BERRY PHASE & TOPOLOGY Another look.

Jac Charchalson

2019, spring semester Versian

A diabatic evolution and Geometry of Hilber Space Remember to explore geometry of Hilber space we need to move inside it. Linear algebra is easy but the extra twist comes from COMPLEX NATURE of H.S. Lets nove in the H.S by following a porticular eigenstate but very slowly or adiabatically, e.z. R(t) can be P(t) Consider a hamiltonian H(+) = H(R(+)) R=(R, ... R) We can think of R as a vector in a set of porameters. in the D-dim space. No relation to real space! For each R we have a schof eigenstates of H(R): $H(\bar{R}) | h(\bar{R}) \rangle = E_n(\bar{R}) | h(\bar{R}) \rangle$ For simplicity, let's also assume En is descrite and how-degenerate

The adia batic theorem tells us: if $i \neq \Rightarrow 1 \varphi_{h}$ (t=o) >initially in the nth eigenstate $= \ln [R(t=0)]7$ it will remain in the nth state as long as the system evelves very slouly in time. $|\varphi_{\mu}(t)\rangle = C_{\mu}(t) |h(\hat{R}(t))\rangle$ So the path in the parameter space can define the path in the hilbert space. RSince time evalution is a unitary transformation Ch(t) should be a pare phase i'Ent/t $U^{\dagger}U=1$ e.g. Ch(t) = e or if H depends on $t \Rightarrow$ $i \mathcal{T}_n(t) = \frac{i}{\hbar} \int \mathcal{E}_n(t) dt$ $C_n = \frac{e}{h} e$ this phase will turn out to be very impostant, it accouts for some extra aspects hot captured by the 2ª factor. After that we plugging it into it = 14. (+17 = H (E (+1)) 4. (+)>

< ₩.6# × ik = 14	$\frac{2}{5t} \left(e^{ix_n (t)} - \frac{ix_n}{t} \right)$ $e^{ix_n (t)} - \frac{ix_n}{t}$	$\int_{0}^{t} t t' \epsilon_{n}(t') \int n\rangle$ $\lim_{n \to \infty} n\rangle = i$	3
2 5 t 8	n(t) = i < n(R(t))	$1\frac{2}{2+}$ In (R(+))	· ·
or ($\mathcal{Y}_{n}(t) = i \int_{0}^{t} dt'$	< n (R (+') 2+, 1 h (R	רנ'+)
Problem) Can you 11 ->	$= \oint_{C} \vec{A}^{*}(R) \cdot dR$	where $\overline{A}^{\mu}(R) = i < h(R)$	· · · · · · · · · / · · ·
This for	ctor also known	is called the Berry connection	· · ·
dynami Ling R	otily on the path cs. e.g. consider entions and watch	you drive home dometer. The final	· · ·
humber but <u>de</u>	is independent pends on the route	ef how fast you dr. you select.	
Problem 2: and	Show that if $\frac{2}{2R} < h(R) h(R)$	$2n(\bar{R}) n(\bar{R})?=1$ $2=0$, $\bar{A}^{n}(\bar{R})$ and γ_{n} dre REA	
			· · ·

Also we und to emphasize that gn is Gause independent: a new gause In (R) > = e is (R) [h(R)? =>
$A^{h}(e) = i < h(R) \frac{2}{aR} (h(R)) = i < h(R) e^{-is(R)}$ $\frac{2}{DR} e^{is(R)} h(R) = i < h(R) e^{-is} =$
+ i $(n) e^{-i\xi} e^{i\lambda} \frac{\partial}{\partial R} [n(R)] = -(n) \frac{\partial s}{\partial R} [n]$ + i $(n) \frac{\partial}{\partial R} [n] = A(R) - \frac{\partial}{\partial R} S(R)$
$\overrightarrow{A(R)} = \frac{1}{24} \left(\overrightarrow{R} \right) = i \left(c_{1} \right) \frac{1}{2\pi} \left(c_{1} \right) 1$
t t So we think that I can be always
but if we move in a close loop something
hew will happen: $R(t=0) = K(t=t_{final})$ $\Rightarrow H(t_0) = H(t_{final})$
In this case $g(t_{\bullet}) - \bar{g}(t_{\text{final}}) = 0$ and $\gamma_n = \oint \bar{A}^h(R) \cdot J\bar{R}$ is gauge interpendent
and known as Berry phase

