. A
potential way will be to use local geometry of the
system, such as defects, dislocations, edges, and
interfaces. Another way would be local perturbations,
e.g., by using the scanning tunneling microscope.

- Along this direction, it will be quite important to
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clarify nonequilibrium dynamics of the fractional
quasiparticles, as the topological quantum computing
will be implemented by the time evolution of the
quasiparticles. Although there were several attempts
for clarifying the nonequilibrium dynamics by
theory234–242) and also in experiments,243–246) but
further studies are desired.
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Appendix: Majorana-based Numerical Techniques

A.1 Quantum Monte Carlo method
In this section, we show the framework of the Majorana-

based QMC technique for the Kitaev model which has been
developed in Ref. 37. The Majorana representation of the
Kitaev Hamiltonian in Eq. (13) for a given configuration of
f%rg is written by

Hf%rg ¼
X

i<j

Af%rg
ij !i!j ¼

1

2

X

ij

Af%rg
ij !i!j; ðA:1Þ

where Af%rg is an N * N Hermite matrix with pure imaginary
matrix elements, and therefore, Af%rg

ij ¼ "Af%rg
ji . This is

diagonalized as

Hf%rg ¼ Ef%rg
0 þ

X

)

Ef%rg
) f y) f); ðA:2Þ

where f y) and f) are the creation and annihilation operators of
the complex fermion corresponding to the energy Ef%rg

) (> 0),
and Ef%rg

0 ¼ " 1
2

P
) E

f%rg
) is the ground-state energy. Here

and hereafter, the sum
P

) is taken for positive energies
() ¼ 1; 2; . . . ; N=2) although all the eigenvalues of Af%rg

appear in pairs as & 1
2 E). The complex fermions ff)g are

introduced such that

!j ¼
ffiffiffi
2

p X

)

ðUf%rg
j) f) þUf%rg.

j) f y) Þ; ðA:3Þ

where Uf%rg
j) is the jth component of the eigenvector

associated with the eigenvalue 1
2 E

f%rg
) of the matrix Af%rg.

To calculate thermodynamic quantities, we introduce the
partition function by

Z ¼
X

f%r¼&1g
Trf!ig e

"+Hf%rg
: ðA:4Þ

This is rewritten as

Z ¼
X

f%r¼&1g
e"+F

f%rg
! ; ðA:5Þ

where Ff%rg
! is the free energy of the Majorana fermion

system for the configuration of f%rg, which is given
by

Ff%rg ¼ " 1

+
lnZf%rg

! ¼ " 1

+
ln½Trf!ig e"+H

f%rg): ðA:6Þ

Using the eigenvalues of the matrix Af%rg, the partition
function of the Majorana fermion system is evaluated
as

Zf%rg
! ¼

Y

)

2 cosh
+Ef%rg

)

2
: ðA:7Þ

Similar to the Hamiltonian, an operator commuting with
all f%rg can be labeled by f%rg as Of%rg. The thermal average
of such an operator can be calculated by

hOi ¼ 1

Z

X

f%r¼&1g
Trf!ig½Oe"+H

f%rg) ¼ h !Of%rgi%; ðA:8Þ

where we introduce the expectation value of O for the
configuration of f%rg as

!Of%rg ¼ 1

Zf%rg
!

Trf!ig½Of%rge"+H
f%rg); ðA:9Þ

and

h+ + +i% ¼
1

Z

X

f%r¼&1g
½+ + +)e"+F

f%rg
! : ðA:10Þ

On the other hand, one cannot straightforwardly calculate
thermal averages of the operators not commuting with f%rg,
such as dynamical spin correlations. We will introduce a way
to calculate such quantities in Appendix A.3.

