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1. SCOPE

These problems apply undergraduate quantum mechan-
ics to explain the quantum Hall effect. Their solution re-
quires familiarity with the Schrodinger equation and its
solutions for a one-dimensional harmonic oscillator, with
the use of operator commutators to establish simultaneous
eigenvalues, with periodic boundary conditions, and with
the use of the magnetic vector potential in a Hamiltonian
to describe the interaction of electrons with a magnetic
field.

I1. INTRODUCTION

The quantum Hall effect is one of the most striking and
surprising developments to occur in physics in the last 20
years or so. Discovered’ by von Klitzing, Dorda, and Pep-
per in 1980, the integral quantum Hall effect manifests
itself as a series of plateaus in the Hall resistance, Ry, of
materials containing fwo-dimensional electron systems.
Spectacularly, these plateaus, shown in Fig. 1, occur when
Ry is precisely given by

Ry=h/je*= (25 812.81//)Q, (1)

where 4 is Planck’s constant, e is the elementary charge,
and j is any positive integer, j=1,2,3,... . That the Hall
resistance, employed for years as an indicator of the sign
and density of free charge carriers in conductors and semi-
conductors, would exhibit behavior depending only on the
fundamental constants of nature struck many as truly re-
markable. For this discovery von Klitzing was awarded the
1985 Nobel Prize in Physics.? To date the simple result in
Eq. (1) has been shown to be correct to within a few parts
in 10°! This has led to the adoption of the quantized Hall
resistance as the international standard of resistance.>
Before presenting the problems themselves, a few intro-
ductory comments are required beginning with a definition
of the Hall resistance. Imagine a conductor (not necessar-
ily a simple metal) through which a current [ is flowing.
For simplicity take the shape of the conductor to be a long
thin slab as in Fig. 2. If the conductor is not a supercon-
ductor, there is a voltage drop V along the the direction of
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current flow. The ratio of ¥ to I is just the ordinary resis-
tance R=V/I. Consider now trying to measure a voltage
transverse to the current flow. By symmetry it should be
clear that no such voltage will be observed; there is no
reason for the charges to bunch up along one side of the
bar. On the other hand, if a magnetic field is applied per-
pendicular to the current flow (and parallel to the thin
dimension of the slab), then the Lorentz force will create
just such an accumulation. This in turn will produce a
voltage ¥ across the slab, transverse to the direction of
current flow. By definition the Hall resistance is this volt-
age divided by the current, I, Ry=Vg/I.

The notion of nwo-dimensional electrons also deserves
comment. Restriction of electrons to two dimensions is an
approximation to reality, just as in a game of billiards a
two-dimensional model suffices as long as the third dimen-
sion is unemployed—billiard balls usually don’t leave the
table! In our case a two-dimensional system of electrons is
simply one in which all motion occurs in a plane, the elec-
trons being confined to the plane by some atomic forces
that need not concern us. In fact, in most semiconductor-
based 2D-electron systems the actual thickness of the 2D
sheet is around 100 A, suggesting that “two dimensional”
really means “three dimensional, but very thin.” The most
common realization of such a system is known as a
MOSFET (metal-oxide semiconductor field effect transis-
tor). In such a device the electrons are confined to the
plane interface between the semiconductor (usually sili-
con) and an oxide grown on top of it. The original discov-
ery of the quantum Hall effect was made with a MOSFET
device. More recently, a different system has been em-
ployed, the semiconductor heterojunction, in which the 2D
electrons are confined at the interface between two differ-
ent crystalline semiconductors. Nevertheless, the only im-
portant thing is that the electrons can move freely in a 2D
plane but not in the perpendicular direction. Perhaps the
most amazing aspect of the quantum Hall effect is its sub-
lime indifference to the nature of the host material in which
2D electrons exist.

There are two fundamental ingredients to our under-
standing of the quantum Hall effect. The first is the so-
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Fig. 1. Hall resistance of a typical two-dimensional electron gas versus
magnetic field at a temperature 7= 50 mK. The dotted line is the classical
result. (This figure is courtesy of M. A. Paalanen.)

called Landau quantization of states induced by the mag-
netic field on free 2D electron motion. This magnetic
quantization produces the crucial gaps in the energy spec-
trum and is thoroughly examined in the problems that
follow. The second ingredient is known as localization.
While Landau quantization is within the scope of the typ-
ical undergraduate physics curriculum, localization phys-
ics is not. Consequently, only one of the two necessary keys
to the quantum Hall effect will be examined in these exer-
cises. The interested student is referred to the article by
Halperin* for a description of localization physics.

