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Order by Disorder and Topology in 
Frustrated Magnetic Systems 

E.F. Shender and P.C.W. Holdsworth 

ABSTRACT The phenomenon of order by disorder in frustrated magnetic systems is 
reviewed. Thermal, quantum, and even quenched noise may sometimes increase or­
dering in systems where energetics ensure a nontrivially degenerate classical ground 
state. In systems where the number of variables parametrizing the manifold of de­
generate ground states is not macroscopic, fluctuations may remove the degeneracy 
and reduce the symmetry to that of the Ising model. We concentrate on the kagome 
antiferromagnet, whose manifold of ground states has a macroscopic number of de­
grees of freedom. In this system, thermal fluctuations around ground states lead to 
entropically driven local spin nematic order at low T. The fluctuations are so strong 
that no single state or finite set of states is selected. We derive an effective Hamilto­
nian, giving a description in terms of the variables of a fluctuating surface. A novel 
phenomenon, that of quasi-nonergodicity, arising in a perfectly frustrated lattice, is 
briefl y discussed. 

16.1 Introduction 

In condensed matter physics, it is usual that fluctuations, whether thermal or quan­
tum, suppress order in the system in question. This is not, however, a rigorous rule. 
In this chapter, we consider a class of magnetic systems where order is induced-or 
at least the tendency to be ordered is increased-by fluctuations. 

In a "conventional" many-body system, the classical energy at zero temperature 
has a unique minimum for a state with long-range order (global degeneracies, 
such as the continuous rotations in the Heisenberg or XY models, or the "up" and 
"down" degeneracy of the Ising model not included). All fluctuations, whether 
thermal, quantum, or spatial fluctuations of the interparticle couplings, may lead 
only to a suppression of the order. 

The situation is quite different if the classical ground state of a macroscopic 
system is infinitely degenerate rather than unique. Such a property is a consequence 
of the special geometry of some lattices. Probably the simplest example is the Ising 
antiferromagnet on the triangular lattice. Considering a single triangle of spins, 
one sees that after fixing the direction of one spin to remove the global up-down 
degeneracy, a twofold degeneracy remains. Thus, a ground state degeneracy arises 
as the system is unable to simultaneously satisfy the minimum energy condition 
for all bonds in the system-the phenomenon known as "frustration." 
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A number of frustrated magnetic lattices are known for the Ising and rotationally 
invariant Hamiltonians. The classical Heisenberg systems are characterized by 
continuously degenerate ground states. These states form a surface in phase space 
parametrized by a set of continuous variables, which we refer to as the ground 
state manifold. The possibility of the system wandering over the ground state 
manifold without crossing any energy barriers, that is, the possibility of going 
from one ground state to another by a continuous change of variables, results in 
modes in the excitation spectrum at zero energy-the so-called zero modes. It is 
intuitively clear that the larger the number of zero modes, the easier it will be 
for the system to fluctuate and that the number of zero modes must depend on 
the dimension of the ground state manifold. As we will see, the most interesting 
cases are where the manifold is "macroscopically degenerate," that is, where the 
manifold has a dimension of order N, the number of spins. Such systems can be 
called strongly fluctuating, and it is natural to expect them to exhibit new types 
of cooperative behavior. No perturbation analysis of these systems is possible, as 
there are zeros in the denominators of the expansion, and every term in the series is 
divergent. The source of strong fluctuations is not related to the special properties 
of low-dimensional systems, despite the fact that some of the best examples are 
two-dimensional. It is rather the degeneracy of the ground state manifold that is 
the relevant factor. 

Fluctuations have a special role in these systems because they may partially lift 
the degeneracy and so make systems more ordered: The principal effect of frus­
tration is to ensure that the classical ground state manifold is of higher symmetry 
than the underlying Hamiltonian. Quantum or thermal fluctuations can dynam­
ically break this additional symmetry, restoring that of the Hamiltonian. For the 
classical Ising systems, the effect, called "order by disorder," has been proposed by 
Villian et al. [1], while order by quantum disorder was first considered by Shender 
[2]. 

The structure of this chapter is as follows: In Secs. 16.2 and 16.3 we consider 
order by disorder in systems where the number of zero modes, no, is finite, or even 
infinite, but not macroscopic, that is, no = Net, with a < 1. In Secs. 16.4 to 16.6, 
we discuss the much more interesting case of a system with a macroscopically de­
generate ground state manifold. The kagome and pyrochlore antiferromagnets are 
examples of such strongly fluctuating systems, which are under intensive theoret­
ical and experimental investigation at present. We show how, in the classical limit, 
order by disorder works to select from the manifold of possible states a subset of 
states that maximizes the number of zero modes. In the kagome antiferromagnet, 
this subset of states has nematic spin behavior. We present a topological mapping 
of the ground states for the kagome system and derive an effective Hamiltonian to 
represent it as a type of membrane problem. In this way, we are able to describe 
such systems in terms of the physics of fluctuating surfaces. 

Glassy behavior is observed in real kagome and pyrochlore systems by per­
forming "field cooled" and "zero field cooled" experiments [3,4]. However there 
is some evidence, both experimental [3, 4] and theoretical [5], that this behavior is 
not due to the presence of defects, as is the case in spin glasses [6]. Rather, it seems 
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to be due to the properties of the unifonnly frustrated pure system. Nonergodic be­
havior is observed in numerical simulations of the pure, undilut(:d kagome lattice 
[7,8], for which the tenn entropy glass [8] is appropriate. In Sec. 16.4, we discuss 
the relevance of this novel kind of nonergodicity to experimental observations. 