It also looks line a vector $\overline{A}^{n}(R)$ 5 potential in $\overline{E} \notin M$ $\oint \overline{A}^{n} \cdot J R =$ $\frac{\int f f Magnetic flux}{\int Magnetic flux}$ $\frac{\int f F Magnetic flux}{\int Magnetic flux}$ It also means we can introduce a local field wind (R) which is called Berry aurvature:
$$\begin{split} \omega_{\mu\nu}(R) &= \partial_{R\mu} A_{\nu}^{\mu}(R) - \partial_{R\nu} A_{\mu}^{\mu}(R) \\ & \left(\nabla \times A \right) + hes \quad is \quad auti - symmetric \\ & feasor \quad of \quad rouk - 2 \\ similar + o \quad F_{\mu\nu} \quad in \quad E \notin M \end{split}$$
 $\mathcal{T}_{n} = \oint \overline{A}^{n}(R) \cdot dR = \frac{1}{2} \iint dR_{\mu} \wedge dR_{\nu} = \bigcup_{k \neq \nu} \frac{1}{(R)}$ this is to avoid double summation Diff. geonetry dRp AdRv T a surface are of a parellelogran formed by 2 vectors multiplied. Adrs dRp AdRs dRp AdRs - dRo AdRs Also, in 130 6/c Wyw is the rank-2 ant: -symmetric fensor it can be represented by the 3 componets; as a result we Read Luni-Civita in Wikipedia! $5 = \frac{1}{2} \in \frac{5}{2} \text{ Wpv}$ write it as CAh E Cis Levi- Civita) Symbol

Or $\overline{b}^{n} = \nabla_{R} \times \overline{A}^{h} = i \langle \nabla_{R} h(R) | \times | \nabla_{R} n(R) \rangle G$ $\widehat{a}^{n}(R) = i \langle n(R) | \frac{2}{2R} | n(R) \rangle$ and by analogy to the vector potential in SA 8n = ∯ b. . ds Ptoblen 3: Show that from Why = 2 Ky AU(R) - $\partial R_{\mu} A_{\mu}(R) \Rightarrow$ $\omega_{\mu\nu} = i \left[\langle \partial R_{\mu} n(R) | \partial R_{\nu} h(R) \right] - \langle \partial R_{p} n(\bar{R}) | \partial R_{p} n(R) 7]$ Thus the Berry phase is = Aharonov - Bohn phase The origin of the Berry phase is the physical magnetic flux confined in the physical flux tube

Berry phase & Aharonov - Bohn effect. Z heri heri heri heri has different length they will have bifferent how can we transport electron how can we transport electron how can we transport electron addie batically? Place in in the box and thrun the corner addiebet. The finite SIZE provides the gap to preserve the adiabatic transport barrier arrier no charge particle enters the cylindr -> no Lorents force! no effect on porticle notion in classical mechanics but even though \$=0 outside of the cylender, A is not DxA=0 is everywhere so we can ignorest but if we nove along a close loop which winds around the tube $\oint d\bar{r} \cdot A(r) = h \phi$ Global effect: One way to see it is to consider a Feynman path int: $\mathcal{L}^{\frac{1}{4}}$ SCF) where $S(r) = \int_{r}^{t} df d(\tilde{r}, r)$ C Lagrangian n the presence of vector potential $d \rightarrow d + (-e) A(\bar{r}) \cdot r$

Thui S = fotod + (-e)/A(r). dr dt -> : / $e^{i\Theta} = e^{\frac{i(-e)}{\hbar}} \int dr \cdot A(r)$ which is for closed loop = h\$\$\$\$\$\$ = h\$\$\$\$\$\$\$\$\$\$\$\$\$\$ is the to pological invariant. Next we want to show that adiabatic noving of the e around the tabe gets a Berry phase = Ahatonov - Bohm phase i.e. $\theta = \frac{i(-e)}{5} \oint dr A(r) = -h 2\pi \frac{\phi}{\phi}$ Po is the flux quantum = Po=2.017 · 10 Wb To de adiabatic transport we place e note a finite size cage (e.e. H should have excitation gap) $H = \frac{1}{2me} \left(\overline{p} + \frac{e}{e} A(r)\right)^2 + V(r - \overline{R}_0)$ any strongly confiningAlso we assume that pxA=0 $h = \frac{1}{mill}$ will work. $\overline{A}(\overline{r}) = \frac{\phi}{2\pi} \nabla \chi(r) \quad with \quad \oint an\overline{A} = \frac{\phi_0}{2\pi} \oint 4r \cdot \nabla \chi(r) \\ = h \phi$ one of the possible choices for $\chi(r) = \oint_{\emptyset} \varphi(r)$