Using Eqs. (A·5) and (A·10), finite-T properties of the
Kitaev model can be calculated by using the MC sampling on
the configurations of f%rg. At a certain temperature, we
calculate the free energy Ff%rg and !Of%rg for a given
configuration f%rg in a finite-size cluster by exact diagonal-
ization of the Hermite matrix Af%rg. Using the Markov-chain
MC simulation, the sequence ðf%rg1; f%rg2; f%rg3; . . . ;
f%rgNMC

Þ is successively generated so as to reproduce the
probability distribution e"+F

f%rg
f =Z. In the sequence of f%rg,

the thermal average of an operator O is evaluated by
replacing h+ + +i% by h+ + +iMC as

hOi ¼ h !Of%rgiMC ¼ 1

NMC

XNMC

‘¼1

!Of%rg‘ : ðA:11Þ

In Sects. 3.1.1 and 3.3.1, this technique is applied to
calculate the internal energy, specific heat, entropy per site,
and the DOS for the complex fermion band. The internal
energy per site is calculated as

E ¼ " 1

N

@

@+
lnZ ¼ 1

N
h !Ef%rgi% ¼

1

NNMC

XNMC

‘¼1

!E
f%rg‘ ; ðA:12Þ

where

!E
f%rg ¼ " @

@+
lnZf%rg

! ¼ "
X

)

Ef%rg
)

2
tanh

+Ef%rg
)

2
: ðA:13Þ

The specific heat per site can also be calculated as
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Cv ¼
dE

dT

¼ 1

NT2
hð !Ef%rgÞ2iMC " h !Ef%rgi2MC " @ !E

f%rg

@+

* +

MC

 !

:

ðA:14Þ
From the specific heat, the entropy per site is obtained as

S ¼ ln 2 "
Z 1

T
dT 0 Cv

T 0 : ðA:15Þ

In addition, the contributions from itinerant Majorana
fermions and localized Z2 fluxes are separately calculated
as

C!
v ¼ " 1

NT2

@ !Ef%rg

@+

& #

MC
; ðA:16Þ

Cf
v ¼

1

NT2
ðhð !Ef%rgÞ2iMC " h !Ef%rgi2MCÞ; ðA:17Þ

respectively. The corresponding contributions to the entropy
are calculated in a similar manner to Eq. (A·15). The fermion
DOS is computed by

Dð!Þ ¼ 2

N

X

)

"ð! " Ef%rg
) Þ

* +

MC

; ðA:18Þ

which depends on temperature T. Using this expression, E
and C!

v are written as

E ¼ "
Z

d!Dð!Þ !
4
tanh

+!

2
; ðA:19Þ

C!
v ¼

Z
d!Dð!Þ +

2!2

4

1

1 þ cosh +!
: ðA:20Þ

The same method is applied to compute the thermal
conductivity and the Raman scattering intensity in Sects. 5.6
and 5.7, respectively. These are feasible as the thermal
current operator and the Raman operator commute with all
f%rg. In Sect. 5.8, the thermal Hall conductivity is calculated
in the same manner, but in this case, for the Hamiltonian
including the effect of the Zeeman coupling effectively in
Eq. (23). For this effective Hamiltonian, f%rg are still
conserved and the thermal current operator commutes with
f%rg.

A.2 Cluster dynamical mean-field theory
In the Majorana representation, one can also apply the

CDMFT, which has been developed for interacting fermion
systems.247) In the case of the Kitaev model, the system can
be regarded as a noninteracting fermion system coupled with
localized classical variables, similar to the Falicov–Kimball
and the double-exchange models, as mentioned in Sect. 2.6.
For this category of the models, the impurity problem in the
CDMFT calculations can be solved exactly.248–250) In the
following, we present the framework of the CDMFT for the
Kitaev model in the Majorana representation which has been
developed in Refs. 39 and 40.

In the CDMFT, we assume that the system is composed
of a periodic array of clusters with several lattice sites.
Accordingly, the Hamiltonian given in Eq. (A·1) is written in
the form of

Hf%rg ¼ H0 þ Vf%rg; ðA:21Þ

with

H0 ¼
X

ll0ss0

1

2
A0
ðlsÞðl0s0Þ!ls!l0s0 ; ðA:22Þ

Vf%rg ¼
X

ll0ss0

1

2
Bf%rg
ðlsÞðl0s0Þ!ls!l0s0 ; ðA:23Þ

where Af%rg ¼ A0 þ Bf%rg with A0 (Bf%rg) being the η-
independent (dependent) part of Af%rg, namely, A0 (Bf%rg)
originates from the interactions on the x and y bonds (the
z bonds) in the original spin Hamiltonian in Eq. (4). The
indices l and s label clusters and sites in the cluster,
respectively.