ITI1. THE PROBLEMS

Problem 1: The Hall resistance. Derive the classical for-
mula for the Hall resistance where, as shown in Fig. 2 a
slab-shaped conducting sample carries a current J parallel
to its long axis. The slab’s thickness and width are ¢ and w,
respectively, and a magnetic field B is applied perpendic-
ular to the sample. The conductor contains a volume den-
sity N of free carriers with charge —e. Show that trans-

Fig. 2. Schematic diagram of a configuration for measuring voltage drop
¥ along a conductor and the Hall voltage ¥y, transverse to the conduction
current I in the presence of a magnetic field B. The resistance R and the
Hall resistance Ry are determined from I, V, and Vj as indicated.
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verse to the current there exists a voltage of magnitude
Vy=1B/Nte giving a Hall resistance R ;= B/Nte.

Taking the view that a 2D electron system is really just
a thin 3D one, we can define the 2D areal carrier concen-
tration as N;=Nt and obtain the 2D classical Hall for-
mula:

Ry=B/Ne. (2)

As this formula suggests, a measurement of the Hall
resistance determines both the sign and the concentration
of the charge carriers in a conductor. This fact and the
simplicity of the measurement itself make the Hall resis-
tance one of the most frequently measured quantities in
solid state physics. As Eq. (2) shows, the classical Hall
resistance has a simple linear dependence on magnetic
field.

Problem 2: 2D electrons in a magnetic field. We now
turn to the quantum mechanics of 2D electrons in a mag-
netic field. Let the electron be confined to the x—y plane
and the magnetic field B be parallel to the z axis. The
Hamiltonian for such a free ‘“2D” electron is given by

e (p+eA)’  (prted)’+(pyted,)’
2m 2m

2

where A is the vector potential associated with the mag-
netic field B, i.e,, B=VXA. .

(a) Given that B= Bk, show that both A=xBj and
A= —yBi are equally good vector potentials (i, j and k are
the usual Cartesian unit vectors). .

(b) Using the “gauge” choice A= —y Bi, write down the
Hamiltonian and show that the commutator [H,p,]=0, im-
plying that p, is a good quantum number. For convenience
define k=p,/#i and then argue that the wave functions
Y (x,y) are of the form:

¥(x,p) =e*¢(p).

(c) Show that the Schridinger equation HV=EV re-
duces to the one-dimensional problem:

# & mo? )
(_EW-{_T »—w) )¢(J’)=E¢(}’),

with the definitions w,=eB/m and y,=#ik/eB.

(d) Show by analogy to the one-dimensional simple har-
monic oscillator that the eigenvalues E, of H are indepen-
dent of k and are given by:

E,=(n+Y%w, with n=0,1,2,3,....

Thus the magnetic field has induced a great condensa-
tion of the continuous energy spectrum of a free particle in
2D into a discrete set of highly degenerate levels. These
levels, known as Landau levels, are equally spaced by the
cyclotron energy, #iw., which is itself proportional to the
magnetic field strength. The gaps between the levels are
void of electronic states. (It is interesting to note that for
3D electrons no such gaps occur, a fact the interested stu-
dent can prove.)

(e) Show that the family of states belonging to the
ground Landau level (n=0) are extended in the x direc-
tion but are gaussian, and therefore localized, in the y di-
rection. For any k show that the gaussian is centered at
y=y, and has approximate width /, = y#/eB. The param-
eter I, is called the magnetic length.
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These eigenstates seem hardly related to the classical
circular cyclotron motion one might have expected. If any-
thing, our eigenstates appear to suggest a /inear motion of
the electron along the x axis! This confusion is due to the
choice of gauge we made at the beginning. Were the sym-
metric gauge A= (rXB)/2 chosen, eigenstates of manifest
circular symmetry would have resulted.

Problem 3. Degeneracy of Landau states. There remains
a critical aspect of Landau states that we must
investigate—their degeneracy. For any given Landau index
n there are many available £’s. Just how many? Consider
the rectangular region 0<x<L,, 0<y<L, in which we
wish to count states. The next question is what kind of
boundary conditions to impose. While we could insist that
the wave function actually vanish at the region’s bound-
aries, it is equivalent for the purposes of counting states to
use the so-called periodic boundary conditions in the x
direction.