This is by no means a complete review of the field. We restrict ourselves to 
Heisenberg spin systems, presenting the main ideas and results only, and do not 
discuss specific systems under experimental study. Those interested in systems 
with Ising symmetry may look at Liebennann [9] and Leibowitz et al. [10] and 
references therein. 

16.2 Order by Disorder in a Heisenberg Magnet With 
One Additional Zero Mode (no = 1) 

16.2.1 Order by Quantum Disorder 

Let us consider a Heisenberg antiferromagnet on a body-centered cubic (bcc) 
lattice, with short-range exchange. We consider only nearest neighbor (NN) cou­
plings, 1], and next nearest neighbor (NNN) couplings, lz, and take the NNN 
coupling to be antiferromagnetic, i.e., lz > O. The bcc lattice can be considered 
as two interpenetrating simple cubic (sc) subsystems coupled by the parameter 1]. 
Without any magnetocrystalline anisotropy, the Hamiltonian is 

H = 1] L S]i.S2j + lz L Spi.Spj, (16.1 ) 
<i,j> <p=1.2;i,j> 

where S]i and S2i are spins from the first and second subsystems, respectively. The 
classical ground state of the system for a ratio 11]1/ lz not too large is presented in 
Fig. 16.1. This is the so-called "second kind" ordering in the bcc lattice. The struc­
ture can be considered as two interpenetrating sc antiferromagnetic subsystems. 
The local field of one subsystem on the other vanishes, leaving them disconnected 
and giving a degeneracy additional to the global Heisenberg rotational invariance. 

The additional degeneracy has consequences for the excitation spectrum of 
the system. For an arbitrary angle between spin directions in the subsystems, 
the classical Landau-Lifshitz equations of motion (or the quantum equations of 
motion in the limit of infinite S and finite value of energy 1 S2) lead us to an 
excitation spectrum consisting of two acoustic branches, each with a zero mode 
at q = O. The Goldstone, or zero energy, mode of one of these branches is due to 
the global Heisenberg invariance, while the second branch, which may be called 
the phason, corresponds at zero momentum (q = 0) to the out-of-phase rotation 
of spins in different subsystems. The absence of a gap is a consequence of the 
additional degeneracy of the ground state structure considered earlier [2]. Thus, in 
the classical treatment we have a one-dimensional manifold of ground states, with 
one zero energy mode coming from the phason branch at q = O. 

The phason mode is a true zero mode, in that the energy of rotation is zero to all 
orders of perturbation, not just in the harmonic approximation. In Sec. 16.4, we 
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FIGURE 16.1. Second kind of antiferromagnetic ordering on a bcc lattice. Open and closed 
circles represent sites on the two subsystems. The angle y between staggered magnetizations 
of the two subsystems is shown in the inset. 

encounter modes that are of zero energy in the harmonic approximation but are of 
nonzero energy in a higher order calculation. 

As is well known, for a real antiferromagnetic system, the classical approach 
is never rigorous, and quantum effects must be taken into account. The staggered 
magnetization is 

(16.2) 

where Np is the number of spins in subsystem p, and Upi is a staggered variable 
with values ±1 corresponding to the two Neel sublattices of the subsystem p. Mp 
does not commute with the Heisenberg Hamiltonian, which results in zero point 
motion around the classical Neel ground state. If the 11 coupling is small compared 
to h, it does not influence the quantum spin fluctuations within a subsystem very 
much, but it does result in a coupling of the fluctuations in different subsystems 
[2]. Although small, the energy of the coupling, Equant' is important because it 
depends on y, the angle between the staggered magnetizations MI and M2 (see 
Fig. 16.1). 

(16.3) 

It is easy to explain this result qualitatively in the limit of large S. To lowest order 
in 1/ S, only quantum spin fluctuations of the components perpendicular to the 
staggered magnetization exist. Choosing a coordinate system with the z axes di­
rected along M I , and with M2 in the x-z plane, we see that the interaction of the y 
components of spin is independent of y, while that between the x components in­
troduces a coupling between the two subsystems dependent on y, as S2x ~ cos(y). 
There is no contribution from SIx S2x if Y = 7r /2, so Equant has twice the magni­
tude for y = 0 as for y = 7r /2, in agreement with Eq. (16.3). This energy, Equant> 

is of the form of an effective biquadratic coupling between spins in the different 
subsystems and makes them collinear. Hence, the continuous rotational phason 
symmetry becomes broken by fluctuations and is replaced by Ising symmetry; that 
is, the fluctuations make the system more ordered. 
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Another way to treat the phenomenon is to represent the energy as 

1 
E = Egs +"2 L IiwlI (k), 

<n,k> 

(16.4) 

where Egs is the energy of the classical ground state, and wll (k) is the spin wave 
frequency at wave vector k, with branch index n. The system selects the state that 
minimizes the sum over spin wave energies, which, in tum, depends on y. The 
softest state is selected by fluctuations, and the two subsystems become aligned. 
Using the spin wave approach. one can calculate Equant rather accurately over the 
whole region of stability of order of the second kind, not just for small values of 

1111/h 
Lifting the phason degeneracy induces a gap in the phason branch [2]. This 

quantum exchange gap has been detected by inelastic neutron scattering [11]. 
Order by quantum disorder is very general in that it should exist in any quantum 

system with classically degenerate ground states. Perturbation arguments show 
that the quantum fluctuations select the softest state (or states), which provides 
the minimum energy. This conclusion has been confirmed by studies of different 
quantum spin systems (see [12, 13, 14, 15] and references therein). 