Let us assume that our system is in the ground state described by $S_0(r-\bar{R}_0)$ when $\bar{A} = 0$ but in the presence of the flux 9 the solution becomes: $\Psi(\bar{r}) = e^{-i S_{R_0}(r)} S_0(\bar{r} - \bar{R}_0)$ here is before $\mathcal{J}_{R_{o}}(r) \equiv \frac{2\pi}{P_{o}} \int_{R_{o}}^{r} dr' \cdot A cr'$ in some path Note, hre we evaluate the integral Vinside the box. Since $\nabla x A$ (outside the box) = 0 P ' A(r) is define & inside the box. Ro Sinc Y(r) is Vgauge invariant i.e. 4+42 Also & can be a function of R. but not r. Different choices of B(R.) correspond gauge for BRMY connections in the parameter space. A different choice of X(T) corresponds to different Electro Magnetic gauge. Now we choose the gauge as such $\Psi(R_0^+\bar{b})$ is real $\Psi(\bar{r}) = e^{i\Theta(R_0)} - i \partial_{R_0}(r) = \frac{i\Theta(R_0)}{2} - \frac{i}{2} \partial_{R_0}(r) = \frac$ the box to fulfill this we simply can take $\dot{\chi}\theta(\bar{R}_{o}) = + \dot{\chi}(\bar{K}_{o}c\bar{r}+\bar{s})$ Using $\nabla_{\bar{R}_0} \Theta(R_0) = \nabla_{R_0} \chi_{R_0} (\bar{R} + \bar{b}) = \frac{2\pi}{R_0} [A(R_0 + b) - A(R_0)]$ $\mathbf{A}(\mathbf{r}) = \frac{\varphi_o}{2\pi} \nabla \mathbf{X}(\mathbf{r})$ We find that Berry connection Á(R.) = i < 4 | PR. 147 =

$= e^{-i\theta} e^{i\theta} (i) e^{i\theta} \theta e^{-i\theta} (i) = e^{i\theta} (-i) e^{i\theta} \nabla (-i) e^{i\theta} (-i) = e^{i\theta} (-i) e^{i\theta} e^{i\theta} (-i$
-it is a give - the V So
$= \underbrace{i}_{1}^{2} \underbrace{i}_{1}^{2} + \underbrace{i}_{1}^{2} \underbrace{i}_{1}^{2} + \underbrace{i}_{2}^{2} \underbrace{\nabla}_{2}^{2} + \underbrace{i}_{2}^{2} \cdot \underbrace{\nabla}_{2}^{2} \cdot \underbrace{\nabla}_{2}^{2} \cdot \underbrace{\nabla}_{1}^{2} \cdot \underbrace{\nabla}_{1}$
$-\frac{2\pi}{\phi_{o}}\left[\tilde{A}\left(\bar{R}_{o}+\bar{\Delta}\right)-\bar{A}\left(\bar{R}_{o}\right)\right] + i \int d\bar{r}^{2}\xi (\bar{r}-\bar{R}_{o})\nabla_{R_{o}}$ $S_{o}\left(\bar{r}-\bar{R}_{o}\right) = -\frac{2\pi}{\phi}\tilde{A}\left(\bar{R}_{o}+\Delta\right) + \frac{1}{2}\int dr^{2}\nabla_{r}\xi^{2}(r-\bar{R}_{o})$
$= -\frac{2\pi}{\phi_0} \tilde{A} (R_0 + \Delta)$
Lets showly vary to in a loop such that Rot D makes a circle around the AAA
$\chi = \oint d\overline{K_o} \cdot A(Ro) = -\frac{2\pi}{\varphi_o} \oint d\overline{R_o} \cdot \overline{A}(Ro+A) \qquad \qquad$
= - 21 P 7 Po hegative charge
· · · · · · · · · · · · · · · · · · ·

benerally, to force the notion of p we apply B, perpendicular to the graphe 2 Letis rewrite the eigenstate p in the symmetric gause: phane. Symmetric gause: $\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\phi/2} \\ \pm e^{i\phi/2} \end{pmatrix} e^{i\mathbf{p}\cdot}$ $\int u \| \text{ circle } \varphi - 2\pi i \|_{V_{Z}} \quad \int e^{-i\pi} \| e^{-i\pi} \|_{V_{Z}} \quad \int e^{i\pi} |e^{-i\pi} |_{V_{Z}} \quad \int e^{i\pi} |$ Calculate B.P. Lets $\theta = -i \oint_C \langle \psi(\mathbf{p}(t)) | \frac{\partial}{\partial t} | \psi(\mathbf{p}(t)) \rangle d$ $\theta = -i \oint_C dt \left[\frac{1}{2} \left(1, \ e^{-i\phi}\right) \begin{pmatrix} 0\\ i\frac{\partial\phi}{\partial t}e^{i\phi} \end{pmatrix} + i\frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(\frac{\partial\phi}{\partial t}e^{i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(\frac{\partial\phi}{\partial t}e^{i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(\frac{\partial\phi}{\partial t}e^{i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(\frac{\partial\phi}{\partial t}e^{i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(\frac{\partial\phi}{\partial t}e^{i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(1, \ e^{-i\phi}\right) \left(1, \ e^{-i\phi}\right) + \frac{1}{2} \frac{\partial\mathbf{p}}{\partial t} \cdot \mathbf{r}/\hbar - \frac{1}{2} \left(1, \ e^{-i\phi}\right) \left(1, \ e^{-i\phi}\right$ b/c of the interaction b/c over the close loop $\theta = \oint_C dt (\partial \phi / \partial t) / 2$ But if we use $\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm e^{i\phi} \end{pmatrix} e^{i\mathbf{r}}$

