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Preface

In recent years there have been great advances in the applications of topology and
differential geometry to problems in condensed matter physics. Concepts drawn
from topology and geometry have become essential to the understanding of several
phenomena in the area. Physicists have been creative in producing models for actual
physical phenomena which realize mathematically exotic concepts, and new phases
have been discovered in condensed matter in which topology plays a leading role.
An important classification paradigm is the concept of topological order, where the
state characterizing a system does not break any symmetry, but it defines a
topological phase in the sense that certain fundamental properties change only
when the system passes through a quantum phase transition.

The main purpose of this book is to provide a brief, self-contained introduction to
some mathematical ideas and methods from differential geometry and topology, and
to show a few applications in condensed matter. It conveys to physicists the bases for
many mathematical concepts, avoiding the detailed formality of most textbooks.
The reader can supplement the description given here by consulting standard
mathematical references such as those listed in the references.

There are many good books written about the subject, but they present a lot of
material and demand time to gain a full understanding of the text. Here, I present a
summary of the main topics, which will provide readers with an introduction to the
subject and will allow them to read the specialized literature.

Very little in this text is my original contribution since the goal of the book is
pedagogy rather than originality. It was mainly collected from the literature. Some
time ago, I used to teach differential geometry in a graduate course about classical
mechanics and wrote a book (in Portuguese) on the topic. Now, I have adapted that
material and included ideas that appeared in the last years, to write the present book.

Chapter 1 is an introduction to path integrals and it can be skipped if the reader is
familiar with the subject. Chapters 2–4 are the core of the book, where the main
ideas of topology and differential geometry are presented. In chapter 5, I discuss the
Dirac equation and gauge theory, mainly applied to electrodynamics. In chapters
6–8, I show how the topics presented earlier can be applied to the quantum Hall
effect and topological insulators. I will be mainly interested in the technical details
because there are already excellent books and review articles dealing with the
physical aspects. In chapter 9, I treat the application of topology to one- and two-
dimensional antiferromagnets and the XY model. The framework presented here
can also be used to study other systems, such as topological superconductors and
quasi-metals. The appendices, although important for the application of differential
geometry to some problems in condensed matter, are more specific.
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Condensed Matter Physics

Antonio Sergio Teixeira Pires

Chapter 1

Path integral approach

1.1 Path integral
Aconvenient tool to treat topological quantum effects in quantum field theory is the path
integral technique, and in this chapter, I am going to present the basic ideas (following
mainly Ashok 1993). For more details I refer the reader to the references (Altland and
Simons 2010, Fradkin 2013, Kogut 1979, Schwartz 2014, Tsvelik 1996, Wen 2004).
Readers familiarwith the subject can skip this chapter. I will start by establishing the path
integral approach for the single particle in quantum mechanics in one dimension. The
formalism can then be easily generalized to arbitrary spatial dimensions.

In path integral formalism the aim is to calculate the probability amplitude that a
particle that starts at the position xi at a time ti ends up at a position xf at a time tf,
with tf > ti. From quantum mechanics we know that this is given by the time-
evolution operatorU t x t x( , ; , )f f i i which in the Heisenberg picture is written as

=U t x t x x t x t( , ; , ) , , , (1.1)f f i i f f i i

where ∣ 〉x t, is a coordinate basis for every time t. We divide the time interval
between the initial and final time into N infinitesimals steps of length

Δ =
−

t
t t

N
. (1.2)f i

Any intermediate time can be written as = + Δt t n t,n i with n = 1, 2, …, (N − 1).
Considering time ordering from left to right, we can write equation (1.1) as (see
figure 1.1)

∫= … 〈 ∣ 〉

… ∣
Δ → →∞

− − −

− − − −

U t x t x dx dx x t x t

x t x t x t x t

( , ; , ) lim , ,

, , , , .
(1.3)t N0,

f f i i N f f N N

N N N N i i

1 1 1 1

1 1 2 2 1 1
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We know that

=x t e x, , (1.4)iHt

where I have set ℏ = 1, and we should remember to put it back if we are going to
perform calculations. Therefore, we can write

∣ = =
=

− −
−

−
− −

−
− Δ

−

− −x t x t x e e x x e x

x e x

, ,

.
(1.5)n 1n n n n

it H it H
n n

i t t H
n

n
i tH

n

1 1
( )

1

1

n n n n1 1

Using the result

∫ π
= − −x H x

dp
e H x p

2
( , ), (1.6)ip x x

2 1
( )1 2

we find

∫ π
∣ =− −

− − Δ +
−

−( )x t x t
dp

e, ,
2

, (1.7)n n n n
n ip x x i tH

x x
p

1 1
( )

2
,n n n

n n
n1

1

where to get a Weyl ordered Hamiltonian I wrote H using the mid-point
prescription. Taking equation (1.7) into (1.3), and identifying x0 = xi, =x xn f we
can write

⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥
⎫
⎬
⎭

∫

∑

π π
= … …

− − Δ +

Δ → →∞

=

−

−
−

U t x t x dx dx
dp dp

i p x x tH
x x

p

( , ; , ) lim
2 2

exp ( )
2

, .
(1.8)

t N

n

N

0,

1

f f i i N
N

n n n
n n

n

1 1
1

1
1

Let us now consider a Hamiltonian of the type

= +H x p
p
m

V x( , )
2

( ). (1.9)
2

tf

t

ti
x

Figure 1.1. A discrete time axis and a path in quantum mechanics.
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This Hamiltonian covers a wide class of problems; however, some important
applications, as will be shown in the next section, do not fit into this framework.
Using equation (1.9) in (1.8) leads to

⎜ ⎟ ⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦
⎥⎥
⎫
⎬
⎭

∫

∑

π π
= … …

Δ −
Δ

− − +

Δ → →∞

=

−

− −

U t x t x dx dx
dp dp

i t p
x x

t

p

m
V

x x

( , ; , ) lim
2 2

exp
2 2

.
(1.10)

t N

n

N

0,

1

f f i i N
N

n
n n n n n

1 1
1

1
2

1

Performing the momentum integrals using the result for Gaussian integration

∫ π=
−∞

∞
− +dpe

a
e

2
, (1.11)

ap
bp b

a2 2

2 2

we obtain

⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎪ ⎪

⎪ ⎪

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥
⎫
⎬
⎭

∫

∑

π
=

Δ
…

Δ −
Δ

− +

Δ → →∞

=

−

− −

U t x t x
m
i t

dx dx

i t
m x x

t
V

x x

( , ; , ) lim
2

exp
2 2

.

(1.12)
t N

n

N

0,

1

f f i i

N

N

n n n n

/2

1 1

1
2

1

Taking → ∞N , while keeping − = Δt t N t( )f i fixed, we can substitute the sum by
an integral

∫∑Δ →
=

t dt, (1.13)
n

N

1
t

t

i

f

and write equation (1.12) as

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥
⎫
⎬
⎭∫ ∫ ∫= − =U t x t x Dx i dt m

dx
dt

V x Dxe( , ; , ) exp
1
2

( ) , (1.14)f f i i
t

t
iS x

2
[ ]

i

f

where

⎛
⎝⎜

⎞
⎠⎟∫=S x dtL x

dx
dt

[ ] , , (1.15)
t

t

i

f

L is the classical Lagrangian, S[x] is the action, and we have introduced the
integration measure

∫ ∫∏
ξ

=
→∞ =

−

D x t
dx

[ ( )] lim , (1.16)
N

n

N

1

1
n

with ξ π= Δi t m( 2 / )1/2. In some cases, more care must be applied in taking the
continuum limit, but here I am considering only the essential details. Equation (1.14)
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is the path integral for the probability amplitude of a particle in quantum mechanics.
Feynman’s idea of introducing the technique was that a particle going from A to B
takes every possible trajectory, with each trajectory contributing with a complex
factor eiS.

Each path is weighted by its classical action, there are no quantum mechanical
operators in the path integral. The quantum effects are present by the fact that the
integration extends over all paths and is not just the subset of solutions of the
classical equations of motion.

Following the same procedure, we can show that in quantum field theory with a
Lagrangian density ϕ ϕ∂μL ( , ) (where μ = t x y z, , , ) the amplitude transition from
the state ϕ r( )i to ϕ r( )f is given by

∫ ϕ ϕD r t e( , ) , (1.17)iS t r[ ( , )]

where the action is now given by

∫ϕ ϕ ϕ= ∂μS d x L[ ] ( , ) (1.18)4

In the path integral expression, the integration is performed over all possible paths in
which ϕ, which at an initial time took the configuration ϕ r( )i , evolves at the final
time tf into the configuration ϕ r( )f . The field ϕ in condensed matter is in general an
order parameter for a system, such as a superconductor or a ferromagnet.

1.2 Spin
One important application of the path integral approach in condensed matter is in
magnetic systems. However, in the integrand of the path integral formalism one has
an exponential of the classical action. But the spin is a fundamentally quantum
object and the mechanics of a classical spin cannot be expressed within the standard
formulation of Hamiltonian mechanics. We must resort to the coherent state
formalism. I will illustrate this for the spin 1/2 case. For a spin 1/2 particle, we
have only two states ∣ 〉sz , = ±s 1z , with zero energy, and s t( )z is not a continuous
function. To use the path integral approach, we use the coherent states ∣ ⃗〉n where ⃗n is
a unit vector and ∣ ⃗〉n describes different states. ∣ ⃗〉n is an eigenstate of the spin operator
in the ⃗n direction: ⃗ ∣⃗ ⃗〉 = ∣ ⃗〉n S n S n. .

We write

⃗ = = ( )n z
z
z , (1.19)1

2

with ∣ ∣ + ∣ ∣ =z z 11
2

2
2 . The total phase of z is not determined, so that we can write

⎛
⎝⎜

⎞
⎠⎟

θ
θ

=
ϕ−

z
e cos( /2)

sin( /2)
, (1.20)

i
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where θ ϕ( , ) are the polar coordinates of ⃗n . The coherent states ∣ ⃗〉n are complete, so
that we can write

⎜ ⎟⎛
⎝

⎞
⎠∫ π

⃗ ⃗ ⃗ =d n
n n

2
1 0
0 1

. (1.21)
2

Now we can calculate the amplitude 〈 ⃗ ∣ ∣ ⃗ 〉n U t n( , 0)2 1 that a state ∣ ⃗ 〉n1 at a time t = 0
evolves to the state ∣ ⃗ 〉n2 at time t. Since H = 0, we have U(t, 0) = 1. Inserting

∫ π
⃗ ⃗ ⃗d n

n n
2

, (1.22)
2

into 〈 ⃗ ∣ ⃗ 〉n n2 1 we obtain the path integral

∫ ∏
π

〈 ⃗ ∣ ⃗ 〉 = ⃗ 〈 ⃗ ∣ ⃗ 〉…〈 ⃗ ∣ ⃗ 〉〈 ⃗ ∣ ⃗ 〉
→∞ =

n n
d n t

n t n t n t n t n t nlim
( )

2
( ) ( ) ( ) ( ) ( ) (0) . (1.23)

N
i

N

N
1

i
2 1

2

2 1 1

Now

δ δ⃗ ∣ ⃗ = +n t n z t z( ) (0) ( ) (0), (1.24)

but, δ δ =+z t z t( ) ( ) 1, so we can write

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

δ δ δ δ δ
δ

δ

δ δ δ δ

⃗ ∣ ⃗ = − − = − −

= − ∂
∂

≈ − ∂
∂

+ +

+ +

n t n z t z t z z t
z t z

t
t

z t
z t

t
t z

z
t

t

( ) (0) 1 ( )[ ( ) (0)] 1 ( )
( ) (0)

1 ( )
( )

exp ,

(1.25)

which leads to

⎛
⎝⎜

⎞
⎠⎟∫ π

⃗ ∣ ⃗ = ⃗ ⃗n t n t D
n t

e( ) ( )
( )

2
, (1.26)iS n t

2 1
2 [ ( )]

(where D is the measure) with the action

∫⃗ = ∂
∂

+S n t i dtz
z
t

[ ( )] . (1.27)
t

0

This is an interesting result, despite H = 0, we have obtained a non-zero action. The
term eiS is here purely a quantum effect and is called the Berry phase. Berry phases
will be treated in more detail in chapter 6. We can also write equation (1.27) as

∫θ ϕ θ ϕ= − ∂
∂

S dt
t

( , )
1
2

(1 cos ) . (1.28)

If we have a spin ⃗S in a constant magnetic field ⃗ = − ⃗B Bn , and the ground state
energy is denoted by E0, the action in a time interval T is given by −E0T. Let us
consider what happens when the orientation of ⃗B changes slowly in time, writing

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics
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⃗ = − ⃗B Bn t( ). The ground state now evolves as ∣ ⃗ 〉n t( ) , and the amplitude probability is
given by

⎡
⎣⎢

⎤
⎦⎥∫⃗ − ⃗ ⃗ ⃗ =n i dtB t S n eexp ( ). . (1.29)

T
iS

0

Inserting many equation (1.22) terms into the time interval [0, T ] we find

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫ ∫⃗ − ⃗ ⃗ ⃗ = ⃗ ⃗−n i dtB t S n e i dti n t

d
dt

n texp ( ). exp ( ) ( ) , (1.30)
T

iE T
T

0 0

0

and the action can be written as

∫= − + +S E T i dtz
dz
dt

. (1.31)
T

0
0

We can see there is an extra term given by the Berry phase. As we will see later, this
is a topological term, and I will denote it by Stop to distinguish it from the spin S.

For general spin S, equation (1.28) can be written as

∫θ ϕ θ ϕ= − ∂
∂

S iS d[ , ] t(1 cos )
t

. (1.32)top

If the motion of ⃗n t( ) is such that its orientation coincides at the beginning and the
end of the time interval, and considering that in the spherical coordinate system
ˆ ˆ ˆθ ϕe e e( , , )r we have

θ ϕ θ⃗ = ˆ + ˆθ ϕ
dn
dt

d
dt

e
d
dt

esin , (1.33)

we can write equation (1.32) as

∮ ∮θ ϕ = ⃗ ⃗ = ⃗ ⃗
γ γ

S iS d
dn
d

A iS dn A[ , ] t
t

. . , (1.34)top

where we have defined

θ
θ

⃗ = − ˆϕA e
1 cos

sin
. (1.35)

Using Stokes’s theorem, we have

∮ ∮ σ⃗ = ⃗ ⃗ = ⃗ ∇⃗ × ⃗
γ γ

S n iS dn A iS d A[ ] . . ( ), (1.36)
A

top

but ∇⃗ × ⃗ = ˆA e ,r which leads to

∮ σ⃗ = ⃗ ⃗ = γ
γ

S n iS d e iSA[ ] . , (1.37)
A

rtop
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where γA is the region in the sphere S2 which has the curve γ as its boundary and
contains the north pole (see figure 1.2). The action Stop is thus a measure of the area
bounded by the curve γ ⃗ ⃗t n t: ( ).

Using ⃗ ≡ ∇⃗ × ⃗B A , equation (1.37) can be interpreted as the action for a particle
moving in a radial magnetic field of a magnetic monopole of strength 4π located at
the origin of the sphere.

If we had taken ⃗ = − ˆθ
θ

−
ϕA e1 cos

sin
, the newly defined vector potential would be non-

singular in the southern hemisphere, and we would have got

⃗ = − ′γS n iSA[ ] (1.38)top

where ′γA is the area of a surface bounded by γ but covering the south pole of the
sphere. The minus sign is due to the outward orientation of the surface ′γA . We can
see that the difference between the northern and the southern parts is given by 4πiS,
having in mind that the intersection between the two surfaces is the sphere. We will
come back to this subject in chapter 9, when we will discuss magnetic models.

1.3 Path integral and statistical mechanics
In statistical mechanics, the equilibrium properties of a system can be obtained from
the partition function β= −Z Htr exp( ), where ‘tr’ denotes a summation over all
possible configurations of the system. For a single particle we have

∫= =β β− −Z e dx x e xtr[ ] . (1.39)H H

The partition function can be interpreted as a trace over the transition amplitude
〈 ∣ ∣ 〉−x e xiHt evaluated at an imaginary time t = −iβ. The transformation t = −iτ is
called a Wick rotation. Although mathematically this can be a highly nontrivial
procedure, the formal prescription is simple. First, we make the substitution t = −iτ,
and then we define the imaginary time action SE using the real time action SM
through the correspondence

Ag

g

Figure 1.2. Region of integration in equation (1.37).
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≡τ=−
−e e , (1.40)iS

t i
SM E

where the subscripts E and M stand for Euclidean and Minkowskian space–time.
For a field ϕ t r( , ) in quantum field theory we have

∫ ϕ τ=
ϕ ϕ

ϕ τ

=

−Z D r e( , ) . (1.41)S r[ ( , )]

i f

Here we are summing over a path in which the field ϕ τ r( , ) obeys periodic boundary
conditions in the imaginary-time direction. In equation (1.41) we integrate over all
trajectories with the sole requirement ϕ ϕ=i f , with no constraint on what the
starting point is. All we must impose is that the field comes back to where it started
after Euclidean time τ. We can think of τ as parameterizing a circle.

While all bosonic fields are periodic in the time direction, fermionic fields should
be made anti-periodic: they pick up a minus sign as we go around the circle.

Following Tanaka and Takayoshi (2015) we define a topological term Stop as the
portion of the action which arises in addition to the kinetic action coming directly
from the Hamiltonian H. When using the imaginary time, the term Stop is purely
imaginary and hence contributes a phase factor to the Boltzmann weight −e S (this
leads to nontrivial quantum interference effects). The total action is generally of the
form: S = Skin + Stop.

Another way to introduce topological terms is the following. The symmetric
stress–energy tensor μνT can be defined as a variation of the action with respect to the
metric tensor μνg . More precisely, an infinitesimal variation of the action can be
written as

∫δ δ= μν
μνS dx g T g , (1.42)

where g dx is an invariant volume of space (see chapter 4). We define topological
terms as the metric-independent terms in the action. It follows that topological terms
do not contribute to the stress–energy tensor. We will study topological terms in
more detail later in the text.

1.4 Fermion path integral
A path integral over fermions is basically the same as for bosons, but we must
consider that fermions anti-commute. However, we cannot directly write a
Lagrangian for fermions, since they have no classical analogue. To implement the
path integral, we need the notion of anti-commuting classical variables that are
called Grassmann variables (Ashok 1993, Altland and Simons 2010).