16.3 Order by Thermal Fluctuations 

At nonzero temperatures, thermal fluctuations contribute to the effective interac­
tion, as in Eq. (16.3). This contribution cannot be neglected at temperatures close 
to the Neel temperature TN, and it has been shown that it is necessary to take this 
effect into account to explain the stability of structures and TN values of some 
anti ferromagnetic garnets [2, 16]. 

In the classical limit, the energy Equant vanishes. and there is only thermal 
noise in the system. Villain [1], considering an Ising system, first showed that 
thermal fluctuations can lead to selection of preferred states in this limit. Henley 
[17] showed, using systems on face-centered cubic (fcc) and bcc lattices, that 
order by thermal disorder can make some states preferable in classical Heisenberg 
antiferromagnets. From this, one can see that thermal fluctuations in the classical 
system stabilize the same collinear spin state as in the quantum case at T = O. 

16.4 Systems With More Than One Zero Mode 

The Heisenberg anti ferromagnet on an fcc lattice consists of four interpenetrating 
sc lattices. Suppose again that the interaction lz within subsystems is antiferro­
magnetic and is much larger than the interaction 1111 between nearest neighbors on 
different subsystems. In the classical ground state, or in the mean field approxima­
tion, these four antiferromagnetic subsystems are decoupled from one another, and 
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FIGURE 16.2. Type A and type B structures for second-kind antiferromagnetic ordering 
on an fcc lattice. 

five independent variables are required to describe the ground state manifold. The 
excitation spectrum now consists of four acoustic branches, with three new true 
zero modes at q = 0, no = 3, corresponding to three phason-like sublattice modes. 
The effective biquadratic exchange interaction found in [2] again forces all spins 
to be collinear, but it does not fix the relative orientation of the four subsystems. 
To determine this, Yildirim et al. [18] introduced Ising variables ai to describe 
the spin orientation on the ith subsystem, relative to subsystem 1. Symmetry con­
siderations show that the four subsystems can be arranged in only two different 
ways, A and 8, as shown in Fig. 16.2. In arrangement A(8) the product of the 
four spins on each tetrahedron of nearest neighbors is positive (negative). Quantum 
fluctuations give rise to an effective interaction K 4(ai), the sign of which favors 
the arrangement A with spins ferromagnetic in [111] planes and antiferromagnetic 
from plane to plane. The magnitude of K4 is of order (11111 lz)4, which indicates 
that this interaction arises from simultaneous fluctuations of the four subsystems. 

As an example of a system with an infinite number of subsystems, we consider 
the body-centered tetragonal anti ferromagnet, in which there are dominant anti fer­
romagnetic interactions, lz, between spins in the same quadratic layer and much 
weaker interactions, 11, between nearest neighboring spins in adjacent layers (this 
case has some relevance for the lamellar copper oxides exhibiting high-temperature 
superconductivity). In the mean field approximation, every layer is a subsystem 
decoupled from all others, so the number of zero modes is proportional to the 
number of layers (= N 1/3) in the system. The effective biquadratic interaction 
indicates that the spins will all be collinear. To treat the next level of selection by 
order by disorder, the nth layer can then be characterized by the Ising variable an, 

defining the phase of its staggered moment. Symmetry forbids a term of the form 
a na(Il+I) in any effective interaction between planes; thus one might expect a ran­
dom sequencing of antiferromagnetic layers. However, Yildirim et al. [18] showed 
that quantum fluctuations produce an antiferromagnetic interaction, Keffana(n+2), 

between alternate layers, where Keff is the effective coupling, found to be of or-
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FIGURE 16.3. (a) The kagome lattice. (b) The v'3 x v'3 ground state. (c) The q = 0 ground 
state. 

der (I III / h)6. Thus, all couplings allowed by the Hamiltonian symmetry occur if 
fluctuations are taken into account. 

16.5 A System With a Macroscopic Number of Zero 
Modes: The Classical Kagome Antiferromagnet 

16.5.1 Ground State Manifold and Spin Origami 

The nearest neighbor Heisenberg antiferromagnet on the loosely connected kagome 
lattice, shown in Fig. 16.3a, is probably the simplest example of a system with a 
macroscopic number of zero modes. The Hamiltonian for the classical system may 
be written as the sum over triangles /). 

H=I L Si.Sj=~ L(SIA+S2A+S3A)2_ NI , 
. . 2 

<l,j> <Ll> 

(16.5) 

where I > 0 is the coupling constant and Si L\ is a spin of unit length in triangle 
/).. 

All ground states satisfy the requirement that the vector sum of spins over any 
triangle must be zero, leaving the three spins lying in a single plane with an angle 
of 1200 between each pair of spins. It is convenient to define the direction of the 
spin plane for each triangle by a unit vector perpendicular to its surface 

(16.6) 

with spins taken in a clockwise direction around the triangle. The special symmetry 
of the kagome lattice means that there is a continuous degeneracy of such ground 
states, involving local rotations of microscopic numbers of spins. The origin of the 
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degeneracy is closely connected with the lines of defects, which may be created 
in a coplanar state and may be understood by considering the two magnetically 
ordered states shown in Figs. 16.3b and c. These are just two of the special subset 
of coplanar ground states with all the spins lying in the same plane and the Dto 

vectors lying parallel or antiparallel to each other. The simplest nonplanar state 
can be generated from the ../3 x ../3 state by rotating a "weathervane defect": each 
triangle consists of a triad of spins A, B, C, and circling a hexagon one finds spins 
A - B - A - B - A - B, for example, which can be rotated at a cost of zero 
energy about the spin direction C. Rotating the spins through 1800 leads to a new 
coplanar state with defects in the magnetic order. Disordered coplanar states are 
characterized by longer sequences of neighboring spins, A - B - A - B ... , interior 
to the line of spins C, giving longer line defects. The q = 0 state has infinitely 
long line defects spanning the whole system. Starting from the ../3 x ../3 state, any 
nonplanar ground state and anyone of the aN coplanar states, where a ~ 0(1) 
[19] can be reached by rotating a series ofline defects. 