(a) By insisting that ¥(x=0,y)=¥(L,,y) argue that
the allowed k-values are k,,=27m/L, with m=0,1,2,... .

(b) Given the association of k and y, show that there is
a maximum value M for the index m. Show that
M= LXL/Z‘ITI(Z) giving the number of states per unit area in
any Landau level as simply Ny=eB/h. The independence
of this degeneracy No from any material parameters (like
the electron mass) is central to the phenomenon of the
quantum Hall effect.

Problem 4. Quantum Hall effect. At this point we have
all the ingredients for exposing one of the two major rea-
sons for the quantization of the Hall resistance in 2D elec-
tron systems. Suppose many electrons are moving about in
the 2D plane. If the temperature is low enough these elec-
trons will reside in the lowest possible energy levels. But
electrons must also obey the Pauli exclusion principle,
which states that no two electrons can occupy the same
quantum state. Therefore, at most Ny=eB/h electrons per
unit area can be fitted into the lowest Landau level with
energy Ey="#iw,/2. (This argument ignores the spin of the
electron.”) Since the degeneracy N, depends linearly on
the magnetic field, it should be clear that the energy at
which the last electron is placed will depend upon the field.
Obviously if B is high enough, all the electrons can be in
the lowest Landau level.

Suppose that there are N, electrons per unit area in a
given sample, and that this is fixed. Adjust the magnetic
field so that precisely j Landau levels are completely filled
(at zero temperature) Show that the Hall res1stance (cf.
Problem 1) in this situation is given by Rgy=~#/je’. These
special values of Ry are precisely those at which the quan-
tum Hall plateaus are observed!

IV. DISCUSSION

The quantum Hall effect is thus intimately connected
with the discrete nature of the Landau spectrum. Exact

filling of an integer number of Landau levels produces the

correct Hall plateau values. Furthermore, a simple argu-
ment suggests why the ordinary, not Hall, resistance drops
to vanishingly small values (an experimental fact not pre-
viously mentioned) when the Hall resistance is at one of
the quantized values. Since the lowest j levels are' com-
pletely filled, the only way for energy to be dissipated, the
essence of resistivity, is by exciting electrons to the next
Landau level. But this next level is separated by a gap #iw,
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from the highest occupied level. At low enough tempera-
ture there is simply not enough thermal energy around to
bridge this gap.

While the existence of a discrete spectrum of Landau
levels is clearly central to the quantum Hall effect, it is
equally clear that it is not the whole story. Our simple
*““derivation” of the Hall plateau values ignores the fact that
they are plateaus! The exact filling of the Landau states
works only for specific values of the magnetic field, not
over ranges of field.

The solution to this conundrum lies in the unavoidable
imperfections in a real 2D electron system. Remarkably, it
is simply the existence of disorder, not its detailed nature,
that provides the key. One would think that the infinite
variety of possible defects would destroy the universality of
the quantum Hall effect. That it does not, helps to explain
why such a striking effect was never predicted and, when
discovered, created such amazement.

The role of disorder on 2D electron motion is beyond the
scope of these problems. It is possible, however, to outline
its role in the quantum Hall effect. Basically, the imperfec-
tions in the 2D plane, a nearby charged impurity atom, for
example, can effectively create new electron states not at
the exact Landau energies E,. These states are often local-
ized in the sense that an electron occupying one is trapped,
orbiting the ion, for example, and can therefore not con-
tribute to the transport of current through the sample. The
current is carried only by those untrapped electrons at the
exact Landau energies. It is now understood that as long as
the last filled electronic states are localized ones, i.e., in the
gaps of the ideal system, the Hall resistance maintains its

‘quantized value, the index j being the number of ideal

Landau levels that would be occupied at the given mag-
netic field. This is, of course, puzzling since it would seem
that the trapped electrons should be subtracted from the
density N; and the Hall resistance would therefore deviate
from the quantized value. In fact, the reduced number of
conducting electrons miraculously “speed up” exactly
enough to compensate for this and the quantized plateaus
remain. A subtle argument based on gauge invariance has
been proposed by Laughlin® to explain th1s result. The
reader is again referred to Halperin’s article® for further
discussion.