A Grassmann algebra is a set of objects θi with the following properties:
(a) They anti-commute θ θ θ θ+ = 0i j j i . This implies θ = 0i

2 for any i.
(b) θ θ θ θ+ = +i j j i.
(c) They can be multiplied by complex numbers ∈a C.
(d) There is an element 0 such that θ θ+ =0 .i i
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For any θ, the most general element of the algebra is

θ= + ∈g a b a b c, with , . (1.43)

For two θ the most general element is

θ θ θ θ= + + +g a b c d , (1.44)1 2 1 2

and so on. In defining a derivative, the direction in which the derivative operates
must be specified. For a right derivative we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟θ

θ θ θ θ
θ

θ
θ

θ δ θ δ θ∂
∂

= ∂
∂

−
∂
∂

= −( ) . (1.45)
i

j k j
k

i

j

i
k ik j ij k

For a left derivative the result is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟θ

θ θ
θ
θ

θ θ θ
θ

δ θ δ θ∂
∂

=
∂
∂

− ∂
∂

= −( ) . (1.46)
i

j k
j

i
k j

k

i
ij k ik j

Here I will use left derivatives. Note that we have

θ θ θ θ
∂

∂
∂

∂
+ ∂

∂
∂

∂
= 0. (1.47)

i j j i

For a fixed i we have

⎛
⎝⎜

⎞
⎠⎟θ

∂
∂

= 0. (1.48)
i

2

If D represents the operation of differentiation with respect to one Grassmann
variable and I represents the operation of integration, we must have

= =ID DI 0. (1.49)

So, using equation (1.48) we see that the integration can be identified with
differentiation: I = D.

For a function we have

∫ θ θ θ
θ

= ∂
∂

d f
f

( )
( )

, (1.50)

which gives

∫ ∫θ θ θ θ= =d d, 1. (1.51)

If we write θ′ = aθ with ≠a 0, we find

∫ ∫θ θ θ
θ

θ
θ

θ θ= ∂
∂

= ∂ ′
∂ ′

= ′ ′d f
f

a
f a

a d f a( )
( ) ( / )

( / ). (1.52)
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For many Grassmann variables, if θ θ′ = ai ij j (where we sum over repeated indices)
with ≠adet 0,ij we get

∫ ∫∏ ∏θ θ θ θ= ′ ′
= =

−d f a d f a( ) (det ) ( ). (1.53)
i

n

i

n

1 1

i i ij i ij j
1

We define a delta function as

δ θ θ=( ) . (1.54)

We can verify that it satisfies

∫ ∫θδ θ θθ= =d d( ) 1. (1.55)

For a function f(θ) = a + bθ, we have

∫ ∫ ∫ ∫θδ θ θ θθ θ θθ θ θθ θ
θ

= = + = = ∂
∂

= =d f d f d a b d a
a

a f( ) ( ) ( ) ( )
( )

(0). (1.56)

For path integral calculations, we need Gaussian integrals. For two θi we have

∫ ∫θ θ θ θ θ θ= − =θ θ−d d e d d A A(1 ) , (1.57)A
1 2 1 2 12 1 2 12

1 12 2

where we have expanded the exponential in a Taylor series. The variable θ does not
need to be small; rather the exponential is defined by its Taylor expansion.

Let us now consider two sets of independent Grassmann variables θ θ…( , , )n1 and
θ θ…( , , )n1 . We want to calculate the integral

∫ ∏ θ θ= θ θ−I d d e . (1.58)
i j,

i j
Ai ij j

We have

⎡
⎣⎢

⎤
⎦⎥∫ ∏ θ θ θ θ θ θ θ θ= − + + …I d d A A A1

1
2

( )( ) . (1.59)
i j,

i j i ij j i ij j k kl l

The only non-zero term in this expansion is the one with all θn i and all θn i. This will
give

∑=
!

± … −I
n

A A
1

. (1.60)
ipermutations{ }

i i i i

n

n n1 2 1

If Aij is a matrix, equation (1.59) is a sum over all elements {i, j} where we choose
each row and column once, with the sign from the ordering. But this is just the
determinant. So the result is:

=I Adet( ) (1.61)
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It is easy now to show that

∫ ∏ θ θ =θ θ θ θ− + * + * −d d e A c A cdet exp( ). (1.62)
i j,

i j
A c c

i ij j
1i ij j i i i i

That is all we need for the fermion path integral.
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Chapter 2

Topology and vector spaces

2.1 Topological spaces
In topology two objects are considered equivalent if they can be continuously
deformed into one another through bending, twisting, stretching, and shrinking
while avoiding tearing apart or gluing parts together. In topology, we are interested
in the properties of objects that remain unchanged by such continuous deformations.
Topology differs from geometry in that geometrically equivalent objects often share
numerically measured quantities, such as lengths or angles, while topologically
equivalent objects resemble each other in a more qualitative sense. The size of an
object does not matter in topology, since we do not measure distances.

For instance, a cup can be continuously transformed into a torus, and therefore
they are topologically equivalent (figure 2.1), but we cannot deform a cup into a
double torus as shown in figure 2.2.

In topology, the idea of closeness, or limits, is described in terms of relationships
between sets rather than in terms of distance. Other types of spaces like metric spaces
and manifolds are generalizations of topological spaces with some extra constraints
or structures. A collection of objects is called a set. We denote byR the set of all real
numbers and by Rn the set of all n-tuples.

If A is a subset of a set X, then every point in X is one of just two types in relation
to ⊂A X either (i) x belongs to A; or (ii) it does not, in which case it belongs to the
complement AC of A defined as: = ∈ ∣ ∉A x X x A{ }.C

Here I will provide a quick introduction to some key ideas in topology. For more
information the reader is referred to the references (Flanders 1963, Hatcher 2002,
Isham 1999, Kelly 1970).

Definiton 1. Let X be a set. A topology on X is a collection T of subsets of X
satisfying the following conditions:

doi:10.1088/2053-2571/aaec8fch2 2-1 ª Morgan & Claypool Publishers 2019
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(1) T contains ∅ and X (where ∅ is the empty set).
(2) T is closed under arbitrary unions. That is, the union of any elements of

subcollections of T is in T.
(3) T is closed under finite intersections. That is, if ∈U U T,1 2 then

∩ ∈U U T .1 2

Example 1. Let X be a set of four elements X = {a, b, c, d}. There are several possible
topologies in the set X:

(a) = ∅T X{ , }

Figure 2.1. A cup can be continuously transformed in a torus.

Figure 2.2. A double torus.
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a b c d

(b) = ∅T a b c d X{ , { , }, { , }, }

a b c d

(c) = ∅T a b b c b a b c{ , { , }, { , }, { }, { , , }}

a b c d

The configuration is not a topology since ∪ = ∉a b a b T{ } { } { , } .

a b c d

Example 2. Now I am going to show that the collection

= ∅T X a c d a c d b c d e{ , , { }, { , }, { , , }, { , , , }}

defines a topology on the set X = {a, b, c, d, e}.
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(i) The calculation of the unions of members of T gives:

∪ ∪= ∈ ∈a c d a c d T a a c d T{ } { , } { , , } , { } { , , } ,

∪
∪

=
= ∈ = ∈

a b c d e a b c d e
X T c d a c d a c d T

{ } { , , , } { , , , , }
, { , } { , , } { , , } ,

∪ = ∈c d b c d e b c d e T{ , } { , , , } { , , , } ,

∪ = = ∈a c d b c d e a b c d e X T{ , , } { , , , } { , , , , } .

(ii) The calculation of the intersections of the members of T gives

∩ ∩= ∅ ∈ = ∈a c d T a a c d a T{ } { , } , { } { , , } { } ,

∩ ∩= ∅ ∈ = ∈a b c d e T c d a c d c d T{ } { , , , } , { , } { , , } { , }

∩ ∩= ∈ = ∈c d b c d e c d T a c d b c d e c d T{ , } { , , , } { , } , { , , } { , , , } { , } .

Thus all conditions for T to be a topology are satisfied.

Definition 2. A set X together with a topology T on it, is called a topological space
{X, T}. The elements of T are called open subsets of X. A subset ⊆F X is called
closed if its complement FC is open. A subset N containing an element ∈x X is
called a neighborhood of x if there is an open subset ⊆U N with ∈x U . Thus, an
open neighborhood of x is simply an open subset containing x.

Example 3. In example 2, the open sets are

∅ X a c d a c d b c d e, , { }, { , }, { , , }, { , , , },

and hence the closed sets are

∅X b c d e a b e b e a, , { , , , }, { , , }, { , }, { }.

The subset {a,b} is neither open nor closed. The subset {a} is both open and closed.

Example 4. A set V in the plane is a neighborhood of p if we can draw a circle
around p inside V (figure 2.3).

A rectangle is not a neighborhood of any point in its border (figure 2.4).

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

2-4



Definition 3. A point p is called a limit point of the set X if every open set containing
p also contains some point (s) of X different from p (p does not need to lie in X). So, a
set is closed if it contains all its limit points.

Definition 4. A topological space X is said to be Hausdorff if for any two distinct
points ∈x y X, there exist two disjoint open subsets U, V (U ∩ V = ∅) such that

∈x U and ∈y V .
Let A be a subset of the topological space X. An open cover of A is a collection C

of open sets whose union contains A. A subcover derived from the open cover C is a
subcollection C″* of C whose union contains A. A topological space X is said to be
compact if every open cover of X has a finite subcover. This says that however we
write X as a union of open sets, there is always a finite subcollection of those sets
whose union is X. Any space consisting of a finite number of points is compact.

The open interval (0, 1) is not compact. An open cover of (0, 1) is given by

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭= … ∞
n

n
1

, 1 2, , .

However, no finite subcollection of these sets will cover (0, 1). On the other hand, the
proof that [0, 1] is compact is quite elaborate. For our purposes we can say that
compact sets are the sets which are closed and bounded. Compact means intuitively
that the region R does not ‘go to infinity’ and does not have ‘holes cut out of it’ nor
have ‘bits of it’s boundary removed’. The surface of a sphere, the torus, and the set of
points lying within or on the unit circle are compact. The infinite Euclidian plane,
the open unit disc and the closed disc with the center removed are not compact.

A mapping ϕ →X Y: between two topological spaces is called continuous if, for
any open set ⊂U Y , the set ϕ ⊂− U X( )1 is open in X.

A map is called a homeomorphism (an isomorphism in the context of general
topology) if ϕ is a bijection and ϕ and ϕ−1 are continuous.

V
p

Figure 2.3.

V

p

Figure 2.4.
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(Note: a bijection is a mapping between the elements of two sets, where each
element of one set is paired with exactly one element of the other set, and each
element of the other set is paired with exactly one element of the first set.)

One of the main problems of topology is to understand when two topological
spaces X and Y are similar or dissimilar and to classify the different families of
spaces that are not equivalent under a continuous deformation.

2.2 Group theory
A group G is a set of elements a, b, c, … such that a form of group ‘multiplication’
(i.e. a rule for combining any two elements) may be defined which associates with a
pair of elements of the set a third element in the set (Lang 1968, Tinkham 1964,
Tung 1985). This multiplication must satisfy the following requirements:

(a) The product of any two elements of the set is in the set (i.e. the set is closed
under group multiplication).

(b) The multiplication is associative; for example, a(bc) = (ab)c.
(c) There is a unit element e such that ea = ae = a.
(d) There is an inverse a−1 to each element a such that aa−1 = a−1a = e.

If the multiplication is commutative, so that ab = ba, for all a and b, the group is said to
be Abelian. The number of elements in the group is said to be the order of the group.

Example 1. The set of integers ….−3, −2, −1, 0, 1, 2, 3… together with the addition
is a group called Z.

Example 2. The cyclic group of order 2, with two elements e and x such that ex = xe =
x and e2 = x2 = e. An example is the multiplicative group comprising 1 and −1.

Example 3. The circle group T, is the multiplicative group of all complex numbers
with absolute value 1. (It is also the group U(1) of ×1 1 complex-valued unitary
matrices.) It can be parameterized by an angle θ: θ θ= = +θz e icos sin .i

Example 4. The six matrices below, if ordinary matrix multiplication is used as the
group-multiplication operation, form a group

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= =
−

= −

= − −
−

= −
− −

= − −
−

E A B

C D F

1 0
0 1

, 1 0
0 1

,
1
2

1 3

3 1
,

1
2

1 3

3 1
,

1
2

1 3

3 1
,

1
2

1 3

3 1
.

A subset of a group G, which is itself a group is called a subgroup of G.
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Let S = e, s2, s3,… , sg be a subgroup of order g of a larger group G of order h. We
call the set of g elements ex, s2x, s3x, … , sgx a right coset Sx if x is not in S.
Similarly, we define the set xS as being a left coset. These cosets cannot be
subgroups, since they cannot include the identity element. In fact, a coset Sx
contains no elements in common with the subgroup S.

Example 5. Consider the subgroup of integers divided by 3. This forms a subgroup of
the additive group of integers with elements (…−9, −6, −3, 0, 3, 6, 9…). By adding 1
to each member of the subgroup we get the coset (…−8, −5, −2, 1, 4, 7, 10…).

Let G be a group and H a subgroup having the property that xH = Hx for all
∈x G. If aH and bH are cosets of H, then the product (aH)(bH) is also a coset, and

the collections of cosets is a group, the product being defined as above. The group of
the above cosets is called the factor (or quotient) group of G byH, and denoted G/H.

A homomorphism from a group G to another group G′ is a mapping which
preserves ′ ′ = ′g g g ,1 2 3 if =g g g1 2 3. If there exists a one-to-one correspondence
between the elements of G and G′ in the above mapping we have an isomorphism.

A topological group G is a topological space which is also a group such that the
group’s operations and group inverse function are continuous functions with respect
to the topology. A topological group is called locally compact if the underlying
topological space is locally compact and Hausdorff.

If G is a locally compact Abelian group, a character of G is a continuous group
homomorphism from G with value in the circle group T. The set of all characters on
G can be made into a locally compact abelian group, called the dual group of G and
denoted Ĝ.

2.3 Cocycle
Let G be a group and ∈g Gi . Suppose that g transforms a variable q into qg. We
associate with g an operator U(g) defined to act on a function f(q) according to

=U g f q f q( ) ( ) ( ), (2.1)g

and to satisfy the composition law

=U g U g U g( ) ( ) ( ), (2.2)1 2 12

if g1g2 = g12. Now we can generalize equations (2.1) and (2.2) to

= πθ−U g f q e f q( ) ( ) ( ), (2.3)i q g
g

2 ( , )

where θ is a phase factor called a 1-cocycle satisfying (consistent with equation (2.2))

θ θ θ+ − =q g q g q g( , ) ( , ) ( , ) 0 (mod integer). (2.4)1 2 12

As we will see in chapter 7, for electrons in a two-dimensional lattice subject to a
perpendicular magnetic field, the magnetic translations in each lattice direction x
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and y with ∈x y Z, 2 do not commute. Instead, σ= +T T x y T( , ) ,x y x y where the
cocycle σ x y( , ) is proportional to the magnetic field strength.

2.4 Vector spaces
Near the end of the 19th Century, Gibbs developed the vector calculus to treat
objects such as force and velocity. Afterwards, the concept was generalized by
mathematicians as we show below, and the general theory found applications in
physics as well.

A vector space V is a set of objects that can be summed together (and we must
define how they are summed) and multiplied by scalars such that the sum of two
elements of V is an element of V, the product of an element of V by a scalar is an
element of V, and the following properties are satisfied:

1. If u, v, w are elements of V, we have: u + v = v + u, (u + v) + w = u + (v + w).
2. There is an element of V, called 0, such that 0 + u = u + 0 = u.
3. Given an element u of V, the element (−1) u is such that u + (−1) u = 0.
4. For all elements ∈u V we have: 1.u = u.
5. If a, b and c are scalars, we have: c (u + v) = cu + vc , (a + b) v = va + vb , (ab)

v = a(bv).

A basis of V is a sequence of elements (v1, v2, … , vn) which generate V and are
linearly independent. If an element of V is written as a linear combination

v v v v= + +…+x x x , (2.5)n n1 1 2 2

of the elements of the basis, the elements of V can be represented by the n numbers
…x x( , , )n1 , called the coordinates of v with respect to that basis. The number of

elements of the basis is the dimension of V. We say that the n-tuple
= …X x x x( , , , )n1 2 is the representative of v in relation to the above basis.
We can see that the standard vectors in physics obey the above rules and of course

Rn has a natural vector space structure. As another example we consider all matrices
×2 2, with the standard rules for matrices addition. One basis is given by the matrices:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

1 0
0 0

, 0 1
0 0

, 0 0
1 0

, 0 0
0 1

(2.6)

If V is a vector space, and U and W are subspaces of V, we define the sum of U and
W to be the subset of V consisting of all sums u + w with ∈u U and ∈w W . We
denote this sum by U + W. It is a subspace of V. If U + W = V and if ∩ =U W {0}
then V is the direct sum of U and V and we write = ⊕V U W .

An N-graded vector space is a vector space V which decomposes into a direct sum
of the form = ⊕ ∈V Vn N n, where Vn is a vector space, and N the set of non-negative
integers.

For a given n, the elements of Vn are called homogeneous elements of degree n. A
graded linear map between two graded vector spaces →f V W: is a map that
preserves the grading of homogeneous elements.
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LetV be a vector space andW a subspace ofV. For each v ∈ V , we denote by v +W
the following subset ofV: v v+ = + ∣ ∈W w w W{ }. So v +W is the set of all vectors in
V we get by adding v to elements ofW. Note that v itself is in v +W since v + 0 = v and

∈ W0 . A coset ofW inV is a subset of the form v +w. The setV /W is the set defined by
v v= + ∣ ∈V W W V/ { }. That is, V / W is the collection of cosets of W in V.

The n-dimensional projective space, denotedRPn, is the space of one-dimensional
subspaces (lines) in R +n 1. The Grassmannian, denoted Gr k n( , ), is the space of all
k-dimensional subspaces of an n-dimensional vector space. Note that this is a
generalization of projective space, since R+ ≅Gr n P(1, 1) n.

Here I will be leading mainly with vector spaces over the real numbers, but the
above definitions apply also to vector spaces defined over the complex numbers.

2.5 Linear maps
A mapping F (or map) from a set A to a set B is a rule that each element of A
associates with an element of B. We write F: A→ B. If x is an element of A, we write
F(x) or Fx for the element of B associated with x by F, F (x) is the image of x over F.
The set of all elements F(x) when x ranges over all elements of A is called the image
of F.

Let V andW be two vector spaces. A linear mapping F: V→W is a mapping that
satisfies the following properties:

1. For all elements u and v in V we have: v v+ = +F u F u F( ) ( ) ( ).
2. For v ∈ V and c a scalar, we have: v v=F c cF( ) ( ).