Together with Cherepenov and Berlinsky, we recently presented a way of vi­
sualizing geometrically the ground state manifold by mapping the spin planes of 
each triangle onto a membrane surface [5]. A spin triad from a triangle of the 
kagome lattice may be represented in spin space as a closed equilateral triangle 
(Fig. 16.4a). In this way, five spins which belong to two adjoining kagome lattice 
triangles, may be represented by two coplanar triangles sharing the edge that cor­
responds to the spin on the shared site. The relative orientation of the spin planes 
of the two triangles is given by the vectors Dto defined earlier. For the q = 0 planar 
state the DAS are all parallel, and the spin surface maps onto a macroscopic trian­
gular lattice (Fig. 16.4b), while in the ../3 x ../3 state, the Neel order of the Dto 

vectors means that alternate triangles are superposed on top of each other, and the 
whole spin surface folds onto a single elementary triangle (Fig. 16.4c). The ground 
state manifold is now represented by the configuration space of the spin membrane 
with undistorted triangles, and the line defects are folds in the membrane surface. 
Crumpled and buckled surfaces correspond to non planar ground states. We call 
this folding of the spin surface spin origami [5], a term first introduced by Chandra 
et al. [8], who considered the folding of line defects of large length scale. 

This mapping shows that the physics of the kagome system is related to that of 
membranes, or fluctuating surfaces (see [5] and [20)); we return to the mapping 
later. 

16.6 Selection of Coplanar States by Order by Disorder 

In this section, we show that order by disorder works, at small but finite temperature, 
to select from the ground state manifold the subset of coplanar states. First, one 
must calculate the excitation spectrum above the ground state for different points 
on the manifold. Zeng and Elser [21] showed, by numerical analysis of the spin 
wave equations of motion. that at least some ground state configurations have a 
complete branch of zero energy excitations. That is, a branch with zero modes, 
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(a) 

J 
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FIGURE 16.4. Spin origami: The spins of each triangle are mapped onto a triangular surface 
in spin space. (a) Five adjoining spins forming two triangles sharing a single edge. The 
relative orientation of the two triangles is given by the 0Ll. vectors (Eq. (16.6». For the 
planar state shown, this reduces to the direction of circulation around the edges of an 
origami triangle. (b) Section of the q = 0 state; the circulation is in the same direction for 
all triangles, and the mapping gives an extensive surface in spin space. (c) Section of the 
,.j3 x ,.j3 state; here the circulation is in the opposite direction for "up" and for "down" 
triangles, and the spin surface folds onto a single origami triangle. 

not just at q = 0, but for all values of q. In the work of Chalker and the present 
authors [7], we calculated the classical excitation spectrum for an arbitrary coplanar 
state. Using a local right-handed coordinate system with Zi parallel to SiLl., and Yi 
perpendicular, but in the spin plane, we find the same harmonic Hamiltonian for 
any coplanar state 

(16.7) 

The spin orientations are paramatrized by Si = (Et, E;, I-ai), withai determined 
from IS;I = 1. A summation convention is used to define the matrix M: Mii = 1; 
Mij = ! ifi, j are nearest neighbor sites; Mij = o otherwise. One of the eigenvalues 
ofEq. (16.7) turns out to be zero over the entire Brillouin zone, giving a complete 
branch of N /3 zero modes, in the harmonic approximation, for any coplanar state. 
This result has also been obtained for the q = 0 and .J3 x .J3 states by Harris et 
al. [22]. The same is not true of nonplanar states, and we proposed elsewhere [7] 
that any nonplanar state has fewer zero modes than a coplanar state. 

Using the mode-counting arguments of Chalker et al. [7], it is possible to esti­
mate the statistical weights, in the partition function Z, of the phase space around 
different ground states. First we note that the zero modes in this problem are only 
excitations at zero energy in the harmonic approximation. Higher-order correc­
tions give an effective quartic potential, and the zero modes are strictly quartic 
modes. A quartic mode gives a contribution of (T / J)I/4 to the classical partition 
function Z, while quadratic modes give a contribution (T / J)I/2. For a small re-
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gion of phase space containing a ground state characterized by N4 quartic, and N2 
regular quadratic modes, Z is of the form 

( T)(~+'!f) 
Z = A - A =aN 

J ' , (16.8) 

with a a constant of order unity. The partial free energy of the region of phase 
space near different ground states, which we define f = - T In(Z), is 

( N4 N2) (T) f = - T N In(a) - T 4 + 2 In J . (16.9) 

It is clear that, in the limit T ---+ 0, the system can maximize the partition function 
and minimize the partial free energy for such a region of phase space if it ap­
proaches one of the states with the maximum number of zero modes. We therefore 
conjectured [7] that the system should select from the manifold of states the subset 
of coplanar states, as it is these states that have the maximum number of zero 
modes. We confirmed this conjecture by Monte Carlo simulation [7]. We see the 
buildup of nematic correlations in the Df>, vectors. The correlation function g(r) is 
defined 

(16.10) 

where the brackets ( .. ) indicate a thermal average, and the sum is over the Nr pairs 
of triangles Q' and,B, with Ira -r,81 = r. g(r) becomes nonzero over the system sizes 
studied, for T / J < 0.01, and tends to unity in the limit T ---+ O. The presence 
of quartic modes is also evident in the specific heat. Classical equipartition of 
energy gives a contribution of 1/2k8 to the specific heat for each quadratic mode, 
and 1/4k8 for each quartic mode, where k8 is Boltzmann's constant. In total, for 
the N spins with Heisenberg interactions, there are 2N modes, N /3 of which are 
quartic. The specific heat per spin is therefore C u / Nk8 = 11/12 rather than unity. 
Comprehensive simulation results for other thermodynamic quantities are given 
by Huse and Rutenberg [23] and Reimers and Berlinsky [24]. 