Green’s function is introduced as

Gss0 ðk; i!nÞ ¼ " 1

2

X

l

Z +

0

d,hT,!lsð,Þ!0s0 ieið!n,"k+rlÞ; ðA:24Þ

where k is the wave number for the periodic array of the
clusters, !n ¼ ð2n þ 1Þ-T is the Matsubara frequency with n
being an integer; T, is the time-ordering operator with respect
to imaginary time τ, and rl denotes the position of the cluster
l. In a similar manner to Eq. (A·24), Green’s function for H0

is calculated as

G0
ss0ðk; i!nÞ ¼ " 1

2

X

l

Z +

0

d,hT,!lsð,Þ!0s0 i0eið!n,"k+rlÞ

¼ ½ði!n " 2A0ðkÞÞ"1)ss0 ; ðA:25Þ
where h+ + +i0 is the expectation value for H0 and

A0
ss0 ðkÞ ¼

X

l

A0
ðlsÞð0s0Þe

"ik+rl : ðA:26Þ

Using the above relations, the matrix form of Eq. (A·24) is
formally given as

Gðk; i!nÞ ¼ ðG0ðk; i!nÞ"1 " %ðk; i!nÞÞ"1; ðA:27Þ

where %ðk; i!nÞ is the self-energy.
In the CDMFT, the k dependence of the self-energy is

omitted as %ði!nÞ and local Green’s function within a cluster
is given as

Gcl
ss0ði!nÞ ¼

1

Nc

X

k

½ði!n " 2AðkÞ " %ði!nÞÞ"1)ss0 ; ðA:28Þ

where Nc is the number of the clusters. Cavity Green’s
function is introduced as

Gði!nÞ"1 ¼ Gclði!nÞ"1 þ %ði!nÞ: ðA:29Þ

This is obtained in the path integral formalism in the
Majorana fermion representation introduced in Ref. 251 (see
Refs. 39 and 40 for more details).

In the DMFT scheme,252,253) the original lattice problem is
reduced to an impurity problem embedded in a dynamical
medium. In general, the impurity problem is still difficult to
solve because of quantum many-body interactions. In the
present case, however, the impurity problem can be solved
exactly, as the Majorana fermions are noninteracting. Green’s
function for the impurity, which is in this case for a cluster, is
calculated as

Gimp
ss0 ði!nÞ ¼

X

f%rg
pðf%rgÞGf%rg

ss0 ði!nÞ; ðA:30Þ

with

Gf%rgði!nÞ ¼ ðGði!nÞ"1 " 2Bf%rgÞ"1; ðA:31Þ
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where pðf%rgÞ is the weight of the configuration of f%rg,
which is given by

pðf%rgÞ ¼
Zf%rg
!X

f%rg
Zf%rg
!

: ðA:32Þ

Zf%rg
! is calculated from Green’s functions as

Zf%rg
! ¼

Y

n00
det½"Gf%rgði!nÞ): ðA:33Þ

Finally, the self-energy for the impurity problem is
obtained as

%ði!nÞ ¼ Gði!nÞ"1 "Gimpði!nÞ"1: ðA:34Þ

Using this self-energy, local Green’s function is recalculated
by Eq. (A·28). These procedures are iterated until the
following self-consistent condition is satisfied:

Gclði!nÞ ¼ Gimpði!nÞ: ðA:35Þ

In the calculation of Gimp
ss0 ði!nÞ in Eq. (A·30), pðf%rgÞ and

Gf%rgði!nÞ are exactly enumerated for all the 2Ns=2 config-
urations of f%rg within the cluster (Ns is the number of sites
in the cluster, namely, N ¼ NsNc). Thus, the Majorana-based
CDMFT technique provides a concise method without
statistical errors. It is also free from and any biased
approximation except for the cluster approximation.
Although the mean-field treatment under the cluster approx-
imation leads to a fictitious phase transition at low T, the
cluster-size dependence is sufficiently small in the entire
range of T above the critical temperature.39,40)

A.3 Continuous-time quantum Monte Carlo method
Although the Majorana-based QMC and CDMFT tech-

niques enable to compute thermodynamic quantities, they
cannot be applied to computation of spin dynamics since the
dynamical spin correlations do not commute with the local
conserved quantities f%rg. To overcome this difficulty, the
Majorana-based CTQMC technique was developed in
Refs. 39–41. We introduce the framework in the following.