Let F be a mapping of a set A into a set B. We say that F is injective if for ∈x A,
∈y B and ≠x y we have ≠F x F y( ) ( ). We say that F is surjective if for each ∈y B

there is at least one element ∈x A such that f(x) = y. If F is injective and surjective
we say that F is bijective. If f is injective and bijective it has an inverse, and in such a
case, it is called an isomorphism.

Let …E E, , p1 be sets. We denote by × × … ×E E Ep1 2 the set of all p-tuple
…x x x( , , , )p1 2 with xj in Ej, for j = 1, … , p. This set is called the Cartesian product

of Ej. If F is a mapping of this set into a set A, we write …F x x x( , , , )p1 2 for the
image of the element …x x x( , , , )p1 2 . If V1, .. , Vp, W, are vector spaces, a mapping

× …× →F V V W: p1 is called linear at index j if the mapping
→ … …x F x x x( , , , , )j j p1 is a linear mapping of Vj into W, for any choice of the

remaining p − 1 variables … …− +x x x x, , , , .j j p1 1, 1

2.6 Dual space
LetU be a vector space. We denote by *U the set of all linear mappings ofU in the set
of scalars K. We know that *U is a vector space, since we can add linear mappings
and multiply them by scalars. The space *U is called the dual space of U. Elements of
this space are called functional, covectors, linear forms or 1-forms.

Let =B u{ }n be a basis for U. Then an arbitrary vector x in U can be written
uniquely as:
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ξ ξ= + …+x u u , (2.7)n
n

1
1

in terms of the basis B. The numbers ξi are the components of x relative to B. We will
denote by u x( )i the ith component of x relative to B, that is ξ=u x( ) .i i We see that:

+ = + =u x y u x u y u ax au x( ) ( ) ( ), ( ) ( ), (2.8)i i i i i

where a is a scalar. So ui is a linear mapping of U into K and therefore an element of
*U . We have:

δ=u u( ) , (2.9)i
j j

i

where δ = 0j
i if ≠i j and δ = 1j

i if i = j. Since a linear mapping is determined
completely by its values in the vectors of the basis it follows that these equations
completely determine ui. Denoting by ui a linear form in U determined by the
condition (2.9) we see that ui carries an arbitrary vector x in U in its ith component
ui(x) relative to the basis B. It can be shown that =*B u{ }n is a basis for the dual
space, called the dual basis of B, and therefore U and *U have the same dimension.

2.7 Scalar product
If f is a linear form in U (this is, ∈ *f U ) and if u is a vector in U we designate the
value f (u) by the symbol 〈 f ∣u〉. That is, f (u) ≡ 〈 f ∣u〉. This symbol, linear on both
sides, is called the scalar product between u and f.

Some authors introduce the scalar product as follows: A scalar product in a
vector space U is a rule that to the pair of elements v, w belonging to U associates a
real number indicated by (v, w) satisfying the conditions:

1. (v w, ) = ( vw , ),
2. ( v +u w, ) = ( vu, ) + (u, w),
3. ( vau, ) = a ( vu, ), ( vu a, ) = a( vu, ),

where u, v, w∈ U and a is a real number. It can be shown that the two definitions are
equivalent. (In the case of vector spaces over the complex numbers, we define a
Hermitian product, as shown in appendix B.)

2.8 Metric space
A set R is called a metric space if a positive number d(x, y) exists associated with any
pair of elements in R such that

1. d(x, y) = 0 only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) + d(y, z) ⩾ d(x, z).

The number d(x, y) is called the distance between x and y. If V is a vector space with a
scalar product and if v ∈u V, we can define a distance by v v v= − −d u u u( , ) ( , ) .

Another example is the ‘trivial distance’ in a discrete set defined by
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⎧⎨⎩δ= − =
=
≠

d
i j
i j

1
0
1

.ij i
j

2.9 Tensors
Let U1,… ,Up,W, be vector spaces and × …× →f U U W: p1 a multilinear mapping.
We call f a tensor in U1, … ,Up with values in W. That is, a tensor is a multilinear
function of vectors. It is easy to verify, using the definition of a vector space presented
previously, that the tensors × …× →f U U W: ,p1 form a vector space.

Let U1, … ,Up, …V V, , q1 be vector spaces and R× …× →f U U: ,p1 × …×h V: 1

R→Vq , where f and h are linear in each variable. We call the tensor product of f and
h the function R⊗ × …× × × …× →f h U U V V: p q1 1 defined by:

⊗ … … = … …f h x x y y f x x h y y( )( , , , , , ) ( , , ) ( , , ), (2.10)1p q p q1 1 1

for xi inUi and yj in Vj. Since ⊗f h is linear in each variable, this function is a tensor
in U1, … ,Up, …V V, , q1 with values in R.

Let V and W be vector spaces, with v ∈ V , ∈w W , ϕ ψ∈ ∈* *V W, . Let T2 be
the space of bilinear transformations:

R× →T V R: . (2.11)2

We define the tensor product ϕ ψ⊗ ∈ T2 by:

v v vϕ ψ ϕ ψ ϕ ψ⊗ = = ∣ ∣w w w( , ) ( ) ( ) . (2.12)

Similarly, we can consider v as a linear transformation R→*V of the dual space,
and the same for w. We can then define the tensor product v ⊗ w. It is the bilinear
transformation R× →* *V W that transforms a pair of forms ϕ ∈ *V , ψ ∈ *W into
the scalar vϕ ψ〈 ∣ 〉〈 ∣ 〉w , this is:

v v vϕ ψ ϕ ψ ϕ ψ⊗ = ∣ ∣ =w w w( , ) ( ) ( ). (2.13)

We can extend the definition to multiple vectors and forms.
The transformation × → ⊗V W V W given by v v→ ⊗w w( , ) is bilinear. We

can show that if v v…( , , )r1 is a basis for V and …w w( , , )s1 a basis for W, then the
products v ⊗ wi j is a basis for ⊗V W . Then if R⊗ →f V W: , we can write

v= ⊗f f w , (2.14)ij
i j

where

v=f f w( , ), (2.15)jij i

where {vi} and {wj} are the dual bases of the bases in V and W.
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Let U and V be vector spaces of finite dimensions. We define a tensor of the type

( )p
q in U with values in V, by the mapping:

×…× × ×…× →* *f U U U U V: (2.16)

with *U taken p-times and U-q times. This transformation is linear in each of the
p + q terms. We indicate the space of all tensors of this type with V taken asR byU .q

p

If f is a tensorUq
p we have

= ⊗ … ⊗ ⊗ ⊗ … ⊗…
…f f u u u u , (2.17)j j

i i
i i

j j
q

p
p

q
1

1
1

1

with

= … ……
…f f u u u u( , , , , ). (2.18)j j

i i i i
j j

q

p p
q1

1 1
1

If ∈f Uq
p and the value of … …f x x y y( , , , , , )p

q
1 , for x in U and y in *U , does not

change, when the indices in xn or in ym are exchanged, we say that f is a symmetric
tensor. If one change of sign occurs, we say that the tensor is antisymmetric in this
argument.

2.10 p-vectors and p-forms
A transposition τ is a permutation that changes the position of only two numbers in
a set. Every permutation σ can be written as the product of transpositions. We say
that σ is even if it can be expressed as the product of an even number of
transpositions or if it is the identity. We say that σ is odd if it can be expressed as
an odd number of transpositions. We can show that for any permutation σ, it is
possible to attribute a sign + 1 or −1, denoted by sgn(σ), such that: (i) sgn(σσ′) =
sgn(σ)sgn(σ′), (ii) if τ is a transposition, then sgn(τ) = −1. We can see that sgn(σ) = +1
if the permutation is even and sgn(σ) = −1 if the permutation is odd.

Definition 5. A p-vector of the vector space U (p = 0, 1, 2, …) is an anti-symmetric
element of U p

0 . The space of all such p-vectors will be denoted by Λ Up , with
RΛ =U0 by definition. A p-form in U is an anti-symmetric element ofU .p

0 The space
of all such p-forms will be denoted by Λ *Up , with RΛ =*U0 by definition. Thus a
p-form w (also called an external form of degree p) is a function of p-vectors, which is
p-linear and anti-symmetric, that is

v v v v… = − …w( , , ) ( 1) ( , , ), (2.19)i i
n

p1p1

where n = 0 if the permutation of …i i, , p1 is even, and n = 1 if it is odd. Thus
p-forms in U are the same as p-vectors in *U and vice versa.

Let ∈f U .p
0 For any permutation σ of (1,..,p) we define a tensor σf in U by
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σ ξ ξ ξ ξ… = …σ σf f( , , ) ( , , ), (2.20)p p1 (1) ( )

where ξ ξ… ∈ *U, , .p1 The term σf is obtained from f by permuting ξ ξ…, , p1

according to σ.
We can write from a tensor f, an anti-symmetric tensor, using the operator of anti-

symmetrization given by

∑ σ=
! σ

Af
p

f
1

sgn( ) , (2.21)

where the sum is over all the p! permutations σ of (1, … , p). For instance, given a
tensor f with components fijk, we can write an anti-symmetric tensor with
components f[ijk] as

=
!

+ + − − −f f f f f j f
1
3

( ). (2.22)ijk ijk jki kij jik ikj kji[ ]

2.11 Edge product
By means of the operator A we can define a new product, called the edge product (or
exterior product), for anti-symmetric tensors. Let ∈ Λf Up and ∈ Λg U .q We define

∧ ∈ Λ +f g Up q by

∧ = + !
! !

⊗f g
p q

p q
A f g

( )
( ). (2.23)

In the same way for ϕ ∈ Λ *Up and ψ ∈ Λ *Uq ψ ∈ Λ *Uq we define ϕ ψ∧ ∈ Λ + *Up q by

ϕ ψ ϕ ψ∧ = + !
! !

⊗p q
p q

A
( )

( ). (2.24)

For instance, if u and v lie in U, we have

v v v∧ = ⊗ − ⊗u u u. (2.25)

It can be shown that if {en} is a basis for U, then ∧ … ∧e ei ip1
, with < … <i i( )p1 , is a

basis for Λ Up (p = 1, … , n).

Example 1. Let {en} with n = 1, 2, 3 be a basis for a vector space with dimension 3. If
we have the vectors v = + +x e x e x e1 1 2 2 3 3, = + +u y e y e y e1 1 2 2 3 3, then

v ⊗ = ⊗ + ⊗ + … + ⊗u x y e e x y e e x y e e . (2.26)1 1 1 2 1 2 1 2 3 3 3 3

The space = ⊗W U U has dimension 9. The space Λ U2 of anti-symmetric vectors
has dimension 3. We have
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v v v∧ = ⊗ − ⊗ = − ∧ + − ∧
+ − ∧

u u u x y x y e e x y x y e e

x y x y e e

( ) ( )

( )
121 2 1 2 1 3 3 1 1 3

2 3 3 2 2 3

As we can see ∧e e ,1 2 ∧e e ,1 3 ∧e e2 3 is a basis for Λ U .2

Let {e1, … , en} be a basis of a vector space V of dimension n, ordered according
to the sequence above. Let α be a mapping taking this basis in another ordered basis
{v1, … , vn}. If we change {en} continuously into {vn} we can write α=w t t e( ) ( ) ,i i

j
j

with ⩽ ⩽t0 1, α =(0) identity,i
j =w e(0)i i and vα= =w e(1) (1)i i

j
j i.

If {wi(t)} remains a basis for all t in the above interval, det α(t) will not change its
sign during the process because if there is a sign change there will be a t′ where det
α(t′) = 0 and for this value of t′ the set of vectors (wi(t′), … , wn(t′)) will be linearly
dependent and hence will no longer be a basis. As det α(0) > 0 we say that two
ordered bases of a vector space V define the same orientation (or are similarly
oriented) if the determinant of the matrix that carries one basis on the other is
positive. A vector-oriented space is a vector space along with a choice of orientation.
Note that each vector space allows exactly two orientations.

It can be shown that two bases {vn} and {un} define the same orientation of a
vector space V if and only if v vλ∧ … ∧ = ∧ … ∧u un n1 1 where λ is a positive
number.

The set of forms of all degrees in U together with the edge product is called the
Grassmann algebra of the vector space U.

2.12 Pfaffian
If A is a ×n n anti-symmetric matrix, the determinant of A vanishes when n is odd,
but if n is even the determinant can be written as the square of an object called
Pfaffian

=Pf A A( ) det( ). (2.27)2

The Pfaffian is a polynomial of degree n/2 in the elements of the matrix, with integer
coefficients.

Examples:

⎡
⎣⎢

⎤
⎦⎥=

−
→ =A a

a
Pf A a0

0
, ( ) .

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

−
− −
− − −

→ = − +A

a b c
a d e
b d f
c e f

Pf A af be dc

0
0

0
0

, ( ) .

We can associate with any ×n n2 2 anti-symmetric matrix A = {aij} the 2-vector
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∑= ∧
<

w a e e , (2.28)
i j

ij i j

where {ei} is the standard basis of R n2 . We have the following result

!
= ∧ ∧ … ∧

n
w Pf A e e e

1
( ) , (2.29)n

n1 2 2

wherewn denotes the wedge products of n copies of w. The Pfaffian has the following
proprieties:

(a) For a ×n n2 2 anti-symmetric matrix A

λ λ= − =Pf A PfA Pf A Pf A( ) ( 1) , ( ) ( ). (2.30)T n n

(b) For an ×n n2 2 arbitrary matrix B

=Pf BAB B Pf A( ) det( ) ( ). (2.31)T

Pfaffians appear in the expression of certain multiparticle wave equations in
fractional quantum Hall effect (Moore and Read 1991).

References and further reading
Flanders H 1963 Differential Forms with Applications for Physical Sciences (New York:

Academic)
Hatcher A 2002 Algebraic Topology (Cambridge: Cambridge University Press)
Isham C J 1999 Modern Differential Geometry for Physicists (Singapore: World Scientific)
Kelly J L 1970 General Topology (London: Van Nostrand)
Lang S 1968 Linear Algebra (Reading: Addison-Wesley)
Moore G and Read N 1991 Nonabelions in the fractional quantum Hall effect Nucl. Phys. B

360 362
Tinkham M 1964 Group Theory and Quantum Mechanics (New York: McGraw-Hill)
Tung W K 1985 Group Theory in Physics (Singapore: World Scientific)

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

2-15

https://doi.org/10.1016/0550-3213(91)90407-O


IOP Concise Physics

A Brief Introduction to Topology and Differential Geometry in

Condensed Matter Physics

Antonio Sergio Teixeira Pires

Chapter 3

Manifolds and fiber bundle

3.1 Manifolds
A real n-dimensional manifold X is a Hausdorff topological space which looks like

nR around each point. More precisely, a manifold is defined by introducing a set of
neighborhoodsUi covering X, where eachUi is a subspace of nR . Thus, a manifold is
constructed by pasting together many pieces of nR . The topology of a manifold is in
general different from that of a vector space, and hence—in particular—it cannot be
covered by a single coordinate system (Carrol 2004, Chouquet-Bruhat et al 1982,
Curtis and Miller 1985, Eguchi et al 1980, Isham 1999, Lee 2003, Warner 1983).

A map (U, φ) of a manifold X is an open set U in X, called the map domain,
along with a homeomorphism φ: U → V of U in the open set V in nR . The
coordinates (x1, … , xn) of the image φ(x) of the point ∈x X are called coordinates
of x on the map (U, φ) (local coordinates of x). A map is also called a local
coordinate system and coordinates maps are called charts of X. We say that the
manifold X has dimension n (see figure 3.1). Given two maps of X, φi: Ui → Vi, and
φj: Uj → Vj, let us consider the sets (see figure 3.2):

∩ ∩φ φ= =V U U V U U( ), ( ), (3.1)ij i i j ji j j i

and the mappings φij: Vij → Vji

ϕ ϕ ϕ= ∈−y y y V( ) ( ( )), . (3.2)ij j i ij
1

The maps φi and φj are called Cr compatible (a function is said to be Cr if all its
partial derivatives up to and including order r exist) if ∩V Vi j is the empty set or if

∩V Vi j is not empty but the mappings φij and φji are diffeomorphisms (that is,
invertible and differentiable) of class Cr (1 ⩽ r ⩽ ∞).

We call the atlas of X any set of maps of X (compatible two by two) and whose
domains of definition constitute a covering of X (i.e. ∪ Ui i covers X). We say that two
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atlases of X are compatible if the maps of these atlases constitute together an atlas of X.
Thus an atlas (of dimension n) in a manifold X is therefore a collection of (n-dimen-
sional) coordinate systems such that:

(a) Each point of X is contained in the domain of one of the coordinate systems.
(b) Two coordinate systems in the atlas overlap smoothly.

The existence of a proper atlas is, by definition, equivalent to the statement that X
is a differential manifold. Two atlases are equivalent if and only if their union leads
back to an atlas. For example, a geography atlas gives a set of maps of various
portions of the earth and this provides a very good description of what the earth is,
without actually imagining the earth embedded in three-space. It is obvious that nR ,
or more generally any open set in nR is a manifold.

Example 1. A simple example is the circle S1

∈ + =x y x y{( , ) 1}.n 2 2R

n

V

φ(x)

φ
U

x

X

Figure 3.1.

X Ui

Uj

φi

φj

n
φij

Figure 3.2.
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One possible coordinate is a pair of overlapping angular coordinates. Another one is
given by

ϕ
ϕ
ϕ
ϕ

= ∣ > =
= ∣ < =
= ∣ > =
= ∣ < =

U x y x x y y

U x y x x y y

U x y y x y x

U x y y x y x

{( , ) 0}, ( , )

{( , ) 0}, ( , )

{( , ) 0}, ( , )

{( , ) 0}, ( , )

1 1

2 2

3 3

4 4

with the constraint x2 + y2 = 1.

Example 2. The torus T 2 (figure 3.3) can be parameterized locally by specifying the
values of two angles and it can be covered by an atlas of four mappings by

α π π α π ϕ π π ϕ π< < − < < < < − < <0 2 , , 0 2 , .