From Eq. (16.9), we see that the difference in partial free energy between two 
coplanar states that are distant in phase space is ~ NT, while if two states have 
numbers of zero modes differing by t:.N4, their free energies differ by the change 
in this number, t:.f ~ t:.N4T In(T / J). Spin origami is a useful tool for visualizing 
this change. Starting from a coplanar state, if we rotate a line defect, this corre­
sponds to making a fold in the planar spin surface. If the line defect is rotated away 
from the planar region, N 4 will decrease by the number of hexagons touching the 
fold, as the quartic modes associated with these hexagons will become quadratic. 
The change in free energy is then t:.f ~ LT In(T / J) [8], where L is the length 
of the line defect. In a typical nonplanar state represented, in spin origami, by a 
substantially crumpled surface, the number of zero modes will be much less than 
for a planar state, with the probable result t:.N4 = N /3 - N4 ~ N. 
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One can understand from this folding why long equilibration times are observed 
in simulations for coplanar states with long line defects [7, 24]. In traversing 
between two coplanar states via a nonplanar, or crumpled, state, the system must 
traverse large free energy barriers, which may be of order L and will lead to 
nonergodicity. The term entropy glass, introduced by Chandra et al. [8], therefore 
seems a very suitable one to describe the system. 

The considerations of this section do not allow us to determine which one of the 
coplanar states has maximum probability. Harris et al. [22] derived the momentum­
dependent magnetic susceptibility from a high-temperature expansion and con­
cluded that it is maximal for the -J3 x -J3 state, indicating that its statistical 
weight is the biggest. One might think that this should result in its ultimate se­
lection, and the development of a staggered magnetic moment corresponding to 
-J3 x -J3 order in the limit T --+ O. This is the conclusion of the self-consistent 
treatment of Chubukov [25], and in Huse and Rutenberg [23], Monte Carlo data 
are extrapolated to the limit T --+ 0 to give evidence of such a moment. However, 
it would remain unsaturated (i.e., < 1), and it is clear that fluctuations remain right 
to the limit T --+ O. In the next section, we examine the strongly fluctuating nature 
of the system and show that the question of long-range order is far from resolved. 
We present arguments that suggest there should, in fact, be no development of 
magnetic order as T --+ O. 

16.7 Does the Question "What Particular Coplanar 
State Is Selected?" Make Sense? 

In the Monte Carlo study of Reimers and Berlinsky [24], they show a snapshot of a 
well-relaxed low-temperature state. The snapshot clearly does not show evidence 
of the ultimate selection of the -J3 x -J3 state; rather, it shows a composition of 
different -J3 x -J3 domains. It is simple to produce such domains, starting from 
the -J3 x -J3 state and flipping weathervane defects and more complicated spin 
clusters. In three possible weathervane defects, spins AB, BC, or AC are rotated. 

This result can be understood by estimating the free energy cost of creating a 
domain wall in the -J3 x -J3 state. From the preceding counting modes argument, 
the difference in free energy between the two coplanar states is in the constant A, 
defined in Eq. (16.8), and the only difference here must be from the contribution 
of the spins along the line defect, or domain wall. If the length of the wall is L, we 
may write 

(16.11) 

where AI and al are constants related to the -J3 x -J3 state, and Az and az to 
the domain state. The difference in free energy between the two states is therefore 
~f '" LT. 

If we consider a state that is a set of domains of typical length L of the order 
of several lattice spacings, then there are a macroscopic number of line defects 
with total cost in free energy of order NT. The probability of having one such 
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state would be smaller than that for the .j3 x .j3 state by a factor exp( -aN), 
where a is a numerical factor. However, the number of possible states of this kind 
is of order (TIN!), where TI is a different numerical factor, which suggests that 
the ensemble of domain states should be preferred over the .j3 x .j3 state. Of 
course, thF. real situation is somewhat more complicated because there are states 
with a distribution of domain size L (see Ref. [8]) whose distribution function 
peL) falls off with L very slowly, peL) ,....., L -2/3, but these can only increase 
the weight of the nonmagnetic states, relative to the .j3 x .j3 state. These rough 
arguments, involving the smallest domain sizes only, explain the domain structure 
observed in Monte Carlo snapshots, and we believe they incorporate the essential 
physics involved. No large domains of either the q = 0 state, or of other states 
characterized by different configurations of the spin triad making up the coplanar 
state, were observed by Reimers and Berlinsky [24]. The only evidence of different 
structures was the observation of one very small domain of the q = 0 state [26]. 
This is probably because the coefficient a that characterizes them is somewhat 
smaller, with the result that they occur with too small a probability to be observed 
in the small system sizes studied. 

If we consider the statistical weight as a function over the subspace of coplanar 
states, it will have a maximum for the .j3 x .j3 state. However, the maximum 
will be very flat, and the system will not spend much time in this state. The picture 
that emerges means that the classical kagome antiferromagnet really is a strongly 
fluctuating system. We therefore cannot restrict ourselves to the .j3 x .j3 state 
and states close to it when we calculate the partition function. Neither can we take 
into account only a finite number of coplanar states. In this sense, the question 
"What state is selected by fluctuations?", given very often in the beginning of the 
study of these systems, has no sense. 