Let us focus on the dynamical spin correlation hSz
i ð,ÞSz

j i,
where the sites i and j belong to the z bond r ¼ r0. As the spin
operator Sz

i ð,Þ is given by Sz
i ð,Þ ¼ &i!ið,Þ !!ið,Þ (the sign

depends on the sublattice of the honeycomb structure), we
need to track the time evolution of !i and !!i on the bond r0. In
the Kitaev model, the dynamical spin correlations of the μ
component are nonzero only on NN μ bonds, similar to the
static correlations in the ground state. Hence, all other %r for
r ≠ r0 remain static in the time evolution of S$

i ð,Þ. The
situation is similar to the impurity Anderson model, to which
the CTQMC technique has been applied, particularly as an
impurity solver in the DMFT.

The procedure for the calculation of the dynamical spin
correlations is as follows. First, we prepare the configurations
of f%rg by using the Majorana-based QMC or CDMFT
technique in the previous sections. Then, the dynamical spin
correlation is calculated as

hSz
i ð,ÞS

z
j i ¼

1

N%

X

f%rg
½S$

i ð,ÞS
$
j )

f%rg0 ; ðA:36Þ

where N% is the number of the f%rg configurations; !Of%rg0 is
calculated in a similar manner to Eq. (A·9) by taking the trace

over the configuration f%rg except for %r0 . The CTQMC
technique is applied to the numerical calculation of
½Sz

i ð,ÞSz
j )f%rg

0
for each configuration of f%rg0.

In the calculation of the dynamical spin correlations,
following the CTQMC technique for the impurity Anderson
model used in the DMFT scheme, the Hamiltonian Eq. (A·1)
is divided into three parts:

Hf%rg0 ¼ Hloc þHhyb þHf%rg0
bath ; ðA:37Þ

where

Hloc ¼
1

2

X

ij2r0
Aloc
ij !i!j; ðA:38Þ

Hhyb ¼
1

2

X

i2r0; j=2r0 and i=2r0; j2r0
Ahyb
ij !i!j; ðA:39Þ

Hf%rg0
bath ¼ 1

2

X

ij=2r0
Af%rg0
ij !i!j: ðA:40Þ

Here, Aloc
ij ¼ Jz

4
!!i !!j for the bond r0, A

hyb
ij stands for a matrix

element connecting between a site on r0 and another one not
on r0, and Af%rg0

ij in Eq. (A·40) represents a matrix element
between sites not on r0. Note that Aloc

ij and Ahyb
ij do not

depend on f%rg0. Thus, the problem corresponds to the two-
site impurity problem for Hloc in the CTQMC calculations
based on the strong-coupling (hybridization) expansion.254)

Tracing out the bath Hamiltonian Hf%rg0
bath by using the path

integral approach, the effective action for the two sites on the
bond r0 is given by

Sf%g0
eff ¼ Sf%g0

hyb þ Sloc; ðA:41Þ
where

Sf%g0
hyb ¼ " 1

2

X

ij2r0

Z +

0

d,

Z +

0

d,0 *ið,Þ#f%rg0
ij ð, " ,0Þ*jð,0Þ;

ðA:42Þ

Sloc ¼
X

ij2r0

Z +

0

d, *ið,Þ
"ij
2

@

@,
þ Aloc

ij

' (
*jð,Þ: ðA:43Þ

Here, *i stands for the Grassmann number corresponding to
!i=

ffiffiffi
2

p
. The hybridization function is given as

#f%rg0
ij ð,Þ ¼ T

X

n

e"i!n,#f%rg0
ij ði!nÞ; ðA:44Þ

with

#f%rg0
ij ði!nÞ ¼ "4

X

ll0=2r0
Ahyb
il ½ði!n " 2Af%rg0Þ"1)ll0A

hyb
l0j : ðA:45Þ

In this formalism, the partition function for the two sites is
given by

Zloc ¼
Z

D*e"Sloc ; ðA:46Þ

where D* ¼
Q

i;n d*i;!n . Using this, the expectation value of
O in the two-site problem is obtained as

hOiloc ¼

Z
D*Oe"Sloc

Z
D*e"Sloc

: ðA:47Þ

The partition function of the whole system is written by using
the above expression as
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Zf%rg0
!