Example 3. The sphere S2 (figure 3.4) can be given a differential structure by means
of two stereographic projections from the north and south poles using maps ϕ1 and
ϕ2. Let P and Q be the north and south poles, respectively. We can consider the
mapping ϕU( , )1 with = −U S Q{ }2 and ϕ =p x x( ) ( , )1

1 2 , where p is a point in
the surface S2 and (x1, x2) is a Cartesian coordinate system in the tangent plane to
the sphere at Q. The stereographic projections are given by

ξ
ξ

ξ
ξ

=
−

=
−

x x
2

1
,

2
1

,1
1

3
2

2

3

where ξ ξ ξ( , , )1 2 3 are the coordinates of p in .3R Taking the tangent plane at P we get
the mapping ϕ .2

More abstractly, a set of continuous transformations such as rotations in nR
forms a manifold. Two cones stuck together at their vertices is not a manifold, since
the point at the vertices does not look locally like a Euclidean space.

a f

Figure 3.3.
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Let X be a manifold of dimension n and ⊂Y X . We say that Y is a submanifold
of dimension m(m < n) if for each ∈y Y there is a map ϕU( , ) in X such that if

∈y U , the element φ ∈x( ) nR and

∩ϕ ϕ ϕ= × = ∈ = = … = =+ +U Y U z U z z z( ) ( ) 0 { ( ) 0}.n m m n1 2R

Example 4. A cone with the origin excluded is a two-dimensional submanifold of .3R

3.2 Lie algebra and Lie group
A Lie algebra is a real vector space E with a bilinear map × →E E E denoted

→A B A B( , ) [ , ], and called commutators, which satisfies the following conditions:
(a) =A A[ , ] 0 for all ∈A E ,
(b) = −A B B A[ , ] [ , ], for all ∈A B E, ,
(c) + + =A B C B C A C A B[ , [ , ]] [ , [ , ]] [ , [ , ]] 0, for all ∈A B C E, , .

Property (c) is referred to as the Jacobi identity. A subalgebra of a Lie algebra E is
a subspace of E which is closed under the bracket operation. Two Lie algebras E and
F are isomorphic if there exist a linear isomorphism between them which preserves
the bracket. An example of a Lie algebra is the set of all ×n n real matrices, with

= −A B AB BA[ , ] .
If t1, t2,… , tn is a basis of E, and since the elements of the algebra are closed over

commutation, the commutation of any two vectors of the basis can be written as a
linear combination

=t t f t[ , ] , (3.3)a b abc c

where f abc are called the structure constants. The Lie algebra is completely
determined by its structure constants.

Figure 3.4.
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The definition of a group was given in chapter 2. A Lie group is a group of
symmetries where the symmetries are continuous and therefore we have an infinite
number of elements (Mathews and Walker 1964). The group elements may be
labeled by real parameters, which vary continuously; a typical group element can be
written as …g x x x( , , , )n1 2 . For instance, a circle has a continuous group of
symmetries; it can be rotated by any amount and it looks the same. To be more
precise: a Lie group is a smooth manifold obeying the group properties and that
satisfies the additional condition that the group operations are satisfied. If G and H
are Lie groups, a Lie group homomorphism ϕ →G H: is a smooth mapping which
is also a homomorphism of the abstract groups.

Definition 1. Let G be a Lie group, and ∈s G. The left translation by s is the map
→L G G:s given by =L t st( )s for every ∈t G. The right translation is defined

analogously.

Example. The group of all ×N N unitary matrices with determinant 1. This group
is called SU(N).

A Lie group can be parameterized by a set of continuous parameters αi, with i =
1, … , n, where n is the number of parameters on which the group depends. We
denote the group elements by αg( ).i We will take

α =α =g e( ) , (3.4)i 0i

the identity element. If Dn are ×n n matrices that constitute a representation for the
group, we have

α =α =D g I( ( )) , (3.5)n i 0i

where I is the identity matrix. Expanding Dn in the neighborhood of the origin we
have

δα δα α
α

= + ∂
∂

+ …
α =

D g I
D g

( ( ))
( ( ))

(3.6)n i i
n i

i 0i

where δα ≪ 1i . Now we define

α
≡ − ∂

∂ α =

X i
D

, (3.7)i
n

i 0i

where I have written –i in equation (3.7), such that Xi is Hermitian. Thus

δα δα= + + …D I i X( )n i i i

Writing α δα= Ni i, with → ∞N , we have for finite values of αi

δα α+ = +
→∞ →∞

i X i
N

Xlim (1 ) lim 1 . (3.8)
N N

i i
N i

i

N
⎜ ⎟⎛
⎝

⎞
⎠
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Now we can use the result

α+ =
→∞

αi
N

X elim 1 , (3.9)
N

i
i

N
i Xi i⎜ ⎟⎛

⎝
⎞
⎠

to write
α = αD e( ) . (3.10)n i

i Xi i

The elements Xi are called generators of the group. There is one generator for each
parameter. For instance, for the group of rotations SO(3) we need three angles
θ φ ψ, , to specify an element of the group. We have then three generators θ φX X,
and ψX .

For a linear displacement of a function f(x) in one dimension of a distance a we
have

= + = + +
!

+ … =T f x f x a a
d
dx

a d
dx

f x e f x( )( ) ( ) 1
2

( ) ( ). (3.11)a
a d

dx

2 2

2

⎛
⎝⎜

⎞
⎠⎟

Thus

=T a
d
dx

exp , (3.12)a
⎛
⎝⎜

⎞
⎠⎟

is the generator.
The generators of a Lie group Xi form a Lie algebra defined through the

commutation relations

=X X if X[ , ] . (3.13)a b
abc

c

If f abc = 0, the Lie group is abelian, otherwise it is non-abelian.
Suppose that the Hamiltonian of a condensed matter system has some continuous

symmetry given by a Lie group G. Then it is possible that at some values of the
parameters of the Hamiltonian the ground state of the system breaks the symmetry up
to some subgroup H of G. The ground state is then invariant under H, but not under
the remaining elements of G, which are denoted as a coset and written as G/H. The
coset is not a subgroup of G (for example, it does not contain the identity element).

3.3 Homotopy
A property of a topological space that is invariant under homeomorphisms
(remember, a map is a homeomorphism if it is both continuous and has an inverse
which is also continuous) is called a topological invariant (for instance, the
dimension of a manifold and the orientability of a connected manifold are
topological invariants) (Manton and Sutcliffe 2004, Mombelli 2018). If some
topological invariant is different for two topological spaces X and Y the two spaces
are homeomorphic. If we introduce a third space Z, then we can verify that if X is
homeomorphic to Y and Y is homeomorphic to Z, then by composing the two
homeomorphisms, X is homeomorphic to Z. This means that we are able to divide
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all topological spaces up into equivalence classes. A pair of spaces X and Y belong to
the same equivalence class if they are homeomorphic. A more detailed testing of
equivalence of X and Y can be performed when we have more invariants. The
homotopy theory constructs infinitely many topological invariants to characterize a
given topological space and show how to compare topological spaces.

Let p1 and p2 be points in a manifold X. If there is a curve C in X that goes from p1
to p2, we say that X is connected by paths. If, in addition, X is such that given any
two curves C1 and C2 going from any point p1 to any point p2, C1 can be
continuously deformed into C2 in X; that is, if there exists a continuous function
p(t, s) such that for each s in the range [0, 1], p(t, s) describes a curve from p1 to p2,
when t varies, and this curve coincides with C1 for s = 0 and with C2 for s = 1, then X
is called simply connected (or only connected). Two curves C0 and C1 in a manifold
X, both having the same starting point p0 and the same final point p1 are called
homotopic if one of them can be deformed in the other by continuous deformations
in X. Thus, a manifold is connected if any two curves in it, having the same initial
and final points, are homotopic. Given the points p0 and p1, the class of all curves
that are homotopic at a given curve from p0 to p1 form an equivalence class, or
homotopy class, at X.

Let X and Y be two manifolds. A map ψ →X Y:0 , with ψ =x y( )0 0 0, where
∈x X0 and ∈y Y0 is said to be homotopic to another such map ψ1, if ψ0 can be

continuously deformed into ψ1 (x0 and y0 are fixed points called base points). We can
also say that ψ0 is homotopic to ψ1 if there is a continuous map

ψ̃ × →X Y: [0, 1] , (3.14)

with ∈t [0, 1] such that ψ̃ =x t y( , )0 0 for all t and ψ ψ ψ ψ˜ = ˜ == =,t t0 10 1. The maps
ψ are symmetric, transitive and reflexive, thus they can be classified into homotopy
classes.

Let us consider the case where X is an n-sphere Sn (that is, the set of points in +n 1R
at unit distance from the origin). The set of homotopy classes of maps ψ →S Y: n is
denoted by π Y( )n (figure 3.5). For ⩾n 1, the set π Y( )n forms a group, called the nth

Y

y0f

g

Figure 3.5. We can view the mapping π Y( )1 , f: S1 →Y, as a mapping from the interval [0, 1], such that f(0) =
f (1) = y0. These maps are associated with path in Y, beginning and ending at the point y0.
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homotopy group of Y. A map →S Y1 is called a loop. The class of the constant map
→S y1

0 is the identity element of the group π Y( )1 , called the fundamental group of
Y. This group is generally non-abelian. If Y is connected and π =Y I( )1 , where I
denotes the trivial group with just the identity element, the space Y is said to be
simply connected. In this case, every loop is contractible (can be continuously
deformed to a point), i.e. homotopic to the trivial loop. If dR has the origin as base
point, any loop ψ →S: d

0
1 R is contractible (parameterize S1 by θ π∈ [0, 2 ], and

define ψ θ ψ θ˜ = −t t( , ) (1 ) ( )0 , therefore π = I( )d
1 R ). If there is a hole in the space nR ,

the loops can be divided into classes, each one characterized by the number of times
the loop winds around the hole.

A simple case is the mapping of circles into circles, i.e. S1 → S1. We can
parameterize the circle using an angle θ defined modulo 2π. A mapping can be
defined by a continuous function θΛ( ) modulo 2π. As an example, let us consider
two such mappings as

θ θΛ =( ) 0 for all (3.15)0

and

θ
θ θ π

π θ π θ π
Λ̃ = ⩽ <

− ⩽ <
t
t

( )
for 0

(2 ) for 2
, (3.16)0

⎧⎨⎩
where ∈t [0, 1]. By varying t continuously down to zero the second mapping can be
continuously deformed into the first. These two mappings therefore belong to the
same homotopy class.

Let us now consider the mapping

θ θ θΛ =( ) for all . (3.17)1

As θ completes a full circle so does Λ1. But now it cannot be continuously deformed
into equation (3.15) or (3.16), since in equation (3.17) the second circle is wound
once around the first circle, whereas in equations (3.15) and (3.16) it is effectively
wound zero times. Thus equation (3.17) belongs to a different homotopy class from
equation (3.15) or (3.16). The integer distinguishing the two classes is the winding
number defined by

∫π θ
θ= Λπ

W
d
d

d
1

2
. (3.18)

0

2

Therefore, θ θΛ = n( )n is the prototype mapping belonging to the W = n class
(negative values of W are obtained by doing the winding in the opposite sense). The
winding numberW is the net number of times that the image θΛ( ) winds around the
target as θ goes once around the domain. The product γ2γ1 of path γ1 and γ2
characterized by winding numbers W1 and W2, respectively, has winding number
W = W1 + W2.

Let us now consider the non-singular mappings of a sphere S2 into another sphere
S2. As was said above, these mappings can be classified into homotopy sectors. A
mapping in one sector can be continuously deformed into another, whereas
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mappings from two different sectors cannot. There is a denumerable infinity of such
homotopy sectors or classes, which can be characterized by integer numbers
(positive, negative and zero). That is, these homotopy classes form a group which
is isomorphic to the group of integers. We can write in a compact form

π = Z(S ) , (3.19)2
2

where πn(Sm) means the homotopy group associated with the mappings Sn → Sm

and Z is the group of integers. The integer characterizing the homotopy classes of
S2 → S2 is the number of times one of the spheres has been wrapped around the
other. We will find several examples of this case later in the text. We also have:

π π π= = < = >S Z S n m S n( ) , ( ) 0 for , ( ) 0 for 1. (3.20)n
n

n
m

n
1

As an example, we have π =S( ) 01
2 since any loop in a sphere can be deformed to a

point. The calculation of homotopy groups πn(Sm) for n > m is a very difficult
problem. One highly non-trivial result is π =S Z( ) .3

2 The integer number labeling
homotopy classes in this case is called the Hopf invariant (see section B.3). The so-
called Hopf insulator, is a three-dimensional topological insulator possessing a
non-zero Hopf number. The mapping of a circle into the two-dimensional torus is
labeled by two integers—two winding numbers of circle around torus cycles. We
have the general result

π = × … ×T Z Z( ) . (3.21)
d

d
1

As was said above, we are generally interested in comparing two manifolds X and Y,
but instead of comparing these manifolds directly, one uses a ‘test manifold’ M and
compares mappings of X and Y into M. Studying the homotopy classes of those
mappings one can compare X with Y. It is convenient to take as the ‘test manifolds’
M spheres Sn, since in this case one can endow the homotopy classes of those
mappings with group structures.

In section 4.16, after introducing some more mathematical concepts, I will present
the degree of a map in homotopy theory.

3.4 Particle in a ring
To give a simpler example where the winding number is used in condensed matter,
let us consider a Lagrangian of the form (Altland and Simons 2010):

φ φ φ φ∂
∂

= ∂
∂

− ∂
∂

L
t t

iA
t

,
1
2

. (3.22)
2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

This Lagrangian describes a quantum particle on a ring threaded by a magnetic flux.
Here φ π∈ [0, 2 ] with periodic boundary conditions. Using the formalism of chapter
1, we write the imaginary time path integral as

∫ ϕ= ϕ−Z D e , (3.23)S[ ]
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where

∫φ τ φ φ
τ

= ∂
∂

β
S d L[ ] , , (3.24)

0
⎜ ⎟⎛
⎝

⎞
⎠

with the boundary condition ϕ β ϕ π− ∈ Z( ) (0) 2 . Using the Euler–Lagrange equa-
tion we obtain

ϕ∂
∂

=
t

0. (3.25)
2

2

There exists a whole family of solutions ϕ τ π τ= W T( ) 2w and the action

ϕ π==S T W[ ] (2 )1
2w A 0

2 varies discontinuously withW. From the mathematical point

of view the field ϕ is a mapping ϕ τ ϕ τ→ →S S: , ( )1 1 , from the unit circle
(imaginary time with periodic boundary condition) into another circle. The
integration over all functions ϕ τ( ) can be written as integration over functions
ϕ τ( ) of different winding numbers (that is, different topological sectors):

∫ ∫ ∫∑ ∑ϕ ϕ τ ϕ
τ

= = − ∂
∂

ϕ π−Z D e D dexp
1
2

. (3.26)
W W

S iWA[ ] 2
2

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

The A-dependent term in the action

∫ϕ τ ϕ ϕ β ϕ π≡ ∂
∂

= − =
β

S iA d
t

A i WA[ ] ( ( ) (0)) 2 , (3.27)top
0

involves only the index of the topological sector of ϕ. We can see that Stop cannot
affect the equation of motion, however it does affect the result of the integration: it
plays the role of a W-dependent ‘phase’ weighting the contribution of different
sectors to the path integral.

3.5 Functions on manifolds
A function f on a manifold X takes a point ∈x X at the point ∈f x( ) R. The
function →f X: R is differentiable at the point x of a differentiable manifold X if
on a map φ at x, φ−f 1 is differentiable at φ(x) (see figure 3.6). This definition does not
depend on the chosen map. It is important to remember the distinction between a
function and its set of image points.

If …u u( , , )n1 are the coordinates of the point ∈u nR , the functions βi defined by
β =u u( )i i are called the coordinate functions in nR . If ∈x X and (U, φ) is a map, we
saw that

φ ϕ= … ∈x x x x( ) ( , , ), ( ) . (3.28)n n1 R

Then we have

β φ β= … =x x x x. ( ) ( , , ) . (3.29)i i n n1

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

3-10



Let us define φ by

φ β φ≡ . ,i
i

so that we can write φ φ φ= …( , , )n1 where the φi are the coordinate functions of φ
in X. So φi maps X into nR . That is, it takes the point ∈x X to the point ∈xi R,

φ =x x( ) . (3.30)i i

3.6 Tangent space
Let X be a manifold and ∈x X . A curve on X is a mapping c: I → X of an open
interval ⊂I R on X. If ∈t I have ∈c t X( ) with ∈ I0 and c(0) = x. Note that the
‘curve’ is defined to be the map itself, not the set of image points in X. If c is a
differentiable curve and f is a function on X, differentiable at x, the composite
mapping f.c is a differentiable function at I at t = 0.

Since a curve in a manifold does not live in nR , the tangent vector cannot be defined
in a simple way using derivatives. We have to resort to a more abstract approach.

Let C(X) be the space of a smooth, real-valued function defined on X, and f∈C(U)
a function defined on an open neighborhood U of x. The directional derivative of f
along c at the point x is given by

≡
=

f
d
dt

f c t( ) ( . )( ) . (3.31)x
c

t 0

v

Now we define the mapping →f f( )x
cv to be the tangent vector at point x.

x

X

f

n

fφ–1

φ

φ(x)

Figure 3.6.
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A tangent vector x
cv is completely determined if we know how functions vary

along the curve c. Thus, to all intents and purposes the notion of a tangent vector
can be equated with the operation of taking the directional derivative along c: the
vector tangent to a manifold X at a point x is the operator which when applied to a
function of real value f, analytic around x, leads to the real number f( )x

cv .
We say that two curves c1 and c2 are tangent at x, or that they have the same

tangent vector at x, if c1( f ) = c2( f ) for all f. On the other hand, given a tangent vector
xv it is always possible to find a differentiable curve passing through x to which xv is
tangent. A tangent vector is an abstraction created to represent the structure common
to a class of parameterized curves, all of them tangent at one point.