16.8 An Effective Hamiltonian and Description as a 
Fluctuating Surface 

The part of phase space that we have to take into account to describe the system 
consists of all coplanar states and states slightly distorted from them. For the zero 
modes, or in the soft zone, the anharmonic forces cannot be ignored, as we have 
discussed. These describe the interaction of zero modes with the conventional spin 
waves [7], 

H3 = (J /2) L Xi.Zj(E(2 Ej - E}2 En, 
(i,j) 

and the interaction between the zero modes themselves [7], 

H4 = (J /16) L(E(2 - E}2)2. 
(i.n 

(16.12) 

(16.13) 

The product Xi.Zj in Eq. (16.12) has a very simple interpretation; it is proportional 
to the chirality of the pair of spins, ai, j , defined as + 1 ( -1) if spin Si must be rotated 
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clockwise (anticlockwise) to lie in the direction of Sj, giving x;.Zj = ./3/2(a;,j)' 
It is interesting that H4 , like H2 , is independent of the coplanar state that is being 

considered, while H 3 , because of the coefficient Xi.Z j, is state dependent (see also 
Ref. [25]). The Hamiltonian H3 contains the interaction of two zero modes with 
the spin wave modes associated with Ex. There is no interaction, in H3 , between 
the zero modes, as no term proportional to Ey 3 is possible because of symmetry 
reasons. In H4, terms of the form Ex 2Ey 2 are omitted, as they are not relevant. 

To obtain an effective zero modes Hamiltonian, we will integrate over the fast 
motion, that is, over spin wave degrees of freedom. In order to do this, we must 
diagonalize H2, as done by Chalker et al. [7] and Harris et al. [22]. Once in Fourier 
space, the spin wave part of H2 is diagonalized by the linear transformation 

3 

EX Jl(k) = LCJla(k)Ea(k), (16.14) 
a=1 

where indices J-L = 1, 2, 3 are for the three sites in the kagomlS lattice unit cell 
with coordinates 'I = (a, 0), '2 = (aI2, -v'3aI2), and'3 = (0,0). Values of the 
eigenvalues and eigenvectors may be easily obtained [7, 22]: 

3 1 
Al = 3, A2,3 = 2 ± 2-14(cos2(kl) + cos2(k2) + cos2(k3)) _. 3, (16.15) 

en", = CJl2 = - (2 - AJ-L)2 + cos2(k1) , ( 
CJl1) 1 ( COS(k1)cos(k12)+(2-AJ-L)cos(k12) ) 

CJl3 NJl cos2(k l ) cos2(kd + (2 - AJ-L) COS(k2) 
(16.16) 

where kl = kxa, k2 = (kxa - ./3kya)/2, k12 = k 1a - k2a and the normalizing 
factors N Jl are 

N1 = sin(k1),J2(1 - COS(k1) cos(k2) COS(k12) 

N2 = (Al(k)(1 + cos2(k 12 ) + cos2(k2)) - N 12f /2 

N3 = (A22(k)(1 + cos2(k 12 ) + cos2(k2)) _ N12) 1/2 

(16.17) 

Integrating exp( -f3(H2 + H3 + H4» over all Ex and the Ey not associated with the 
zero modes, we get the following effective Hamiltonian: 

He!! = 

Ret,R~, 

Pf3, p'f3' 

a'p' (' ') T Ret' - P f3' 

(E~et)2 (EPf3r a(Ret ,Ru,f(Pf3,p'f3')' 

where the tensor T a ' P' (r) is 

a'p' (' ') T Ret' - P f3' = 

(16.18) 
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3 
-
4 

~ 1 (' ') L, A,/l(k) C/lal(k)C/l,BI(k)cos(k. Ral - p (31 ). 
J.L = 1,2,3 

k 

(16.19) 

Ra , R::r, P {3' p' {3' run over all the sites of the kagome lattice, Ra = R + r a, where 
R is the coordinate of the unit cell, and ra is the coordinate of the site within the 
cell. Pairs of coordinates for the chirality (e.g., (Ra, R::r,) are nearest neighbors. 

We keep, in Eq. (16.18), only the part of Ey associated with the zero modes. 

EY = _1_ ~ EY(k)e-i(k,Ra) 
Ra ..flii L;: a ' 

E&(k) = Cal (k)Ei(k). (16.20) 

The calculation of the partition function from the effective Hamiltonian for zero 
modes presented earlier implies integrating over all continuous variables Ey and 
summing over all allowed sets of chiral variables (j • 

The principal feature of the Heff is the absence of the elastic quadratic term, so 
fluctuations are even more important than for conventional membranes [27]. It is 
not surprising that the chiralities interaction, which originates from the third-order 
coupling of two zero modes and a spin wave mode, turns out to be long ranged. 
At a large distance between two bonds, the leading contribution to Ta',B' (r) comes 
from the term with J.L = 3, as A,3(k) "" k2 for small k and provides a power-law-like 
fall in Ta',B' (r) with distance. 

The Hamiltonian Heff gives a rigorous description of the thermodynamic prop­
erties of the classical kagome antiferromagnet at low T. This puts the classical 
kagome antiferromagnet in the class of highly fluctuating surface problems. A 
self-consistent approximation to this problem would involve decoupling the prod­
uct of four continuous variables and replacing one of the pairs by an average for 
a fixed configuration of chiralities. It has been shown [25]-using a technique 
that, if one started from our Heff , would be equivalent to this decoupling-that 
the ../3 x ../3 state is selected and that the branch of zero modes is replaced by a 
temperature-dependent acoustic branch. The neglect of fluctuations means that not 
enough weight is given to the disordered states that have only a marginally smaller 
probability and whose sum will have a larger weight than that of the magnetic 
state. 