Soon after the discovery of the integer quantum Hall
effect came the observation’ of fractional Hall plateaus.
These new plateaus, seen only with the best samples, and at
generally higher magnetic field and lower temperatures,
correspond to the index j taking on fractional values, e.g. v

=1/3. In many ways this fractional quantum Hall effect®

1s more stunning than the integer effect. The understanding
of the integer effect is fundamentally based upon the exist- -
ence of energy gaps in the electronic spectrum. These gaps
have a simple explanation based upon the quantum me-
chanics of single free electrons in a magnetic field. Obser-
vation of additional plateaus outside the integer ones leads
to the inescapable conclusion that additional gaps must
exist. These additional gaps must derive from some physics
outside single electron quantum mechanics.

It is now firmly established that the fractional Hall pla-
teaus result from the mutual Coulomb interactions be-
tween electrons. These interactions create new many-body
gaps in the energy spectrum. In fact, the fractional quan-
tum Hall plateaus are signatures of new collective states of
the many-electron system. These collective states are called
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quantum ligquids and they possess novel correlations not
previously anticipated. One is tempted to argue that while
the integer quantum Hall effect perhaps should have been
theoretically predicted, the far greater complexity of the
many-electron problem makes it understandable that the
fractional effect would only be discovered by surprise.

V. SOLUTIONS.

Problem 1: The Hall resistance. Refer to Fig. 2 for geo-
metric details. Assume that the current flow down the bar
can be thought of as due to a uniform drift of the charge
carriers with some velocity v, The current density j, i.e.,
the current per unit cross-sectional area, is just j=1I1/tw
=Nev,; The effect of the magnetic field is to push the
charges sideways with a Lorentz force of magnitude F
=ev,B. Since the charges can not escape out the sides of
the bar they accumulate at one side and are depleted on the
opposite side. This charge separation produces an electric
field E opposing further accumulation. In equilibrium this
electric field precisely balances the Lorentz force so that
E=F;/e=v B. In turn, the electric field produces a Hall
voltage Vy across the sample given by Vy=Ew=wv,B.
Using the relation between the current density j and the
drift velocity, we obtain V= ( B/Nte)l. Defining the Hall
resistance Ry="Vy/I we get the desired result Ry= B/
Nte.

For two-dimensional systems an areal density N, of
charge is often more useful than a volume density N. Given
the layer thickness ¢, it follows that N,;=Nt and, in these
terms, that Ry;=B/Ne.

Problem 2: 2D electrons in a magnetic field. (a) The
curl operation can be evaluated using the determinant
method:

i j k
d a4 4
VXA= = 5; %
A, A, A,

Direct_substitution of either A=xBj or A =— ny gives
B=Bk.

(b) Substituting A= —y Bi into the Hamiltonian H=(p
+A)2/2m yields (in two dimensions),

H=p§/2m +(p,—eyB)}/2m.

Since the coordinate x does not appear in H, and since we
know the commutators [y,p,]=[p,,p,]=0, it follows that
[H,p,]=0. This means that p, is a good quantum number
and may be regarded as a constant parameter. We define
k=p,/#. The eigenfunctions for the problem must now
simultaneously satisfy:

Px‘l’(X,Y) =ﬁk\l’(x,y),

HY (x,p)=E¥(x,y).
Since the operator p, is given by —iid/dx, the first equa-
tion yields the desired result:

¥ (xy)=e%¢().

(c) The second eigenvalue equation is the Schrédinger
equation, and its solutions determine the energy spectrum.
We have
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HY=[(p,—epB)*+p1e™p(y)/2m,
=™ [ (Bik—eyB)?+pL16(p)/2m,

[ e*B? P
_ikx m 2 Y
=e (—2m (y—tik/eB) +2m)¢(y),
2 2
kx| TP 2. P
=e ( 7 =y 45 |40,

where w,=eB/m and y,=#k/eB. The right-hand side
must equal E‘I/=Ee’kx¢( »). Thus the required differential

equation is obtained (after replacing p, by —ifid/dy):

# & mo? 5
(—ﬁ W%-T y—=yo) )¢(y)=E¢(y).

(d) Begin by recalling the ordinary one-dimensional
Schrédinger equation for a simple harmonic oscillator with
frequency w:

#” & mo? 2 E
(—gmazt s 2o =B,

where z is a dummy coordinate. Our groblem looks ve
similar except we have a term (y—y,)° instead of just y“.
But this simply means that the center of the oscillations is
at y=y, rather than at =0 as you can see by making the
change of variable z=y—y,. For any given y,, i.e., for any
k, our problem is exactly like the corresponding 1D simple
harmonic oscillator. Most important, the energy levels for
the two problems must be the same. From your knowledge
of simple harmonic oscillators it should be no surprise then
that

E,=(n+3)fo, with n=0,1,2,....