Given a map (U, φ), ⊂U X , that is φ(x) → (x1, … , xn), we can take the function
ϕ =x x( )i i and define the components of the tangent vector xv to the curve c by:

φ φ≡ = ·
=

d
dt

c t( ) ( ) ( )( ) . (3.32)x
c i

x
c i i

t 0

v v

As ∈c t X( ) we have φ · ∈c t( ) nR . We can therefore write:

φ φ· = … · = …c t c t c t c c c( ) ( ( ), , ( )), or ( , , ). (3.33)n n1 1

Using equation (3.30) we can write

β φ φ β· · = · = … =c t c t c t c t c t( ) ( ) ( ( ), , ( )) ( ). (3.34)i i i n i1

Then we can write equation (3.32) as

=
=

d
dt

c t( ) ( ) , (3.35)x
c i i

t 0

v

and equation (3.31) as

φ φ= · · ·−

=
f

d
dt

f c t( ) ( )( ) . (3.36)x
c

t

1

0

v

Defining φ= −f f . 1 we note that f it is a function of into R, that is, f is the
expression for f on the map (U, φ). Equation (3.36) can then be written as

= …
=

f
d
dt

f c t c t( ) [ . ( ( ), , ( ))] . (3.37)x
c

n
t

1

0

v

Using the chain rule for compound functions and remembering that =c x(0)i i we
can write equation (3.37) as

= ∂
∂

= ∂
∂φ φ=

f
f
x

dc
dt

f
x

( ) ( ) . (3.38)x
c

i
x

i

t
i

x

x
c i

( ) 0 ( )

v v

Using = ( )i
x
c iv v we have

= ∂
∂ φ

f
f
x

( ) . (3.39)
x( )

x
i

i
v v
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The representative of xv can be written in a short way as: ∂ ∂x/i iv , where ∂ ∂ ∈x/ i nR ,
although it spans a vector space. The vector space TxX of tangent vectors to X at the
point x, with the addition and multiplication by scalars defined by:

+ = +au b f au f b f( )( ) ( ) ( )x x x xv v is called the tangent (vector) space at the point x.
From equations (3.31), (3.33) and (3.35) we can write

φ φ= · = …
=

d
dt

c t( ) ( )( ) ( , , ). (3.40)x
c

t

n

0

1v v v

Let us define ω ∈ T Xk x as

ω = ∂
∂x

, (3.41)k k

so that we can write

ω φ φ= ∂
∂

x
x

( )
( )

. (3.42)k
k

Using equation (3.28) we get

φ∂
∂

= … …x
x
( )

(0, , 1, , 0), (3.43)
k

(where 1 is at the kth position). This means that ω φ = e( )k k, where ek is the standard
basis. The vectors of TxX that are represented by ∂ ∂ … ∂ ∂x x( / , , / )n1 form a basis for
the tangent vector space, called the natural basis. It follows that the dimension of
TxX is the same as the dimension of the manifold X. A map (U, φ) on X then induces
an isomorphism of TxX in nR . The representative of xv , which we shall call v, in
relation to the natural basis, is then given by = …( , , )n1v v v .

3.7 Cotangent space
The cotangent space in x of a manifold X is defined as the dual space of TxX and is
denoted by *T Xx , that is, *T Xx is the space of the linear mappings of Tx X in R. So if
ω ∈ *Tx x and ∈ T Xx xv , we have ω ∈( )x x Rv . However, =**T T Xx x , and so

ω ω=( ) ( ).x x x xv v We call the elements of *T Xx of cotangent vectors, covariant vectors,
or differential forms. Thus a differential p-form ω at the point x of the manifold X is
an external p-form in the tangent space TxX at a point x in X.

We have seen that, given a base {ei} in a vector space (which may be TxX) of
dimension n we can construct the dual basis {θi} (in *T Xx ) as follows. The
components x

iv of a vector xv with respect to the base{ei} constitute n linear forms
defined in xv . We define the form θi by

θ =( ) . (3.44)i
x x

iv v

Since = ejx jv v , we can write equation (3.44) as

θ θ= =e e( ) ( ) , (3.45)j ji
j

i
j x

iv v v
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which leads to

θ θ δ≡ 〈 〉 =e e( ) , . (3.46)j
i

j
i

j
i

Let us denote the dual of the natural basis ∂ ∂x{ / }i by {dxi}, this is

δ〈 ∂ ∂ 〉 =dx x, / . (3.47)j
i j

i

If we denote the components of ωx related to the basis {dxi} by ωxi
we can write

ω ω ω〈 〉 = 〈 ∂ ∂ 〉 =dx x xi, , / . (3.48)j j
x x x

i
xi iv v v

Example. Suppose the form ω = +x dx x dx2 31 1 2 2 and the vector field
= −∂

∂
∂

∂
2

x x1 2v .

We want to calculate ω( )v at the point (1, 2). We have

ω ω= + ∂
∂

− ∂
∂

= − = −x dx x dx
x x

x x( ) (2 3 ) 2 4 3 , ( ) 2.
(1,2)

1 1 2 2
1 2

1 2⎜ ⎟⎛
⎝

⎞
⎠v v

3.8 Push-forward
Let M and N be two manifolds (possibly of different dimensions), ϕ a map
ϕ →M N: , and f a function →f N: R (figure 3.7). We can compose ϕ with f to
construct a map ϕ →f M( . ): R, which is simply a function on M. We define the
pull back of f by ϕ, written as ϕ*f , by

ϕ ϕ=*f f( . ). (3.49)

Functions can be pulled back, but they cannot be pushed forward. If one has a
function →g M: R, there is no way one can compose g with φ to create a function
on N.

M
N

ff

f*f = ( f. f)

Figure 3.7.
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But vectors can be considered as a derivative operator that maps smooth
functions to real numbers, and this allows us to define the push-forward of a vector
as we will discuss in the following.

To some extent, a tangent space can be regarded as a local linearization of the
manifold, and it is important that a map f between two manifolds X and Y can be
linearized with the aid of the tangent spaces and the vector space structure that they carry.

LetX be a manifold of dimension n andY a manifold of dimensionm. Let f:X→Y be
a differentiable mapping of the manifold X into the manifold Y. (The mapping f is called
differentiable when, in local coordinates in X and Y, it is determined by differentiable
functions.) Let c be a curve on X and x

cv the tangent vector to that curve at the point x, f
maps the curve c on X into a curve c′ = f.c on Y and the point ∈x X into the point

∈y Y . Let ′wy
c be the tangent vector to the curve c′ at the point y. The mapping taking x

cv
into ′wy

c is called the push-forward derivative of f. Or more precisely: we call the push-
forward of the mapping f at the point ∈x X the linear mapping of the tangent spaces

→Df x T X T Y( ): , (3.50)x y

such that tangent curves are taken into tangent curves by the following definition

=Df x w( ) , (3.51)v

where ∈ ∈T X w T Y, .yxv We define w such that, for each differentiable function at
y = f(x), where ∈y Y , we have

=w h h f( ) ( . ). (3.52)v

The vector w is called the image of v over f and the mapping Df(x) is called the push-
forward of f at x (Df is sometimes written as

*
f ).

Given two manifolds X and Y a map φ →X Y: can be used to pull objects back
and push other objects forward. However, it generally does not work both ways
because φ might not be invertible. If φ is invertible (and both φ and φ−1 are smooth),
then it defines a diffeomorphism between X and Y, which is what happens if X and Y
are the same manifold.

3.9 Fiber bundle
A fiber bundle is a generalization of the product of two manifolds M and N
(Collinicci and Wyns 2006, Duffel 2017, Penrose 2007). One way to interpret a
product manifold is to place a copy of M at each point of N. For instance in

= ×2R R R we take a line in R as our base and place another line at each point of
the base, forming a plane. If M is a circle S1 and N a line, then ×M N is now a
cylinder. If both M and N are circles ×M N is a torus.

In any local covering, a fiber bundle looks like ×M N , but globally it is not in
general a product of manifolds. LetM be a manifold, which we call the base, and F a
manifold that we call the fiber. A fiber bundle E over M with fiber F is a manifold
that is locally a direct product ×M N . That is, if M is covered by a set of local
coordinates in a covering {Ui}, then the bundle E is topologically described in each
coverture Ui by the product manifold ×U Fi . However, the local direct-product
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structure leaves a great deal of information about the global topology of
E undetermined. For a complete specification of the bundle E, it is necessary to
provide a set of transition functions ϕ{ }ij which tell us how the fiber manifolds match
up in the overlap between two coverings ∩U Ui j. Locally the topology of the bundle
is trivial; however, the global topology, determined by ϕ{ }ij can be complicated due
to the relative twisting of neighboring fibers. A trivial example happens when all the
transition functions are the identity. In this case the global topology of the bundle is
that of a direct product = ×E M F , and the bundle is called a trivial fiber bundle.

A simple and famous non-trivial example of a fiber bundle is the Möbius strip
(figure 3.8). We start withM = S1 andN as a line segment. At each point of the circle
we attach a copy of the interval [−1, 1], but instead of attaching a band of parallel
intervals to the circle, the intervals perform a π twist as we go around. Locally the
Möbius strip is indistinguishable from a piece of a cylinder. That is, the twist is not
located at any particular point on the band; it is a global property of the manifold.

Suppose we parameterize the Möbius strip by a point θ in the circle, and a real
number t on the interval [−1, 1]. By increasing θ we can transport a point around the
strip. However because of the twist, the point will not coincide with its initial
position in the strip after a 2π rotation in the circle. We see that the parameterization
for F does not work globally. However, in the neighborhood of a point in E we can
use a parameterization and when we go to another neighborhood we use a different
parameterization. We show how this is done.

We can cover S1 by two semicircular coverings ±U as follows

θ ε θ π ε
θ π ε θ π ε ε

= − < < +
= − < < + = +

+

−

U
U

{ : }
{ : 2 0 }

, (3.53)

We take the fiber F to be an interval in the real line with coordinates ∈ −t [ 1, 1], as
was said before. The bundle then consists of the two local pieces

θ
θ

×
×

+ +

− −

U F t
U F t

with coordinates ( , )
with coordinates ( , )

Figure 3.8. David Benbennick / Wikimedia Commons / https://creativecommons.org/licenses/by-sa/3.0/deed.en
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and the transition functions relating +t to −t in ∩+ −U U . This overlap consists of two
regions I and II given by

θ ε θ ε θ π ε θ π ε= − < < = − < < +I { : }, II { : }. (3.54)

We choose the transition functions to be +t = −t in region I, = −+ −t t in region II.
Identifying t+ with −t in region II twists the bundle and gives it the non-trivial

topology of the Möbius strip. If we set t+ = t in both regions we get a trivial bundle
equal to the piece of a cylinder. The Möbius strip is the construction appropriate to
the spinor behavior of a quantum mechanical two-level system.

To capture the fact that we are attaching a copy of the fiber F to each point x of
the base space, we introduce a projection π which maps the fiber bundle E onto the
base space M by shrinking each fiber to a point. If ∈x M , π− x( )1 is the fiber over x.
We can now give a formal definition of a fiber bundle.

A differentiable fiber bundle (E, π, M, F, G) consists of the following elements
(1) A differentiable manifold E called the bundle space or total space.
(2) A differentiable manifold M called the base space.
(3) A surjection π →E M: called the projection map.
(4) A differentiable manifold called the typical fiber. If ∈x M , the set Fx

defined by π= −F x( )x
1 is called the fiber of E at the point ∈x M . Note that

π− x( )1 is the inverse image of the point x, that is, it consists of the elements
of E that are taken by the transformation π in the element x of M. We
require that each Fx be homeomorphic to F. The bundle space itself may be
thought of as being completely made up of a whole family of fibers F. There
are many copies of the fiber F in the bundle E, one entire copy standing
above each point x of M. The copies are all disjoint, i.e. no two intersect,
and together they make up the entire space E.

The general idea of a bundle is outlined in figure 3.9. For most purposes these
items are sufficient to characterize a bundle. For the sake of consistency, we

E Fx
F

x

�–1

M

Figure 3.9.
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present the complementary items that are included in the complete definition of a
bundle.

(1) A (Lie) group G, called the structure group of the fiber bundle, of homeo-
morphism of F into itself.

(2) An open covering {Ui} of M and a set of diffeomorphisms
ϕ π× → −U F U: ( )i i i

1 . Letting (x, f ) denote a point of ×U Fi we require
that π ϕ =x f x[ ( , )]i for consistency. The map ϕi is called a local trivialization.

(3) At each point φ φ∈ ≡x M f x f, ( ) ( , )i x i, is a diffeomorphism, ϕ →F F:i x x, .

On each overlap ∩ ≠ ∅U U { }i j , we require ϕ ϕ= →−h F F:ij i x j x,
1

, to be an
element of G, i.e. we have a smooth map ∩ →h U U G: jij i such that
φ φ=x f x h x f( , ) ( , ( ) ).j i ij

The transition functions hij satisfy the conditions:
(a) hii = identity,
(b) =h h hij jk ik for ∩ ∩∈x U U U .i j k

A bundle is completely determined by its transition functions.
A vector bundle over a space M is a continuous map π →E M: such that each

fiber π− p( )1 , where ∈p M , is a finite-dimensional vector space. A vector bundle is
said to have dimension n if the fiber over every point of the base space is
homeomorphic to .nR A continuous map ϕ →E E: 1 2 between vector bundles over
the same base space is an isomorphism if it takes each fiber π − x( )1

1 to the
corresponding fiber π − x( )2

1 by an isomorphism.
A line bundle is a vector bundle with a one-dimensional vector space as fiber. It is

a family of lines parameterized by the base space M.
The tautological bundle →S PnR is a line bundle defined as follows: each point

∈l PnR is a line in + ;n 1R we let the fiber above l be that line.
In figure 3.10 I show an example, where the space M is a circle S1, and the fiber F

is a one-dimensional vector space, which we can consider topologically as a copy of
the real lineR (with the origin marked). In figure 3.10(a) we have a line bundle over
S1, which as was mentioned in the beginning of this section, is the trivial case ×M F

x

M

(a) (b)

Figure 3.10. Reproduced from Frucart and Carpentier (2013). Copyright © 2013 Académie des sciences.
Published by Elsevier Masson SAS. All rights reserved.
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which is the ordinary cylinder. In figure 3.10(b) we have a twisted case and we get the
Möbius strip.

Definition 2. Let (E, π, M) with π →E M: be a bundle with base space M, and
′ →f M M: a continuous map from a manifold M′ to the base space M. Then, the

pull back of E to M′ denoted → ′*f E M is the bundle whose fiber above ′ ∈ ′x M is
π ′− f x( ( )).1

We can understand the above definition using figure 3.11. E is a bundle over M
with projection π →E M: , f is a map from M′ to M. Then we pull back the bundle
over M to become a bundle over M′ that we will call E′. We construct M′ by taking
a subset of ′ ×M E composed of all pairs ′ ∈ ′ ×x e M E( , ) such that

π′ = =f x x e( ) ( ). We define a projection from E′ to M′ by π′ ′ = ′x e x( , ) . In this
way we have pulled back the space E which fibers over M, to a space E′ that fiber
over M′.

If f, g are a pair of maps from M into M′ that are homotopic, then we can show
that *f (E) and *g (E) are isomorphic bundles over M.

If BF(M) denotes the set of isomorphism classes of F-bundles over M, any
F-bundle ξ over M′ generates a map

E ′

M ′ M

(x ′ , e)

f ′

�′

�–1(x ′ ) F–~

�–1(x) F–~

�

e
E

f

x ′
x

Figure 3.11.
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α ξ′ → →ξ *M M B M f f: [ , ] ( ), ( ), (3.55)F

where [M, M′] denotes the set of homotopy classes of maps from M into M′. For a
class of spaces M, which include all differential manifolds, there exist universal
bundles: = → →UF F EF BF , with the property that the map

α →M BF B M: [ , ] ( ) (3.56)UF F

is both one-to-one and onto. It can be shown that any F-bundle whose total space
EF is contractible can serve as a model for a universal F-bundle.

If →f f Y X, :1 2 are homotopic maps, then *f E1 and *f E2 are isomorphic. It
follows that homotopy-equivalent spaces have the same isomorphism classes of
vector bundles over them. In particular, any bundle over a contractible space is
trivial.

If the fiber F is the same as the group G, and if the transitions functions act on
F = G by left translations, the fiber bundle is called a principal fiber bundle. This is of
special interest because the mathematical structure of a non-interacting insulator is
that of a principal fiber bundle.

For a given fiber bundle (E, M, G) we can ask how many different fiber bundles
can be constructed and how they differ from the trivial bundle. The question of
whether two different bundles are the same can be quite hard to answer. Two fiber
bundles are considered different if they cannot be continuously deformed one into
the other. A continuous deformation of a fiber bundle means a continuous
deformation of the base space and of the fibers. For example, the surface of a
cylinder can be continuously deformed into the surface of a cone which lies between
two parallel planes cutting the cone (perpendicular to the cone axis), but it cannot be
deformed into the Möbius strip.

Homotopy theory provides a way to measure the twisting of the fibers of a fiber
bundle (the integer associated with the homotopy classes indicates the degree of
twisting of the fiber). How many different principal bundles can be constructed for a
given base manifold M and a group G can be found using homotopy theory. Other
tools, which we will see in chapter 5, to measure the non-triviality of the twisting of a
fiber bundle are characteristic classes. In this sense the Chern classes are obstructions
which prevent a bundle from a trivial bundle.

Let π →E M: be a vector bundle over M. A vector bundle π →F M: is called a
subbundle if F is a submanifold of E that, for each point ∈p M , the fiber Fp is a
vector subspace of the fiber Ep of E.

3.10 Magnetic monopole
We saw in chapter 1 that the vector potential of a magnetic monopole could not be
globally defined on the entire surface of a sphere and should be singular at one point
of the surface. As such the sphere cannot be covered by a global choice of a
coordinate system. Here we show how we can treat the problem using a fiber bundle.

The magnetic field of a magnetic charge g at the origin of a coordinate system in
3R is given by

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

3-20



⃗ = ⇀B g r r/2 , (3.57)3

which gives π δ∇⃗ ⃗ =B g r. 4 ( ).
The flux of the magnetic field through a spherical surface S around the magnetic

charge is given by, using Stoke’s theorem

∫ ∫ ∫σ σ φ φ⇀ · ⃗ = ∇⃗ × ⃗ · ⃗ = ⃗ · ⃗ = − =
λ

B d A d A dl S S( ) ( ) 0, (3.58)
S S

1 2

where γ is a closed curve in S, which we can take along the equator. S1 is the top
hemisphere and S2 the lower hemisphere. We see that the magnetic flux ϕ through a
closed surface around the magnetic monopole is zero. If the field of a magnetic
monopole is to be given by a potential we have to do some modifications in the
above procedure. Since the vector potential A is not globally defined, we use a non-
trivial fiber bundle. We introduce two open covertures ±U covering the regions

ε> −z and ε< +z of − {0}3R such that in ∩+ −U U the potentials are related by a
gauge transformation, which can be used to define the transition functions. In fact,

∩+ −U U is equal to the xy plane in z = 0 without the origin. We have for the
potential:

θ φ

θ φ

= −

= − −

+ +

− −

A d U

A d U

1
2

(1 cos ) in

1
2

( 1 cos ) in
(3.59)

or

=
±

−±A
r z r

xdx ydy
1
2

1
( ), (3.60)

where = + +r x y z2 2 2 2. A+ and A− have singularities at θ = π and θ = 0,
respectively. In the superposition region θ = π/2, r > 0, both potentials are regulars.
A+ and A− are related by the gauge transformation

φ= + = ++ −
−

−A A d y x A d[tan ( / )] , (3.61)1

The magnetic field in ±U is given by

= ∧ + ∧ + ∧F
r

xdy dz ydz dx zdx dy
1

2
( ). (3.62)

3

In Dirac’s formulation of the problem, coordinate patches were not used and this led
to the appearance of a fictitious ‘string singularity’ on the ±z axis. In the differential
geometry approach, ±A are defined only in their respective coordinate patches ±U
and we avoid the problem of the singularity.