16.9 Magnetic Field Effects 

In the presence of an external magnetic field, h, along the direction i, the term 

h L i,SAi 
2 A ,i_1,2,3 

(16.21) 
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is added to the Hamiltonian. The minimum energy condition becomes, for each 
triangle, 

(16.22) 

This condition may be satisfied for canted states, where the three spins in a triangle 
no longer lie in a single plane, and for planar states where all spins are coplanar 
with the magnetic field. There is a continuous degeneracy of spin triads for both 
the canted and the planar states, which satisfies the minimum energy requirement. 
In addition, there are an infinite number of ways of distributing any of these triads 
over the kagome lattice for any ground state, as in the case of zero field. It is easy to 
see that there are also states that contain more than three possible spin orientations. 
These may be obtained from the .j3 x .j3 distribution of a spin triad by rotating, 
for example, a SI - S2 - ... hexagon about the axis defined by S3 - 2hJ z. Thus, 
the magnetic field does not remove the infinite ground states degeneracy unless 
the field exceeds the value he = 61, which makes all spins collinear. 

In order to predict which states are entropically selected, we need, as in the 
zero field case, to identify the states with the maximum number of zero modes. 
The harmonic analysis shows immediately that all coplanar states have the same 
soft zone as in the zero field, though the nonzero harmonic modes and anharmonic 
corrections are field dependent. For the canted states, simple qualitative arguments 
show that only those with .j3 x .j3 order of the spin triads have the same branch 
of N 13 zero modes [28]. Counting of modes arguments is unable to distinguish 
between these states. We find numerically that entropic selection of planar order is 
maintained in the presence of a field, although the tendency to order is weakened by 
the field. This is because in the presence of a field the minimum energy condition 
does not imply spin coplanarity for a single spin triad. Rather, the selection of a 
unique spin plane for each triangle is driven by order by disorder, as well as the 
coplanar selection for all triangles. This is contrasted with the case of zero field, 
where the spins of each triangle are confined to a single plane by the minimum 
energy requirement of the ground state. This is illustrated in Fig. 16.5, where we 
show the probability distribution function P(W) for the quantity W 

W = _(S_I_X_S_2_)_.S_3 
lSI x S21 ' 

(16.23) 

where Si are the spins of a given triangle. P(W) is calculated from all triangles 
over a Monte Carlo run of 107 Monto Carlo steps (MCS) for both hi 1 = 1.0 
and the zero field case. In both cases the temperature was T 11 = 0.00025. In 
the presence of the field, the distribution has a measurable width, showing the 
existence of fluctuations out of the plane, while for zero field the distribution is 
extremely narrow, and the planar condition for each triangle is almost perfectly 
satisfied. 

A magnetic field is the principal experimental tool used to study nonergodic­
ity in magnetic systems. There is, however, a very important difference between 
the entropy glasses we are considering now and spin glasses. In spin glasses, a 



274 16. Order by Disorder and Topology 

50 

40 

30 
P(W) 

20 

10 

-0.5 o 
w 

0.5 1 

FIGURE 16.5. peW) versus W for field hi J = 1.0 (solid curve) and for zero field (broken 
curve). 

bifurcation is observed in the field cooled (FC) and zero field cooled (ZFC) mag­
netizations at Tf . This kind of behavior is not possible in the model studied here, 
as the minimum energy condition (16.22) dictates that all low-energy states must 
have the same magnetic moment, M / N = h/6J. This is confirmed by our Monte 
Carlo simulations. Thus, states separated by high-entropy barriers have the same 
magnetization, and no history dependence can occur. Probably a higher-order sus­
ceptibility will be sensitive to the freezing history in entropy glasses. 

Magnetic measurements performed on the antiferromagnet SrCrgG'4019 [3], 
which has to a good approximation the kagome structure, and on some pyrochlore 
compounds [4], which also have an infinitely degenerate classical ground state 
structure, demonstrate unambiguously the existence of a bifurcation in the FC and 
ZFC magnetizations below a freezing temperature Tf . Structural disorder in the 
pyrochlore system [4] was so small that Gaulin et al. [4] were able to conclude 
from their neutron scattering and X-ray measurements that the glassy behavior 
was "intrinsic to the pure pyrochlore magnets." It is difficult to make the same 
stoichiometric samples of SrCrgG'4019; however, Martinez et al. [3] were able 
to show that it is very improbable that spatial disorder is the source of the glassy 
behavior. These results are consistent with theoretical arguments that show that 
low concentrations of defects do not cause spin glass behavior in pyrochlore [29] 
and kagome [5] antiferromagnets. 

A possible source of energy barriers and metastable states leading to the bifur­
cation in the FC and ZFC magnetizations are weak perturbations to the Heisen­
berg Hamiltonian. For example, an easy plane single ion magnetic anisotropy 
DS~, D > 0 makes coplanar states energetically preferable in zero field and pro­
duces energy barriers for transitions from one coplanar state to another. If this 
results in a bifurcation in the two magnetization curves and a remnant magne-
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tization, then the difference between the two curves should disappear when the 
magnetic field is large enough to depress the energetic structure created by the 
weak anisotropy. This is exactly what has been seen in the pyrochlore compound 
[4]. The experimental situation does not exclude easy axis anisotropy D < 0, 
and some results suggest it is present [3]. Numerical work on a kagome system 
with easy axis anisotropy shows a rich ground state structure, with an Ising-like 
magnetic transition [30]. It is not excluded that this energy structure could also 
lead to bifurcation between the FC and ZFC magnetizations. 

