
Spin Models = “Economy” Strongly

Correlated Systems

Frustration  
 Ordering

Spin Ice, Fractionalization and Topology

My Fifteen Minute Presentation:
 “Quantum Annealed Criticality”
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Motivation:  Novel Materials with

Competing Interactions and Exotic 

Phases 
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2D Heisenberg Antiferromagnets at Finite Temperature

Hohenberg-Mermin-Wagner

Theorem (1966)                                            

No Long-Range Order

at Finite Temperatures

⇠ ⇠ a e
2⇡JS2

kT

Frustration                                          Discrete Symmetry-Breaking

at Finite Temperatures
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Sublattices classically decoupled
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Thermal Fluctuation-Selected Order:  A Simple Example
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J2

Thermally Fluctuation-Selected Order:  A Simple Example

Fluctuation Free Energy


    

           

Collinear States Selected
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Thermally Fluctuation-Selected Order:  A Simple Example

Discrete Z2 Relative Degree of Freedom  


~M1 · ~M2 = � = ±1
<latexit sha1_base64="aePFruVnPZ8pd4BS35Sqio5oN/I="></latexit><latexit sha1_base64="aePFruVnPZ8pd4BS35Sqio5oN/I="></latexit>

“Order from Disorder”

 (Villain 1977, Shender 1982, Henley 1989)  
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Thermally Fluctuation-Selected Order:  A Simple Example

Fluctuation Free Energy


    

           

Collinear States Selected


    

           

J1

J2

Fluctuation
Weiss Field

Spins like to align the  fluctuation Weiss 
field to their “easy plane” (Henley 1989).

“Order from Disorder”

 (Villain 1977, Shendar 1982, Henley 1989)  
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Order From Disorder

(courtesy, R. Flint)

Fluctuations Select “Soft” States from

Degenerate Ground-State Manifold

(Villain 80, Shender 82, Henley 89) 
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First Theory-Experiment Agreement on “Order from Disorder”
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More Recent Theory-Experiment Agreement on “Order from Disorder”

                                             (xy Pyrochlore spin system)



Thermally Fluctuation-Selected Order:  A Simple Example

Fluctuation Free Energy


    

           

Collinear States Selected
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J2

Fluctuation
Weiss Field

Spins like to align the  fluctuation Weiss 
field to their “easy plane” (Henley 1989).

“Order from Disorder”

 (Villain 1977, Shender 1982, Henley 1989)  
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Phase Diagram

Ising Transition Temperature

Intuitive Argument:  Z2 domains defined if 
   Heisenberg correlation length is longer
   than the domain wall thickness

PC, Coleman and Larkin (90)

J2

J2 /ln(J2/J1 )

J2

J1

J2

J1
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Long Wavelength Analysis Confirmed by Classical Monte Carlo

MC phase diagram: 

disordered 

ordered 

Finite Temperature Ising Transition

contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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                               Weber et al (03)

Also confirmed for the S=1/2 case

Any link with Experiment  ??
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The Iron Age of Superconductivity has Begun ! 14



Spin Structure from Neutron Scattering

Cruz et al (08)

Familiar Spin Pattern !!

Frustration in the Pnictides

      (J1-J2 Model)


          Yildirim (08)

          Si and Abrahams (08)
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Quantum Annealed Criticality 

P. Coleman  (Rutgers)
M. Continentino (CBPF)
G. Lonzarich (Cambridge)
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How can systems that have classical first-order transitions
                     display quantum criticality ??

Phys. Rev. Research 2, 043440 (2020)

P. Chandra (Rutgers)



Quantum Annealed Criticality 

P. Coleman  (Rutgers)
M. Continentino (CBPF)
G. Lonzarich (Cambridge)
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Classical and Quantum Phase Transitions
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Experimental Motivation:  Ferroelectrics

Classically First-Order !

Jona and Shirane, FE Crystals (1962)
McWhan et al., J.Phys. C (1985)
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PC, Lonzarich, Rowley and Scott, ROPP (2017)

Quantum Criticality with Classical First-Order Transitions !
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(Classical) Larkin-Pikin Mechanism

Interaction of strain with fluctuating critical order parameter

Diverging Specific Heat in a Clamped System

1st Order Transition in the Unclamped System

 <
�CV

Tc

✓
dTc

dlnV

◆2

LP Criterion for 1st Order Transition

Coupling of the uniform strain 
     to the energy density

Macroscopic Instability of the
         Critical Point

Discontinuous Phase Transition
�1 = K�1 � (K +

4

3
µ)�1

 ⇠ K
c2L
c2T

Shear Strain Crucial

   Generalization for the Quantum Case   ???
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(A. I. Larkin and S. Pikin, Sov. Phys. JETP 29, 891 (1969))



   Generalization for the Quantum Case   ???

Rewrite in terms of correlation functions (energy fluctuations)

Include dynamics and quantum tuning parameter

lim
T!0

� /
Z

dq d⌫ qd�1 �2(q, i⌫)

lim
T!0

[�] =
[qd+z]

[q4]

[�] =


1

q2

�

[⌫] = [qz]

Non-Singular for d + z  >  4  !!

   A Flavor for the Quantum Case
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̃ < 0 1st Order Transition(̃ = ��)



Generalized Larkin-Pikin Results
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New Lattice-Sensitive

Settings for Exploration

of Exotic Quantum Phases

PC, P. Coleman, M.A. Continentino and G.G. Lonzarich, 
Phys. Rev. Research 2, 043440 (2020).

Experimental Signatures

Elastic Anisotropy ??
Domain Dynamics??
Disorder ??
Metallic Systems ??
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