3.11 Tangent bundle
Let X be a differentiable manifold of dimension n. We denote by TX the space of
pairs (x, xv ) for all ∈x X and ∈ T Xx xv . This is
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∪=
∈

TX T X . (3.63)
x X

x

TX is a vector fiber bundle called the tangent bundle (figure 3.12). The total space is TX,
the base space is the manifold X and the fiber over x is TxX. The projection is given by
π(p) = x, where ∈ = ∈p TX p x x X, ( , ), .xv The typical fiber is the space nR .

The structure group G for the tangent bundle is the group GL(n, R) of
isomorphism of nR into itself, whose matrix representation is the set of real
invertible ×n n matrices.

The tangent bundle can be divided in two subbundles. The vertical bundle consists
of all vectors that are tangent to the fibers, while the horizontal bundle is then a
particular choice of a subbundle of the tangent bundle which is complementary to
the vertical bundle. Or in other words, if π →E X: is a smooth fiber bundle over a
smooth manifold X and ∈e E with π = ∈e x X( ) , then the vertical spaceV Ee at e is
the tangent space T E( )e x to the fiber Ex containing e. That is, = πV E T E( ).e e e( ) The
horizontal space H Ee is then a choice of a subspaceT Ee such that = ⊕T E V E H E.e e e

3.12 Vector field
A cross section (or section) of the fiber bundle πE X( , , ) is a smooth map →S X E:
such that the image of each point ∈x X lies in the fiber π− x( )1 over x (figure 3.13).
That is: π =S. identity. (Or in other words, a cross section is a rule which assigns a
preferred point S(x) on each fiber to each point of the base manifold.) We call this a
‘lift’ of the base space X into the bundle E. For a trivial bundle the cross section can
be interpreted simply as the continuous functions on the base space X which takes
values in the space E.

A vector field v in a manifold X is a cross section of the tangent bundle TX. So, a
vector field associates with each point ∈x X a tangent vector ∈ T X .x xv

A vector field v on an open subsetU of X gives rise to a vector field, denoted Uv on
any subset U of X. The vector field Uv is said to be the restriction of v to U. A tensor
field of the type s

r[ ] in a manifold X is an association to each ∈x X of a tensor

TX

TxX

π

X x.

Figure 3.12. Tangent bundle.
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∈T x TX( ) ( )r
s such that if ϕU( , ) is a map, we have the following transformation of

U into R

= ∂
∂

… ∂
∂

……
…T x T x

x x
dx dx( ) ( ) , , , , , . (3.64)m m

n n
m m

n n
r

s

r

s
1
1

1

1⎜ ⎟⎛
⎝

⎞
⎠

For instance, if

= ⊗ ⊗ ∂
∂

T T dx dx
x

, (3.65)j
ij
k i

k

in coordinates {xi} and

= ˜ ˜ ⊗ ˜ ⊗ ∂
∂ ˜

T T dx dx
x

, (3.66)j
ij
k i

k

in coordinates x̃{ }i , we have

˜ = ∂
∂ ˜

∂
∂ ˜

˜ = ∂
∂ ˜

∂
∂

∂
∂ ˜

∂
∂

− ∂ ˜
∂

= ∂
∂ ˜

∂
∂ ˜

∂ ˜
∂

T T
x x

dx T
n
x x

x
x x

x
x

dx

x
x

x
x

x
x

T

, , ,
. (3.67)

j j p
p

j p

ij
k

i
k

n

i n

m

m

k

n

i

m k

nm
p

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

Then the transformation law for the tensor components is

˜ = ∂
∂ ˜

∂
∂ ˜

∂ ˜
∂

T
x
x

x
x

x
x

T . (3.68)
j pij

k n

i

m k

nm
p

This equation can be generalized for other tensor fields.
In Riemannian geometry the vector spaces include the tangent space, the

cotangent space, and the higher tensor spaces constructed from these. These spaces
are intimately associated with the manifold itself, and are naturally defined once the

S �

X
x

Cross
section

E

Figure 3.13. A cross section of a product bundle E over X is a continuous image of X in E which meets each
individual fiber in a single point.
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manifold is set up; the tangent space, as we have seen, is the space of directional
derivatives at a point. This is what is of interest in general relativity, for instance,
where the concept of fiber bundles is generally omitted. In gauge theories, on the
other hand, we are concerned with ‘internal’ vector spaces. An internal vector space
can be of any dimension we like, and has to be defined as an independent addition to
the manifold. For instance, we can introduce an internal three-dimensional vector
space, and sew the fibers together with ordinary rotations; the structure group of the
fiber bundle is then SO(3). A field that lives in this bundle might be denoted by
ϕ μx( )i , where i runs from one to three; it is a three-vector (an internal one) for each
point on the manifold. ‘Physical quantities’ should be left invariant under local SO
(3) transformations. Such transformations are known as gauge transformations. In
chapter 5, I will treat the gauge fields.
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Chapter 4

Metric and curvature

4.1 Metric in a vector space
Let V be a vector space of dimension n. Let g be a tensor ∈g V2

0, i.e. the space of all
bilinear applications × →V V R. Thus = ⊗* *V V V2

0 . If {en} is a basis for V and if v
and w lie in V, we can write = ei iv v , =w w ej j. Therefore, we have the expression

= = =g w g e w e w g e e g w( , ) ( , ) ( , ) , (4.1)j j ji
i j

i
i j ij

iv v v v

where =g g e e( , )ij i j are the components of g relative to the base {en}.

The tensor ∈g V2
0 is called the metric, or metric tensor, if g is a symmetric and

non-degenerate tensor. (Remember that non-degenerate means that g(v, w) = 0 for
every ∈ Vv if and only if w = 0.) The tensor g gives to the vector space V a scalar
product defined by 〈 ∣ 〉=w g w( , )v v for all vectors v and w lying in V.

If g is a metric in V, it can be shown (Curtis and Miller 1985) that there exists a
base {en} for V such that =g e e( , ) 0i j for ≠i j and = ±g e e( , ) 1i j for each i. Such a
base is called the orthonormal basis for g. It is also usual to use the notation ds2.

4.2 Metric in manifolds
A metric g on a manifold X is an association to each ∈x X of a metric g(x) in TxX,
and such that if (U, φ) is a map in X and if we define →g U:ij R by

= ∂
∂

∂
∂

g x g x
x x

( ) ( ) , , (4.2)
jij i

x x

⎛
⎝⎜

⎞
⎠⎟

gij should be ∞C for all i and j. Note that the metric is defined in the tangent space
and not in the manifold. A manifold X with a metric g is called a pseudo-
Riemannian manifold. If the metric g is positive definite (that is, if for every
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∈x X we have g(x) (v, v) > 0 for all ∈ T Xxv and v ≠ 0) the manifold is called
Riemannian. It can be shown that in every manifold X we can construct a definite
positive metric (Curtis and Miller 1985). The index of a metric g is the number of
vectors on an orthonormal basis for which = −g e e( , ) 1.i j If the metric is
Riemannian the index is zero. The metric is called the Lorentz metric if its index
is n − 1.

If {dxi(x)} is a basis on *T Xx , gij(x) is the matrix of the components of g(x) with
respect to that basis. Then we can write in U

= ⊗g g dx dx . (4.3)j
ij

i

Here I introduce the summation convention in which indices appearing repeated are
summed over. Since gij = gji we can also write

= ⊗ + ⊗g g dx dx dx dx
1
2

( ), (4.4)j j
ij

i i

The transformation rule for a change of coordinates can be calculated easily:

⊗ = ∂
∂

⊗ ∂
∂

= ⊗g dx dx g
x
y

dy
x
y

dy g dy dy , (4.5)
j

j j
kl

k l
kl

k

i i

l

ij
i,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and so

= ∂
∂

∂
∂

g g
x
y

x
y

. (4.6)
jij kl

k

i

l
,

On a Riemannian manifold X with dimension n, a canonical n-form with
coordinate-invariant definition exists. It is given by

ω = ∧ … ∧g dx dx , (4.7)n1

where g = det{gij} is the determinant of the metric tensor. If the metric is non-
degenerate the determinant does not vanish. It can be shown that ω has the same
representation in every coordinate system. This n-form is called the volume element
of the manifold.

Example. In polar coordinates θ ϕr( , , ) in 3R the metric is given by

θ θ ϕ ϕ= ⊗ + ⊗ + ⊗g dr dr r d d r d dsin . (4.8)2 2 2

It is quite easy to see that θ=g rdet sin4 2 , and then

ω θ θ ϕ= ∧ ∧r dr d dsin . (4.9)2

We can define the inverse metric as gij via δ= =g g g gij
jk nk

ni
k
i . The metric and its

inverse may be used to raise and lower indices on tensors.
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4.3 Symplectic manifold
Let V be a vector space of dimension p and ω a 2-form in V:

ω × →V V: . (4.10)R

We say that ω is non-degenerate if ω =( , ) 01 2v v for all ∈ V2v implies v1 = 0.
(Remember that ω ω= −u u( , ) ( , )v v .)

Definition 1. Let X be a differentiable manifold of even dimension. A symplectic
structure in X is a closed, differentiable, non-degenerate 2-form in X. Thus ω ∈ *T X
and ω =d 0. The pair (X, ω) is called a symplectic manifold.

The symplectic form plays a role analogous to that of the metric tensor in
Riemannian geometry. Where the metric tensor measures lengths, the symplectic
form measures areas. However, there is no notion of curvature for a symplectic
manifold, which might serve to distinguish one symplectic manifold from another,
locally. Symplectic manifolds play an important role in classical mechanics.

Example. The space n2R with coordinates x x( , )ji and a 2-form ω = ∑ ∧dx dx j
i

i is
a symplectic manifold.

4.4 Exterior derivative
Let U be an open set in a manifold X of dimension n such that U is the domain of a
map. The set of all smooth forms of degree p on U will be denoted by Λ U( )p . In
particular, Λ U( )p is the set of all smooth functions in U. It can be shown (Curtis and
Miller 1985) that there exists an operator

Λ → Λ +d U U: ( ) ( ), (4.11)p p 1

that takes each p-form ω into a (p = 1)-form dω, with the following properties
(1) ω η ω η+ = +d d d( ) , ω ω=d a ad( ) .
(2) α ω α ω α ω∧ = ∧ + − ∧d d d( ) ( 1)p , where α ∈ Λ Up and p is the degree of α.
(3) For each ω, d(dω) = 0.
(4) For each function f, df is the ordinary derivative of f, = ∂

∂
df dxf

xi
i.

Example. Let X = 3R , then
(a) For a 0-form f, we have

= ∂
∂

+ ∂
∂

+ ∂
∂

df
f
x

dx
f
y

dy
f
z

dz.
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(b) For a 1-form ω = + +Pdx Qdy Rdz, we have

ω = ∂
∂

− ∂
∂

∧ + ∂
∂

− ∂
∂

∧ + ∂
∂

− ∂
∂

∧d
R
y

Q
z

dy dz
P
z

R
x

dz dx
Q
P

P
y

dx dy.⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

(c) For a 2-form α = ∧ + ∧ + ∧Ady dz Bdz dx Cdx dy, we have

α = ∂
∂

+ ∂
∂

+ ∂
∂

∧ ∧d
A
x

B
y

C
z

dx dy dz.
⎛
⎝⎜

⎞
⎠⎟

4.5 The Hodge star operator
Let V be a vector space of dimension n with a basis {en}. As we have seen a p-form in
V (with ⩽p n) is an anti-symmetric element in Λp. This is a vector space of
dimension ! ! − ! −n p n p[ ( ) ] 1. We have for the basis in Λp, and respective dimensions:

Thus we see that Λp and Λ −n p have the same dimensions as vector spaces. We see
also that Λ = 0p , for p > n. The wedge product may be used to make (p + q) forms
out of a given p-form and a given q-form. But since one gets zero for p + n > n, the
resulting forms always belong to the original set of spaces.

The number of independent forms in Λp is the same as in Λ −n p: there exists a
duality between the two spaces. We can then introduce an operator, called the
Hodge*, which transforms p-forms into (n − p) forms.

If β ∈ Λp, we have

β β= ∧ … ∧∣ … ∣e e . (4.12)j j
j j

p
p

1
1

We define β ∈ Λ* −n p, written as

β β= ∧ … ∧* *
∣ … ∣−

−e e , (4.13)s s
s s

n p
n p

1
1

in the following way.

Λ0 1 dim = 1
Λ1 e1, … ,en dim = n
Λ2 ∧e ei j dim = n(n-1)/2!
Λ3 ∧ ∧e e ei kj dim = n(n -1)(n -2)/3!
.
.
.
Λ −n 1 ∧ … ∧ −e ei in1 1 dim = n
Λn ∧ … ∧e ei in1 dim = 1
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Let …, , n1v v be orthonormal oriented vectors in V. We define

β β… = …* +( , , ) ( , , ) (4.14)p p n1 1v v v v

From equations (4.12), (4.13) and (4.14) we get

β β τ=*
…

∣ … ∣
… …− − (4.15)s s

i i
i i s sn p

p
p n p1

1
1 1

where τ is the volume element of the metric

τ = ∣ ∣ ∧ … ∧g . (4.16)n1v v

Suppose that in an orthonormal basis θ{ }n we have β θ θ= ∧ … ∧ p1 , then
β θ θ= ∧ … ∧* +p n1 . As the volume element is given by τ θ θ= ∧ … ∧ n1 we can
write τ β= ∧ β* . If α and β are p-forms in V we have

τ α β α β∣ = ∧ * . (4.17)

Example. If {ei} is the standard dual base in E3 we have:

= ∧ = ∧ = ∧* * *e e e e e e e e e, , .1 2 3 2 3 1 3 1 2

4.6 The pull-back of a one-form
While the push-forward transfer objects(vectors) along a map in the same direction
as the map points, the pull-back works in the opposite direction and transfers objects
from the target manifold to the source manifold.

Let X be a differentiable manifold of dimension n and Y a differentiable manifold
of dimension m. Let f: X → Y be a differentiable mapping of X into Y. If ∈x X and

∈y Y , we write =y f x( ). Consider a differential p-form ω in Y and …, , p1v v
tangent vectors belonging to TxX. We know that if ∈ T Xxv then ∈

*
f T Yf x( )v

(where =*f Df is the push-forward of f ). The mapping f induces, from ω, a p-form
in X, written ω*f ω ∈ Λ*f X[ ( )]p and called the pull-back of ω, defined by

ω ω… = …*
* *

f f f( )( , , ) ( , , ), (4.18)p p1 1v v v v

that is, the value of the form ω*f in vectors …, , p1v v is equal to the value of the
form ω in the images of these vectors.

In local coordinates f is given by yj(x1, … , xn) with j = 1, … , n. Writing

ω ω= ∧ … ∧ = …∣ … ∣dy dy r n, 1, , (4.19)r r
r r

ip
p

1
1

we have

ω ω ω= ∧ … ∧ = ∧ … ∧* ∣ … ∣ * ∣ … ∣f y x dy dy f dx dx( ( ) ) ( ) , (4.20)r r
r r

i i
i i

p
p

p
p

1
1

1
1

where ij = 1, … , n and
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ω ω= ∂
∂

… ∂
∂

* …f
y
x

y
x

( ) . (4.21)i i

r

i

r

i r r... p

p

p p1

1

1 1

Example. If =X 2R and =Y ,R let →f : 2R R be given by = +f x x x x( , ) ( ) ( )1 2 1 2 2 2.
Let us take the form ω = dy in R as y = f(x). We have = +y x x( ) ( )1 2 2 2 and

ω = +*f x dx x dx2 2 .1 1 2 2

4.7 Orientation of a manifold
As we saw in section 2.11, for ∈x X we can choose an orientation for a vector space
and in particular for the tangent space TxX. We call an orientation of X a choice of
orientation for TxX for each ∈x X , such that for ∈x X0 there exists a neighbor-
hood U of x0 and a continuous vector field …, , n1v v in U such that for every

∈ …x U x x, ( ( ), , ( ))n1v v has the same orientation chosen above. A manifold for
which an orientation chosen in this way can be constructed is called orientable. If a
manifold is orientable a reference frame transported along any trajectory in the
tangent bundle of the manifold returns to the starting point with the same
orientation. For example, the sphere S2 is orientable, but the Mobius strip is not.

A boundary of a manifold X, if there is one, written as ∂X , is given by

φ
φ φ

∂ = ∈ ∣
∈ ∂

X x X U x
U H

{ there is a map ( , ) in such that
( ) is open in and (x) H }n

n

where = ∈ ∣ ∣ ⩾H x x{ , 0}n n nR and ∂ = ∈ ∣ ∣ =H x x{ , 0}n n nR . If ∂ =X 0 the mani-
fold is closed.

A 0-manifold is a set of discrete points, and the orientation is given by assigning a
(+) or a (−) sign to each point. For a curve (1-manifold) the orientation provides a
direction along the curve. The boundary of a finite line segment consists of its two
end points (one with a + sign and the other with a − sign). For a 2d-surface the
orientation is given by a small circular arc with an arrow on it, indicating the
positive direction (for example, clockwise direction). The boundary of a closed unit
disc is the unit circle. The boundary of a circle is empty. The boundary of a ball is the
sphere and the boundary of a spherical surface is empty. The orientation of a
3-manifold is given by a triad of independent vectors specified as ‘right hand’.

4.8 Integration on manifolds
I start this section with a summary of some basic results. The support of a function f
is the smallest closed set outside which f is identically zero. Suppose a continuous
function with compact support →f : nR R. Then ∫ …fdx dx. n1 is defined as the
Riemann integral on any rectangle containing the support of f.

Now let X be an oriented manifold of dimension n and ω an n-form in X with
compact support. We also assume that the sets of interest are compact sets. These
assumptions are made only for the sake of mathematical rigor. For readers
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unfamiliar with these terms, it suffices for them to be aware that in making a
statement I will assume the existence of the integral.

I will first define the integral of the form ω in the domain U of a map in X with
coordinates (x1, … , xn). Suppose that ω is zero outside a set contained in U. By
definition, ω is integrable in X if its components ω …n1 are integrable in nR . The
integral of ω in U, which is also the integral in X, is then:

∫ ∫ ∫ ∫ω ω ω= = … …
−∞

∞

−∞

∞

… dx dx . (4.22)
X U

n
n

1
1

This definition does not depend on the choice of the coordinates in U, as long as they
are consistent with the chosen orientation.