From the preceding discussion, it is clear that the field should not change the 
number of zero modes associated with the preferred states. This is consistent with 
the recent experimental observation that the specific heat behavior observed in 
SrCrgGa4019, Cv ~ T2, is not sensitive to the application of a field [3]. 

16.10 Effect of Spatial Disorder 

In a pure frustrated magnetic system, the symmetry allows a high ground state 
degeneracy. Impurities change the balance of interactions and remove the degen­
eracies. For example, take the single frustrated triangle of Ising spins considered 
in Sec. 16.1. If the first spin is fixed, a twofold degeneracy exists because of the 
two equivalent ways of placing the frustrated bond. If one of the bond stengths is 
changed, the frustrated bond has a unique preferred position and the degeneracy is 
lifted. It has been shown that, as long as the number of zero modes is not macro­
scopic, any finite concentration of defects will remove the degeneracy of the pure 
system completely [17, 32]. The result of this lifting of degeneracy depends on 
the symmetry of the perturbation introduced by defects, the space dimension, and 
the degeneracy manifold [32]. Site disorder results in the selection of one of the 
states from the initial ground state manifold [17]. Bond disorder may induce an 
Imry-Ma-type instability [33], leading to a state without any long-range order. 

The situation for the pyrochlore and kagome lattices, where the number of zero 
modes are macroscopic, is quite different. Using spin origami for the kagome lat­
tice, we recently demonstrated that for clusters containing not too many impurities 
we are still able to minimize separately the energy of each triangle, as was the 
case for the perfect lattice. The discrete spectrum of local spin energies found in 
simulations by Huber and Ching [34] may be explained immediately by this result. 
However, impurities necessarily introduce spin canting into the system, as the min­
imum energy requirement is no longer compatible with the spins being coplanar. 
The spin canting introduced by an impurity can either be localized, involving only 
a finite number of spins surrounding the defect, or extended, where the impurity 
introduces a set of folds spanning the whole system. The free energy, which makes 
coplanar states more preferable, will favor configurations with localized canting, 
as this maximizes the coplanar area. We find that for an impurity embedded in a 
domain of the .J3 x .J3 state, the area of canted spins is the two-hexagon region 
containing the impurity. This is the minimum canted area; thus. even the minimal 
number of spins canted out of the spin plane by a nonmagnetic defect is large, 
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and one would expect nematic order to disappear for a very small concentration 
of defects. All these results were confirmed by Monte Carlo simulation, where 
we showed that 2% of impurities is sufficient to remove spin coplanarity almost 
completely. 

The possibility of satisfying spin configurations locally leads to the ground state 
energy being independent of the configuration of impurities. Therefore, as long as 
this is true, impurities do not produce conventional spin glass behavior. Above a 
critical concentration Xc> one can no longer minimize separately finite clusters of 
spins, and one might then expect the system to behave as a spin glass. Analogous 
results have been found earlier for the pyrochlore lattice by Villain [29]. 

16.11 Quantum Kagome Antiferromagnets 

There have been two approaches to the study of the quantum kagome system. The 
first is the development of a self-consistent treatment in the quasi-classical limit 
S > > 1. Chubukov [25] and von Delft and Henley [35] assumed that it is possible 
to divide the phase space of the system into separate parts containing a coplanar 
state and states slightly noncoplanar but close to the given coplanar state. It was 
argued that the transition probability, T, between different coplanar states should 
be exponential, T = exp( _sm), where m is a positive and noninteger exponent. 
This approach leads to the conclusion that the perfect .J3 x .J3 state is stabilized 
at T = O. The smallness of the transition probability between any pair of coplanar 
states is not in any doubt, but it seems possible that the large number of states to 
which the system can tunnel should compensate for this small factor (that is, this 
would be similar to the contribution given by the large number of domain states 
in the classical problem). This would lead to the same kind of strongly fluctuating 
physics that we have discussed for the classical system. 

The second avenue of study is that of the S = 1/2 kagome antiferromagnet, 
which has been stimulated by the studies of 3He films adsorbed onto a graphite 
surface. No small parameter exists in this problem; that is, 1/ S cannot be treated 
as small, and so fluctuations are limitingly strong. It is therefore probably the 
best candidate for a disordered spin liquid ground state. Results obtained by Elser 
and collaborators [36], and several other groups [37, 38] are consistent with the 
existence of such a state. 

16.12 Conclusion 

The mapping of the kagome anti ferromagnet onto a fluctuating surface problem 
without an elastic term in the effective Hamiltonian guarantees a difficult time for 
anyone interested in further developments. In addition to the equilibrium thermo­
dynamics, there are also important dynamical questions. The kagome antiferro-
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magnet has been proposed as a new kind of nonergodic system, an entropy glass, 
which promises to be an extremely interesting challenge. 

Further theoretical and experimental work is required to explain the characteris­
tic bifurcation between the FC and ZFC magnetizations at a temperature Tf , which 
is observed in experimental kagome systems. We show, in discussing this point, 
that it cannot be explained in the framework of the classical Heisenberg model and 
that relevant weak interactions are required to explain the phenomenon. 

Many questions concerning the quantum problem are still wide open. While the 
S = 1/2 quantum system is doubtless one of the best candidates to find a spin liquid 
state, properties of systems with higher S values are very obscure. SrCrSG<4019, 
which is proposed as a kagome antiferromagnet, has S = 3/2. It is possible that this 
system is strongly fluctuating because of the large number of states to which finite 
spin clusters can tunnel to from the perfect ,J3 x ,J3 state. No real understanding of 
the properties of the experimentally studied systems is possible until the behavior 
of the quantum systems is understood. In this respect, the study of exactly solvable 
models will be extremely important (see, e.g., Refs. [39,40]). 
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