We can also Calculate B.P. from the pseutospin pou. 13 From: $H = v(p_x\sigma_x + p_y^{\rm wg} can \text{ write down}$ the direction of the pseudospin vector as blem. Problem: $\langle \psi | \sigma_x | \psi \rangle = \cos \phi, \quad \langle \psi | \sigma_y | \psi \rangle = \sin \phi \quad \text{and} \quad \langle \psi | \psi \rangle$ Show this by using symmetric gage y and the definition of So clearly \overline{p} is in the x-y plane (see Figin we also know that zotation of the spin by angle ϕ $e^{-i\phi S_z/\hbar} = e^{-i\phi}$ when rotated by 2π is equavalent of given a sign $\zeta - 1$ which is the same as $\ell' = -i \rho rotation$ by the π phase as CONNECTION to quantum Hell in graphche

Connection between B.P. and IQHE. 14 Going back to our starting discussion on IQHE. We coucluded that $E_n = \hbar \omega_c \left(\frac{h}{h} + \frac{1}{2} \right)$ and E = 1/2 two is the 8" point energy " (IX) But in graphene En= 0 Zebt n without the "0" p. eacry; let ne demonstrate that it's a direct Consequence of the B.P. = J Letis try to derive the Landau Revel semiclassically following Ousager. 10 when electron is to the mag. field any or lit ratios is allowed. But Bohr-Sourcetfeld rule tels us it must setisfy $\oint d\bar{r} \cdot \bar{p} = 2\pi n \cdot t$ h = 12.2For an electron in the magnetic field F= to K - eA => $\oint (\hbar \bar{\kappa} - e\bar{A}) \cdot r \, dr = 2\pi n\hbar \Rightarrow (\hbar \oint dr \cdot \kappa - e \oint dr \cdot A)/\hbar = 2\pi n$

"Lorent force" + coust from this we can write down: $\int_{1}^{S} ferh: \left(\oint dr \cdot (-er \times B) - e \oint dr \cdot A \right) / fr = 2\pi h$ $= - e B \oint dr \times r = 2e \Phi_{q}$ $= - e B \oint dr \times c) = (a \times b) \circ c$ = feax of = fux of the orbit under B $= e \oint dr \cdot A = -e \oint ds \cdot \nabla \times A = -e \Phi, all together$ $(2e\phi - e\phi)/= 2\pi h$ $e\phi = 2\pi h \Rightarrow \phi = hh/e = h\phi_0$ \overline{h} hote this coud. is flux in 2001 space question Few notes: D By the way in Bolk - Somerfeld quantization ture is ho zero energy term so we include it by artificially adding it live this $(\frac{1}{h} \int dr \cdot k - e \int dr \cdot A) / \frac{1}{h} = 2\overline{a} (n + \frac{1}{2})$ T this is so called Maslow index and it captures now the fully quantum mech. be havior. 2) Free 20 electron gas with the dispersion $E = \frac{1}{2m}$ noves along a circle with $W_c = \frac{28}{mc}$ (Larnov radiuc) Since the energy is a notion integral in the nomentum space the trajectory p= 12mE &

In the nomentum space we can write $\begin{bmatrix} p^2 \\ \frac{p^2}{2m} = \frac{\hbar^2 w^2}{2m} = \hbar w_c = \frac{\hbar}{c} = \frac{2\pi}{c} = 2 \end{bmatrix}$ $\pi k^2 = \frac{2\pi e^3}{2\pi}$ Consider the same quantization for graphene As nonentur of an electron is forced into a loop in addition to $\oint dr.k$ and $e \int dr.A/t$ we have $B.P. = \overline{D}$ or $(\pm \oint dr.k - e \oint d\overline{r}.A)/t$ $\pm (\overline{D}) = 2\pi (u \pm 1/2)$ Cancels the Maslov in dex. So since B.P. = π kills $2\pi \cdot \frac{1}{2} = \pi$ we ended up withe the same condition $\pi \kappa^2 = 2\pi ne B/t$ Since the dispersion for Dirac electrons is E = 5 tik we get tre= 2neBt and E = J. Vzebtin From this we can conclude in graphene the absence of the Zero Landau level is the consequence of the Berry phase TI! THE END