Let X and Y be manifolds of dimensions n and f: X → Y a diffeomorphism
preserving the orientation. Let ω be an n-form in Y. Using what was presented
before we have

∫ ∫ω ω= *f . (4.23)
Y X

This property is equivalent to the substitution of variables in the integral in .nR
Note. Even in nR the use of the external product notation has some advantages.

For example, if we use ∧dx dy the orientation of the integral is implied and if we
make a change of variables η ξ=x x( , ), η ξ=y y( , ) we get

η
η

ξ
ξ

η
η

ξ
ξ= ∂

∂
+ ∂

∂
= ∂

∂
+ ∂

∂
dx

x
d

x
d dy

y
d

y
d, ,

which leads to

η ξ ξ η
η ξ∧ = ∂

∂
∂
∂

− ∂
∂

∂
∂

∧dx dy
x y x y

d d ,
⎛
⎝⎜

⎞
⎠⎟

and we get the Jacobian.
Let us now generalize the definition for integrals of p-forms into p-chains in a

manifold X of dimension n. First we define a chain.
A p-rectangle D in space pR is a naturally oriented subset defined by

⩽ ⩽ = …a x b i p, 1, , . (4.24)i i
i

The role of the ‘integration path’ is played by what we call the elementary p-chain σ
in X, which is the triplet σ = (D, f, Or) consisting of the following elements
(figure 4.1):

(1) A rectangle D in pR .
(2) A differentiable mapping f: U → X, where ⊂ ⊂U D UandpR . The domain

of f, that is U, is an open neighborhood of D, such that f can be applied to
the boundary of D.

(3) The orientation of pR , symbolized by Or.
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The elementary p-chain σ is called an elementary p-domain of integration if f is a
diffeomorphism of U into a differentiable submanifold X of dimension p. If ω is a
p-form in X the integral of ω on the elementary p-domain of integration σ is, by
definition, the integral of the corresponding form by the rectangle D

∫ ∫ω ω=
σ

*f . (4.25)
D

Note that the set f(D) is not necessarily a smooth submanifold of X (it may have
mutual intersections or folds, for example).

We call a p-chain C in the manifold X a formal linear combination of p-
elementary chains

∑ σ=C m , (4.26)
i

i i

where the coefficients mi are integers. If the linear combination is locally finite, with
mi = ±1, and the σi are elementary integration domains, C is called an integration
domain. Thus the integral of a p-form ω by the p-chain C, if it exists, is given by

∫ ∫∑ω ω=
σ

m . (4.27)
iC

i
i

Example. Given the form ω = ∧ + ∧xdy dz ydx dy and the surface x = u = v,
y = u − v, z = uv, with ⩽ ⩽ ⩽ ⩽u0 1, 0 1,v we want to calculate ∫ ω.

S
We have:

∫
∫ ∫ ∫

ω

ω

ω

= + − ∧ + − + ∧ −

= − + + + ∧

= = − + + + =

*

*

f u d u d u u d u d u

u u u du d

f u u u dud

( ) ( ) ( ) ( ) ( ) ( )

( 2 2 2 )

( 2 2 2 ) 7/6.

S

D

2 2

0

1

0

1
2 2

v v v v v v

v v v v

v v v v

The boundary of an oriented k-rectangle D on kR is the (k − 1) chain ∂D on kR
defined as

p

DOr

f

f(D)

X

Figure 4.1.
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∑σ∂ =D , (4.28)
i

i

where the elementary chains σi are the (k − 1)-dimensional faces of D with
orientation inherited from the orientation of kR . One can easily extend this
definition to the definition of the boundary of a elementary chain σ∂ on the manifold
X and then to the boundary of a chain as

∑ σ∂ = ∂C m . (4.29)
i

k i i

∂Ck is a (k − 1) chain on X. We define a 0-chain as a collection of points with
multiplicities and the boundary of an oriented interval ⃗AB as B − A. The boundary
of a point is empty. The boundary of the boundary of an elementary chain is zero
and therefore ∂ ∂ =C( ) 0.k

4.9 Stokes’ theorem
Let ω be a n-form, which is at least C1, in a manifold X. Let C be a p-chain and ∂C
the boundary of C oriented coherently with C. We have:

∫ ∫ω ω=
∂

d . (4.30)
C C

Demonstration: I will give the demonstration for a rectangle (see figure 4.2). The
extension to the case of a chain is immediate. I will take, for simplicity, a 2-rectangle.
Let ω = a(x, y)dx + b(x, y)dy, then

ω = ∂
∂

− ∂
∂

∧d
b
x

a
y

dx dy. (4.31)
⎛
⎝⎜

⎞
⎠⎟

y

D

C

A B x

Figure 4.2.
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Then

∬ ∬ ∬

∫ ∫
∫ ∫ ∫ ∫
∫

ω

ω

= ∂
∂

− ∂
∂

= − − −

= + + +

=
∂

d
b
x

dxdy
a
y

dxdy

b B y b A y dy a x D a x C dx

a x C dx b B y dy a x D dx b A y dy

[ ( , ) ( , )] [ ( , ) ( , )]

( , ) ( , ) ( , ) ( , )

,

(4.32)

D D D

C

D

A

B

A

B

C

D

B

A

D

C

D

and the theorem is demonstrated.
Using equation (4.30) we have

∫ ∫ ∫ω ω ω= = =
∂ ∂

d d 0, (4.33)
C C C

2
2

because ω =d 02 . This means that the boundary of a region has no boundary.

Example 1. Given the 2-form in − {0, 0, 0}3R

ω = ∧ − ∧ + ∧xdy dz ydx dz zdx dy
r3

where = + +r x y z2 2 2 2, we want to calculate the integral of ω over the sphere of
radius R with center at the origin. On the surface of the sphere we can write

θ φ=x R sin cos , θ φ=y R sin sin , θ=z R cos , where θ π⩽ ⩽0 and φ π⩽ ⩽0 2 .
On the surface of the sphere we find by a direct calculation

θ θ θ φ
θ φ θ φ

θ φ θ φ

∧ = ∧
∧ = − ∧
∧ = ∧

dx dy R d d

dx dz R d d

dy dz R d d

cos sin ,

sin sin ,

sin cos ,

2

2 2

2 2

which leads to ω θ θ φ= ∧d dsin . The integral is then given by

∫ ∫ ∫ ∫ω θ θ φ φ θ θ π= ∧ = =
π π

d d d dsin sin 4 .
S S 0

2

02 2

Example 2. Given the 2-form ω = ∧ + ∧ + ∧xdy dz ydz dx zdx dy( )1
2

on 3R we
want to calculate the integral of ω over the sphere: + + =x y z R2 2 2 2 with an
orientation given by the outward normal. We have ω = ∧ ∧d dx dy dz.

The sphere is the boundary of the ball + + ⩽B x y z R:3 2 2 2 2. i.e. = ∂S B2 3. The
form ω is defined on the whole B3. Thus we can use Stokes’ theorem:
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∫ ∫ω π= ∧ ∧ =dx dy dz R
4
3

.
S B

3
2 3

4.10 Homology
As was mentioned in section 3.3, homotopy groups are quite difficult to calculate,
even for the simplest structures. However, there are important relations between
homotopy groups and homology of a topological space X, and homology can be
used to distinguish topologically inequivalent manifolds.

A cycle on a manifold X is a chain whose boundary is equal to zero. A chain that is
the boundary of another chain is called a boundary. All boundaries are cycles,
however not all cycles are boundaries. For example, let us consider one of the cycles
of a torus. Its boundary is zero, however it does not bound any chain on the torus. Let
us consider two k-cycles a and b such that their difference is a boundary of a (k + 1)
chain, i.e. − = ∂ +a b Ck 1. If ω =d 0k , we have from (4.33)

∫ ∫ω ω= , (4.34)
a

k

b

k

that is, cycles can be replaced one by another. The quotient group

=H X( )
(cycles)

(boundaries)
, (4.35)k

is called the kth homology group of X. An element of this group is a class of cycles
homologous to one another. We can think of representatives cycles in Hk as
manifolds patched together to ‘surround’ a hole; we ignore cycles which can be
‘filled in’.

There is a theorem known as the Gurevich theorem relating homotopy and
homology groups that says:

If π =X( ) 0k for all k < n, then π =X H X( ) ( ).n n

4.11 Cohomology
Let X be a m-dimensional manifold. A k-form ω ∈ Λ X( )k is closed if dω = 0 and
exact if ω = dθ for some θ ∈ Λ − X( ).k 1 According to Poincaré’s lemma any closed
form is locally exact. The existence of locally but not globally exact closed forms is
related to topological properties of X. A closed k-form is cohomologous to zero if it
is exact. Closed k-forms ω and ω′ on a manifold X are cohomologous if their
difference is exact: ω ω θ− ′ = d for some (k − 1) smooth form θ on the whole X.
This is an equivalence relation. Equivalence classes with respect to this relation are
called cohomology classes. The set of all cohomology classes of degree k (also called
dimension k) is denoted Hk(X). Hk(X) is a vector space for each k = 0, 1, 2,.. dual to
Hk(X). H

k(X) is also an abelian group called the kth ‘cohomology group’.
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The set of closed k-forms is denoted by Z X( )k and the set of exact k-forms by
B X( ).k Since d2 = 0, it follows that ⊃Z X B X( ) ( ).k k Hk(X) is also called the kth de
Rahm cohomology group when written in the form

=H X
Z X
B X

( )
( )
( )

. (4.36)k
k

k

The purpose of the de Rham cohomology is to classify the different types of closed
forms on a manifold. There are other cohomology theories, but for manifolds they
all give the same objects. A closed k-form is also said to be a k-cocycle and an exact
k-form is said to be a k-coboundary for the de Rham cohomology.

Note that ω = dθ implies dω = 0, but generally dω = 0 does not imply the existence
of a θ such that ω = dθ. In 3R all closed form are exact, but this is not true for general
manifolds. For instance, in = −U {(0, 0)}2R the form

ω = − +
+

ydx xdy
x y

, (4.37)2 2

is closed, since ω =d 0. However, although we can write ω = d y x[arctan( / )], ω is not
an exact form since arctan(y/x) is not differentiable in 2R (integrating ω in a closed
curve around the origin leads to a non-zero result). The dimension ofHk is called the
kth Betti number of X and usually denoted bk(X).

To any smooth manifold X we can associate the graded vector space

= ⊕
⩾

*H X H X( ) ( ). (4.38)
k 0

k

The Poincaré polynomial of X denoted by PX(t), is defined by

∑=P t b X t( ) ( ) . (4.39)
k

X k
k

The alternating sum

∑χ = −X b X( ) ( 1) ( ), (4.40)
k

k
k

is called the Euler characteristic of X. The Gauss–Bonnet theorem gives a formula
for χ X( ) in terms of curvature as we shall see later.

The de Rham cohomology of nR is trivial since any closed form can be expressed
as the exterior derivative of a lower form in nR . So =H ( ) 1,n0 R dim =H ( ) 0,p nR
p > 0. Non-trivial de Rham cohomology occurs only when the local coordinate
neighborhoods are patched together in a globally non-trivial way. Only H0 and Hn

are non-zero for Sn and both have dimension 1 (note that in a circle S1 the 1-form dθ
is not exact since θ is not continuous or differentiable when considered as a function
on the entire space S1).H0 consists of the space of constant functions andHn consists
of the constant multiples of the volume element. So we have
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= +P t1 . (4.41)S
nn

For the torus =H T( )k 2 R if k = 0, 2 and ⊕R R if k = 1. If X is not connected but
has n connected components, it is easy to see that dim H0(X) is equal to the number
of connected components of X.

The k-forms form a cochain complex. In a cochain complex, the differential
increases the index, while in a chain complex the boundary operator decreases the
index. To be more explicit, if Λk is the vector space of k-forms, and Ck is the dual
space of k-chains, then the action of the differential d and the boundary operator ∂ is
as follows:

→ Λ ⟶ Λ ⟶ Λ →

← ⟵ ⟵ ←
∂ ∂

+ +

+ +

+ +

+ +C C C .

d dk k k

k k k

1 2

1 2

k k

k k

1 2

1 2

Cochain complexes give cohomology and chain complexes give homology.
As we saw in equation (4.30), the Stokes’ theorem relates the integral of a form

over a boundary to the integral of the differential of the form over the interior of the
boundary. In terms of the operator (ω, c) that evaluates the form ω on the chain c,
we can write in a compact notation: ω ω∂ =c d c( , ) ( , ).

We can say that cohomology classes represent differential forms on a manifold
and homology classes represent things we can integrate them over. We conclude that
three types of invariant can be assigned to a topological space: homotopy, homology
and cohomology groups

4.12 Degree of a map
Let →f M N: be a smooth map between two closed, connected and orientable
manifolds M and N of the same dimension, and suppose that for ∈y N , ∈x M ,
with f(x) = y, the linear map →df TM TN:x x y is non-singular, i.e. an isomorphism. If

>dfdet( ) 0x , we define =dfsign 1x , and if <dfdet( ) 0x , let = −dfsign 1x . We define
the degree of f at y to be

∑=
∈ −

f y dfdeg( , ) sign . (4.42)
x f y( )

x
1

Let M be a smooth oriented manifold of dimension m, and v a smooth vector field
onM. If v(x) = 0 for some ∈x M we say that x is a zero of v. Now, suppose that x is
an isolated zero of a vector field v, and we have a local coordinate system near x. Let
D be a closed disk centered at x, so that x is the only zero of v in D. Then we define
the index of x for v, written as indexx(v), to be the degree of the map

∂ → =
∣ ∣

−u D S u x
x
x

: ( )
( )
( )

.m 1, v
v

For instance, ifM is a two-dimensional surface, the indexx(v) is the winding number
of the map S1 → S1, that is, it is the change in the oriented angle u(x) makes after
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traveling counterclockwise once around a small circle centered at x. Figure 4.3
shows a vector field in 2R with index −1 and +1.

We can also define the degree of f as:

∫ ω= *f fdeg( ) ( ), (4.43)
M

where ω is the volume form onN satisfying ∫ ω = 1
N

, and ω*f ( ) is the pull-back of ω
on M under f. In local coordinates, if

ω β= ∧ ∧ … ∧y dy dy dy( ) , (4.44)d1 2

and f is represented by the function y(x), then we have

ω β

β

= ∂
∂

∧ ∂
∂

∧ … ∧ ∂
∂

= ∂
∂

∧ ∧ … ∧

*f y x
y
x

dx
y
x

dx
y
x

dx

y x
y
x

dx dx dx

( ) ( ( ))

( ( ))det .

(4.45)

j

j

j
k

k
d

l
l

i
d

1 2

1 2
⎛
⎝⎜

⎞
⎠⎟

It can be proved that equation (4.43) is identical to (4.42). The degree is always an
integer, but may be positive or negative depending on the orientation. The
topological degree is a homotopy invariant of f, because an integer cannot change
under a continuous deformation. It is also independent of the choice of ω, because
the difference of two normalized volume forms on N is a d-form whose integral is
zero, and hence an exact form. The pull-back of the difference is therefore exact on
M, and integrates to zero.

A simple example for the mapping →f S S: 1 1 was presented in equation (3.28)
where the degree was equal to the winding number. Sometimes the degree of more
general maps between higher-dimensional manifolds is called a winding number. We
can think of the degree as the number of times that the domain manifold wraps
around the range manifold under the mapping.

If X and Y are Sn. the degree of a map corresponds to the integer number
associated with the homotopy class of the map.

index – 1 index + 1

Figure 4.3.
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4.13 Hopf–Poincaré theorem
The Hopf–Poincaré theorem can be stated as: Let M be a compact differential
manifold and let v be a vector field on M with isolated zeros. Then we have

∑ χ= Mindex ( ) ( ), (4.46)
i

xi v

where the sum of the indices is over all isolated zeros of v and χ M( ) is the Euler
characteristic of M.

For the sphere S2, χ M( ) = 2, and so the total vorticity is 2. This is the well-known
result that it is impossible to comb the hair on a 2-sphere without creating a vortex.
In one combs the hair along the longitude (for instance), there are two +1 vortices at
the north and south poles. That is, any continuous tangent vector field on the sphere
must have a point where the vector is zero. The analogous statement for S3 is not
true.

4.14 Connection
In Euclidean space two vectors of different origins are compared to one another by
the parallel translation of one or both of them to the same origin. On the other hand,
in a curved space, such as the surface of a sphere, the translation is not well defined
and the parallel transport depends on the trajectory along which the vector is
displaced. Take as an example a vector located at a point on the equator. Move the
vector by parallel transport following a meridian to the north pole, return again to
the equator following another meridian and finally to the initial point along the
equator. The displaced vector will not match the original vector (figure 4.4).

Two vectors can be compared in a natural way only if they are elements of the
same tangent space. There is no standard way of generalizing these two related
concepts, parallel transport and derivative transport, to vectors in an arbitrary
differential manifold X. To speak of an equality of the components of two vectors,
defined at different points p and q of the manifold X, we must have a means of
assigning a coordinate frame defined in q uniquely given a frame in p, and to define a
derivative we must somehow have a parallel transport of vectors. The definition of
a connection makes possible the definition of parallel transport of a vector along a
curve and the definition of the derivative of a vector, which in turn is a tensor. Before
defining a connection we need to define a germ.

We say that two functions f and g defined on the manifold X, differentiable at the
point ∈x X have the same germ at x, if there is a neighborhood of x where they
coincide. The class of equivalence of functions differentiable at x, which have the
same germ as a function f, is called the germ of f.

A linear connection in a smooth manifold X is a linear mapping → ∇v v of the

germs of vector fields in X into the germs of tensor fields of type (1
1
) in X such that

(1) ∇ + = ∇ + ∇u u( ) ,v v
(2) ∇ = ⊗ + ∇f df f( ) ,v v v
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where f is the germ of a differentiable function in X. The tensor ∇v is called the
covariant derivative of v. The connection coefficients Γki

j are defined by the relation

θ∇ = Γ ⊗e e , (4.47)i ki
j k

j

where {ei} and {θi} are dual basis. We have then

γ θ∇ = ∇ = ⊗ + ∇ = + ⊗e d e e d e( ) ( ) . (4.48)ji
i

i
i

i
i

i
kj
i k

iv v v v v v

The components of the tensor ∇v will be denoted by ∇k
iv or k

i
;v . We have

θ θ∇ = ∇ ⊗ = ⊗e e . (4.49)k
i k

i k
i k

i;v v v

We can also write in terms of ω γ θ=i
j

ki
j k

ω∇ = + ⊗d e( ) . (4.50)ji
j
i

iv v v

Using the natural basis

θ= ∂
∂

= = ∂
∂

d
x

dx dx e
x

, , . (4.51)
j

i
i

k
k i i

jv
v

Figure 4.4. Parallel transport of a vector. Fred the Oyster / Wikimedia Commons / https://creativecommons.
org/licenses/by-sa/4.0/deed.
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we can write

∇ = ∂
∂

+ Γ ⊗ ∂
∂x

dx
x

, (4.52)i
k kn

i n k
i

⎜ ⎟⎛
⎝

⎞
⎠v

v
v

where Γkn
i are the connection coefficients in the natural basis, also called Christofell

symbols of second species.