This is a remarkable result: The allowed energy levels for

a free 2D electron moving in a magnetic field are identical
to a fictitious 1D simple harmonic oscillator. Note these
levels are discrete; without the magnetic field the electron’s
energy is a continuous variable.
" Note also that the energy levels do not depend on the
value of y, or, therefore, k. The “momentum” X in the x
direction creates no kinetic energy! Each value of n can
have, apparently, any value of k and thus the energy levels
are highly degenerate.

(e) Since you have already solved Problem 2(b), you
know that the x dependence of all Landau level states is of
the form of ¢**. Since the probability of finding the elec-
tron at any position is determined by I\I/iz, there is no
variation in the x direction. Hence, all values of x are
equally likely. We say the state is extended in this direc-
tion.

For the y direction it suffices to solve the 1D Schrodinger
equation from Problem 2(d). Since you are looking for a
gaussian solution, the easiest approach is to substitute in a

trial wave function ¢(z) = Ce—* , where C and g are
undetermined constants. The constant C can be ignored; it
is only important for normalizing the wave function. By
direct substitution you find:

# & mo?
(—z;zgﬁ—z—zz)ﬂz)
ﬁZ 2
=e_‘”2(—5; (4zza2—20)+———m;) zz).
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Since this must equal E¢(z) = Ee“’z2 the terms propor-
tional to z2 must vanish. This will determine the constant a
and you will find e=mew/24. Note also that with this value
of a one gets E=7iw/2, the correct energy for the lowest
Landau level. Now that you know the lowest state is a
Gaussian in the z direction you can estimate how close to
z=0 the electron remains. It should be clear that if z is
.much greater than @~ /%, the probability becomes very
small. Substituting in the definition of w, gives a~'/2

\/— 2]y with [y = \/ﬁ/e . Interestingly, the magnetic length
lo depends only on B not the mass m. At B=1 T this
length is [,=256.6 A.

Recall that the dummy variable z was used to simplify
things. Going back to the y coordinate shows that each
gaussian is centered at y=yy; y, itself depends upon k.

Problem 3 Degeneracy of Landau states. (a) Since
Y(x,y)=¢é ¢( y) the periodicity requirement becomes
e*Lx = 1 from which we conclude kL, must be a multiple
of 2. Thus k,,=2wm/L, with m=0,1,2,... .

(b) The value of y, is determined by k from the relation
yo—ﬁk/eB The electron wave function is centered at
=y,. Clearly, the value of y, can not be greater than L,
the extent of the sample in the p direction. From the re-
quirement that Yo< L, we get k<eBL,/#. It therefore fol-
lows that there is a max1mum value M of the index m given
by M = Lk, /2m= L Ly/21r10 where /; is the magnetic

length [, = \Hi/ eB. The number M is the total number of
available states in each Landau level in the available sam-
ple area. This determines the degeneracy per unit area to be
Ny=eB/h.

Problem 4. Quantum Hall effect. Since each Landau

level can hold the same total number of electrons, if there
are exactly j levels completely filled it must be true that
N;=jN,. But the Hall resistance is Ry= B/N, s Thus for
thls special c1rcumstance Ry= B/(ejN,), or using the def-
inition of No, Ry=h/jé’.
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That was when I saw the Pendulum.

with isochronal majesty.

THE FOUCAULT PENDULUM

The sphere, hanging from a long wire set into the ceiling of the choir, swayed back and forth

I knew—but anyone could have sensed it in the magic of that serene breathing—that the
period was governed by the square root of the length of the wire and by 7, that number which,
however irrational to sublunar minds, through a higher rationality binds the circumference and
diameter of all possible circles. The time it took the sphere to swing from end to end was
determined by an arcane conspiracy between the most timeless of measures: the singularity of
the point of suspension, the duality of the plane’s dimensions, the triadic beginning of 7, the
secret quadratic nature of the root, and the unnumbered perfection of the circle itself.

Umberto Eco, Foucault’s Pendulum (Harcourt Brace Jovanovich, New York, 1989), p. 3.
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