Zloc
¼

Z
D*e"S

f%rg0
hyb e"Sloc

Z
D*e"Sloc

¼ he"S
f%rg0
hyb iloc: ðA:48Þ

Then, the dynamical spin correlation for a given config-
uration of f%rg0 is given by

½Sz
i ð,ÞSz

j )
f%rg0 ¼ 1

Zf%rg0
!

Z
D*Sz

i ð,ÞS
z
j e

"Sf%rg0
hyb e"Sloc

¼
he"S

f%rg0
hyb Sz

i ð,ÞSz
j iloc

he"S
f%g0
hyb iloc

: ðA:49Þ

This is calculated by expanding the hybridization e"S
f%rg0
hyb in

the expectation values on the bond r0 as

he"S
f%rg0
hyb Oiloc ¼

X

d

X

i1;...;i2d2r0

Z +

0

d,1 + + +
Z +

0

d,2d

* 1

ð2dÞ!
hT,*i1 ð,1Þ + + + *i2dð,2dÞOiloc

* Pfð#̂f%rg0 ðd; i1; . . . ; i2d; ,1; . . . ; ,2dÞÞ;
ðA:50Þ

where d is the order of Sf%rg0
hyb in the expansion of e"S

f%rg0
hyb ,

PfðMÞ is the Pfaffian of a skew-symmetric matrix M, and
#̂f%rg0 ðd; i1; ,1; . . . ; i2d; ,2dÞ is a 2d * 2d matrix, whose matrix
element is given by

#̂f%rg0ðd; i1; . . . ; i2d; ,1; . . . ; ,2dÞmn ¼ #f%rg0
imin

ð,m " ,nÞ: ðA:51Þ
Note that the coefficient 1=ð2dÞ! in Eq. (A·50) comes from
the product of 1=ð2dd!Þ yielded from Eq. (A·42) and
1=ð2d " 1Þ!! whose denominator corresponds to the number
of terms in the Pfaffian.

To calculate Eq. (A·50), the configurations of
ðd; i1; ,1; . . . ; i2d; ,2dÞ in Eq. (A·50) are generated using the
Markov-chain MC method by regarding the integral as the
statistical weight for each configuration. In each MC step,
the configuration is updated by, for example, an increase of
the order of expansion d as ðd; i1; . . . ; i2d; ,1; . . . ; ,2dÞ to
ðd þ 1; i1; . . . ; i2d; i2dþ1; i2dþ2; ,1; . . . ; ,2d; ,2dþ1; ,2dþ2Þ by
adding ði2dþ1; ,2dþ1Þ; ði2dþ2; ,2dþ2Þ. To carry out the update
of the configuration, one needs to calculate the ratio of the
Pfaffians obtained by adding two rows and columns in the
matrix #̂f%rg0 :

Pf½#̂f%rg0 ðd; i1; ,1; . . . ; i2d; ,2dÞ)
Pf½#̂f%rg0 ðd þ 1; i1; ,1; . . . ; i2dþ2; ,2dþ2Þ)

: ðA:52Þ

This can be evaluated by the fast update algorithm, which has
been applied for interacting fermion problems (for example,
see Ref. 255); the calculation cost is in the order of d2. On
the other hand, hT,*i1ð,1Þ + + + *i2d ð,2dÞiloc and hT,*i1ð,1Þ + + +
*i2d ð,2dÞSz

i ð,ÞSz
j iloc in Eqs. (A·49) and (A·50) are calculated

by considering the imaginary-time evolution of all the four
states in the two-site problem on the bond r0.

The Majorana-based CTQMC technique is applied to
compute the dynamical quantities: the magnetic susceptibility
in Sect. 5.3, the dynamical spin structure factor in Sect. 5.4,
and the NMR relaxation rate in Sect. 5.5. Although it give
essentially the same results with the use of either the
Majorana-based QMC or CDMFT technique, the combina-
tion with the QMC technique can provides the results at

lower T, as the CDMFT results suffer from the fictitious
phase transition at low T as mentioned in Appendix A.2.
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