Example. Let us consider the basis in spherical coordinates θ ϕe e e( , , )r written in
terms of the Cartesian basis:

θ ϕ θ ϕ θ
θ ϕ θ ϕ θ

θ ϕ θ ϕ

= + +
= + −
= − +

θ

ϕ

e e e e

e r e r e r e

e r e r e

sin cos sin sin cos ,

cos cos cos sin sin ,

sin sin sin cos .

r x y z

x y z

x y

Differentiating the coordinate basis and remembering that the Cartesian basis
vectors are constant we find, for instance:

θ
θ ϕ θ ϕ θ

ϕ
θ ϕ θ ϕ

θ
θ

∂
∂

= ∂
∂

= + − =

∂
∂

= − + =
∂
∂

=

θ

ϕ
ϕ

ϕ

e
r

e
e e e

r
e

e
e e

r
e

e
e

0, cos cos cos sin sin
1

,

sin sin sin cos
1

, cot .

r r
x y z

r
x y

Calculating the other terms we find for the Γ coefficients

θ

θ θ θ

Γ = Γ = Γ = − Γ = Γ = Γ = Γ =

Γ = − Γ =

θ
θ

θ
θ

θθ ϕ
ϕ

ϕ
ϕ

ϕθ
ϕ

θϕ
ϕ

ϕϕ ϕϕ
θ

r
r

r
r

1
, ,

1
, cot

sin , sin cos .

r r
r

r r

r 2

The other Γ vanish.

4.15 Covariant derivative
The covariant derivative∇uv of the vector v in the direction of the vector u is defined as

∇ = ∇ ∇ = ∇u u( )( ), or (.) ( , .). (4.53)u uv v v v

We note that ∇uv is linear in u, that is

∇ = ∇ + ∇ →+ f g f g X, where , : . (4.54)fu gw u w Rv v v

The covariant derivative of a vector in the basis along another vector in the basis is a
vector and then can be written as a linear combination of the elements in the basis,
that is

∇ = Γe e . (4.55)e j ij
k

ki

For vector fields = =e u u e,i
i

i
iv v we have

∇ = Γ + ∂
∂

u u
u
x

e . (4.56)ji
ij
k i

k

i k

⎛
⎝⎜

⎞
⎠⎟v vv
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The first term in the above equation is responsible for the ‘rotation’ of the coordinate
frame in relation to the covariant derivative, and the second term is responsible for
the component change of the vector field. In particular

∇ = ∇ = ∂
∂

+ Γu u
u
x

u e . (4.57)
je j

i
k

jk
i

ij

⎛
⎝⎜

⎞
⎠⎟

We see that the covariant derivative is the standard derivative along the coordinates
with correction terms that tell us how the coordinates change. Equation (4.57) is
sometimes written as

∇ = ∂
∂

+ Γu
u
x

u . (4.58)j
i k

k

i ij
k

The covariant derivative of a covector α is given by

α α α∇ = ∇ + ∇u u u( ( )) ( ) ( ). (4.59)v v v

The concept of covariant derivative can be generalized for tensors of higher orders.
For instance,

∇ = ∂ + Γ + ΓT T T T . (4.60)i
jk

i
jk

in
j nk

in
k jn

4.16 Curvature
Curvature measures the extent to which parallel transport is path dependent. The

curvature tensor (also called Riemann tensor) in a connection ∇ in X is a (1
3

) tensor

× × →T X T X T X T Xx x x x for ∈x X defined by

= ∇ ∇ − ∇ ∇ − ∇R u w w w w( , , ) , (4.61)u u u[ , ]v v v v

where u, v, w are vector fields in X and [u, v] = uv − vu. In local coordinates we can
write

∂
∂

∂
∂

∂
∂

= ∂
∂

R
x x x

R
n

, , , (4.62)
ji k ijk

n
n

⎜ ⎟⎛
⎝

⎞
⎠

with

=
∂Γ
∂

− ∂Γ
∂

+ Γ Γ − Γ ΓR
x x

( ). (4.63)
jijk

n jk
n

i
ik
n

jk
m

im
n

ik
m

jm
n

⎛
⎝⎜

⎞
⎠⎟

If = ∂ ∂u x/ ,i and = ∂ ∂x/ jv are coordinate vector fields then =u[ , ] 0v and we can
write equation (4.61) as = ∇ ∇R u w w( , , ) [ , ] .uv v

Given a local basis {ei} ⩽ ⩽i N1 , we can define ×N N matrices Γ = Γ ,j mj
n and

= Rjk mjk
nR , and write equation (4.63) as
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= ∂ Γ − ∂ Γ + Γ Γ[ , ]. (4.64)jjk j k k j kR

Note that jkR is anti-symmetric in j and k. Now we define a connection 1-form Γ and
a curvature 2-form Ω by

∑ ∑Γ = Γ Ω = ∧dx dx dx,
1
2

, (4.65)
j j k,

j j jk j kR

and equation (4.64) can be written in a shorter form as

Ω = Γ + Γ ∧ Γd . (4.66)

Another important curvature tensor is defined by =R g Rijkl in jkl
n , where gin are the

components of the metric tensor. The Ricci tensor is given by =R Rij ikj
k . The trace of

the Ricci tensor is the curvature scalar =R g R .ij
ij These tensors are important in the

general relativity theory. In condensed matter we are more interested in two-
dimensional surfaces in 3R . For a Riemannian manifold X of dimension 2, each
component Rijkl of the curvature tensor is either 0 or ± the quantity below

= = =R R gk g g, where det( ). (4.67)jk1212 2121

One calls k the Gauss curvature of X (when dim X = 2). We have also k = R/2. If the
metric is given by =ds g dx dx j

ij
i2 the Gauss curvature has the following expression

as a function of the metric

= −
∂

∂
−

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

k
g g

g

x

g

x g

g

x

g

x

g

x

g

g

x

g

x

g

x

1
2 ( ) ( )

1
2

1
2

.

(4.68)
11 22

2
11
2 2

2
22
1 2

11

11
1

22
1

11
2

2

22

11
2

22
2

22
1

2

⎡
⎣⎢

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎤
⎦
⎥⎥

This is Gauss’s Theorema Egregium (remarkable theorem).
The maximum and minimum values of the curvatures of a two-dimensional

surface are called principal curvatures k1 and k2, respectively. The Gauss curvature
is the product of the two principal curvatures. Another way to express the Gauss
curvature in a simple way is as follows (Givental 2017, Moore 2014):

At a point in a curved two-dimensional surface, there is only one tangent plane,
and consequently only one number is required to describe the Gauss curvature. We
start with a vector at a point and then transport it parallel to itself around a closed
loop. It arrives back at the starting point turned by some angle. We have

=Gaussian curvature
angle turned through
area circunnavigated

. (4.69)

It can be shown that all definitions above are equivalent.
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4.17 The Gauss–Bonnet theorem
Bending does not change the intrinsic geometry of a surface (that is, distances and
angles), as can be seeing by drawing a curve in a cylinder and then unwrapping it in a
plane. However, we cannot wrap a hemisphere with a sheet of paper. This is because
the sphere is curved. Curvature prevents one surface being wrapped around another
without stretching or wrinkling. It does not disappear under bending since it is an
intrinsic property of geometry (Voronov 2011).

A smooth surface can be approximated with a polyhedron (i.e. a surface formed
by flat polygons connected at their sides and vertices). The approximation can be
made arbitrarily good by making the number of faces sufficiently great and the size
of each face sufficiently small. We can study the geometric properties of surfaces by
studying the geometric properties of polyhedra.

The common use of triangles and the triangulation of a regular surface S (i.e. a
surface differentiable in a neighborhood of each point) in two dimensions is defined
as a finite collection of triangles =T{ }j j

n
1 such that ==U T Sj

n
j1 and the only possible

intersections of Ti and Tj with i ≠ j is a common edge or a common vertex. Every
regular surface S admits a triangulation.

If we cut out a piece of the surface of a polyhedra that contains no vertex, it is
possible to unbend the piece along edges to make it lie flat on the plane. However,
even a small piece around a vertex cannot be made to lie flat on the plane. We see
that curvature is associated with vertices. For instance, let us consider part of a
polyhedron made with four triangles. The triangles that belong to the vertex, laid out
on a flat surface, fail to meet.

To be made flat, the corner near a vertex of a polyhedral must have the adjacent
angles adding up to 2π. The difference 2π − sum of angles at a vertex is called the
deficit angle of the vertex (let us call it dif). The deficit angle measures the amount of
curvature concentrated at the vertex.

Let V, E, and F denote the number of vertices, edges and faces of a given
polyhedron. Then we have that:

π= × −Total deficit of all vertices V sum of all angles at all vertices2 .

The sum of all angles at all vertices is the same as the sum of all angles in all faces.
Now we can see that the sum of angles in one face is equal to π multiplied by the
number of sides of this face minus 2π. We arrive then at the following result

π π= × − ×The sum of angles of all faces total number of sides of all faces F2

Polyhedron V E F
Tetrahedron 4 6 4
Cube 8 12 6
Octahedron 6 12 8
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Taking into account that each edge is a side to exactly two faces, we can rewrite this
result as:

π π= × − ×Sum of all angles at vertices E F2 2 .

Using the first result we can get

π= × − −The total angle deficit V E F2 ( ).

The total angle deficit divided by 2π is called the Gauss number of the polyhedron P,
and χ = V − E − F is the Euler number (or Euler characteristic) of the polyhedron P.
The above result says that these two numbers are equal. In the table below I show χ
for some polyhedra.

In all cases χ = 2. χ is unchanged under continuous deformation of the surface, it
remains unchanged so long as the topology remains the same.

The Euler number characterizes the combinatorics of P. Partitioning faces of a
given polyhedron into smaller faces changes combinatorics of it, but it does not
change the geometry. Therefore, the Gauss number does not change, and by the
above result the Euler number remains the same too (for a more detailed discussion
see Givental 2017). We arrive then at the following result, known as the Gauss–
Bonnet theorem for polyhedra

The Gauss and Euler numbers of every polyhedron are equal to each other and
depend only on the topology of the polyhedron.

If a polyhedron has the same topology as the sphere, then its Euler number is 2,
and the total sum of its angle deficit is 4π.

Smooth surfaces can be approximated by polyhedra with lots of tiny faces and
lots of vertices with very small angle deficits. The sums of angle deficits of those
vertices that lie in a region of the surface characterize the curvature of this region. It
is the Gaussian curvature of this region. By choosing better and better approx-
imations of a surface and applying the Gauss–Bonnet theorem for polyhedra, we
arrive at the following result:

The total Gauss curvature of a closed surface depends only on the topology of the
surface and it is equal to 2π times the Euler number of the surface.

Note. The 2π appears due to the way Gauss measured the full angle.
All surfaces in two dimensions are classified up to homeomorphism by their

genus, which is related to the Euler number. Essentially, the number of holes in a
surface classifies it topologically.

The Gauss–Bonnet theorem bridges the gap between topology and differential
geometry. Its importance lies in relating geometrical information of a surface to a
purely topological characteristic. We can present the Euler–Bonnet theorem in its
general form as:

If S is an orientable compact surface then
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∫ κ σ πχ=d S2 ( ), (4.70)
S

where κ is the Gaussian curvature, χ = −S g( ) 2 2 and g is the genus of a surface, i.e.
the number of holes in the surface. The total curvature depends exclusively on the
topological characteristics, i.e. the genus. For instance, the sphere has g = 0 and then
χ = 2. For the torus g = 1, we have χ = 0. Any two-dimensional closed orientable
surface is classified by the number of handles, i.e. the genus g.

The Gauss–Bonnet theorem can be generalized to a smooth manifold of
dimension 2k, which is oriented and compact. However, for dimensions larger
than 2, instead of the curvature we use e(M), the Euler class associated to the tangent
bundle of M. For any compact, orientable manifold of odd dimension, the Euler
characteristic is always zero.

4.18 Surfaces
Considering that two-dimensional surfaces play an important role in condensed
matter, we are going to discuss some details of them here.

Submanifolds of Riemannian manifolds inherit the Riemannian structure. The
simplest example is provided by a surface X in 3R . A smooth surface in 3R is a subset

⊂X 3R such that each point has a neighborhood ⊂U X and a map →r V: 3R from
an open ⊂V 3R such that; (a) →r V U: is a homeomorphism, (b)

=r u x u y u z u( , ) ( ( , ), ( , ), ( , ))v v v v has derivatives of all orders. The induced
Riemannian structure in X is called the first quadratic form. If the surface is given
parametrically as ∈r u( , ) 3Rv , then we have

= ⊗ + ⊗ + ⊗g Edu du Fdu d Gd d2 . (4.71)v v v

The expression for the metric can be obtained from the Euclidian metric
⊗ + ⊗ + ⊗dx dx dy dy dz dz by substituting the differentials of the coordinates

functions x(u, v), y(u, v), z(u, v) of the curve r = (x, y, z) in terms of the parameters u,
v on the surface.

Example 1. The sphere can be parameterized as

θ φ θ φ θ φ θ
θ θ φ φ

=
= ⊗ + ⊗

r a a a

g a d d a d d

( , ) ( sin sin , cos sin , cos ), which leads to

sin .2 2 2

Example 2. For the cylinder one can consider the following parameterization of the
surface:

φ
φ
φ=

=
=

=
r h

x a
y a

z h
( , )

cos
sin

⎧
⎨⎪
⎩⎪

and we get φ φ= ⊗ + ⊗g a d d dh dh2 .
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Example 3. The saddle is given by the equation z − xy = 0, and we can use the
parameterization: x = u, y = v, z = uv. We obtain

= + ⊗ + ⊗ + + ⊗g du du u du d u d d(1 ) 2 (1 ) .2 2v v v v v

The area element σ is given by σ = ± ∣ ∣ ∧g du dv, where ∣ ∣ = ∣ ∣g gdet ij . The sign ± is
fixed by a choice of orientation of the surface. From equation (4.71) we have
det g = EG − F2.

The quadratic form g can be represented as

= +g u u , (4.72)1
2

2
2

where u1 and u2 are differential 1-forms. Locally, such reduction is always possible.
For instance, if

= + +g dx x y dxdy dy2 , (4.73)2 2 2 2

where by some error of notation we omit the symbol ⊗ in equation (4.73). We can
write

= + + −g dx x y dy x y dy( ) (1 ) , (4.74)2 2 2 4 4 2

and take = +u dx x y dy1
2 2 , = −u x y dy12

4 4 .
We remark that σ = ∧u u1 2 is the area form on X. There is no reason for u1 and u2

to be differentials of some functions, so that the differentials du1 and du2 could be
non-vanishing. Now we define functions α1 and as: α σ α σ= =du du,1 1 2 2 and set
θ α α= +u u .1 1 2 2 In the example above we have: = ∧du xy dx dy21

2 ,

= − − ∧du x y x y dx dy( 2 / 1 )2
3 4 4 4 .

Differentiating, we find θ κσ=d , for some function κ. This function is called the
curvature of the metric g. If the metric is the first quadratic form of a surface in 3R ,
the curvature κ coincides with the Gaussian curvature.
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Chapter 5

Dirac equation and gauge fields

5.1 The Dirac equation
Fermionic quasiparticles described by a pseudo-relativistic Dirac equation are
common in condensed matter. In this section I will just present the general idea of
Dirac, Weyl and Majorana fermions without going into detail.

The Dirac equation is a relativistic equation describing free particles of spin 1/2. It
has the form

γ ψ∂ − =μ
μi m( ) 0, (5.1)

where m is the mass and ψ x( ) is a wave function with four components, and γ μ are
×4 4 matrices. In this section, I will use the standard particle physics units where

ℏ = =c 1. We remember that in Minkowsky space–time for μx we have =x t0 ,
x1 = x, =x y2 , =x z3 , while for μx , =x x0

0, = −x x1
1, = −x x2

2, = −x x3
3.

A convenient representation of the γ μ matrices is

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟γ γ σ

σ
=

−
=

−
=I

I
k0

0
, 0

0
, 1, 2, 3. (5.2)k

k

k
0

where =I (1 0
0 1

) and σ k are the Pauli matrices. The γ μ matrices satisfy the anti-

commutation relation: γ γ =μ ν μνg{ , } 2 (where = +−−−μνg diag( )). The fermion
wave function can be written as

ψ = − μ
μp e u p( ) ( ),ix p

where = − − −μp E p p p( , , , )x y z and =μx t x y z, , , and so − = − − ⃗ ⃗μ
μix p i Et x p( . ).

For a particle at rest there are four independent solutions
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⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
= = = =u u u u

1
0
0
0

,

0
1
0
0

,

0
0
1
0

,

0
0
0
1

, (5.3)1 2 3 4

with eigenvalues m, m, −m and −m, respectively. The first two solutions are
interpreted as positive energy particle solutions with spin up and spin down. The
solutions with negative energies can be interpreted (in a second quantization
procedure) as describing antiparticles with positive energies. Then we have the
following correspondence

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ψ

ψ
ψ
ψ
ψ

= →

particle spin up
particle spin down
antiparticle spin up

antiparticle spin down

. (5.4)

1

2

3

4

To study a particle in motion we write the wave function as

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ

ψ
ψ ψ

ψ
ψ ψ

ψ
ψ= = =, where , and . (5.5)A

B
A B

1

2

3

4

Taking this into the Dirac equation and replacing ∂μ by μp we obtain the following
equation for u(p)

γ − =μ
μp m u p( ) ( ) 0, (5.6)

with =u
u
u( )A

B
.

Writing equation (5.6) in a matrix form we get

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

σ
σ
− − ⃗ ⃗
⃗ ⃗ − −

=( )E m p
p E m

u
u

.
.

0
0

, (5.7)A

B

where we have used

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟γ γ γ σ

σ
σ

σ
= − ⃗ ⃗ =

−
− ⃗ ⃗

− ⃗
=

− ⃗ ⃗
⃗ ⃗ −

μ
μp p p p I

I
p

p p

p p
. 0

0
. 0

0

.

.
. (5.8)0

0 0
0

0

From equation (5.8) we have

σ σ⃗ ⃗ = − ⃗ ⃗ +p u E m u p u E m u( . ) ( ) , ( . ) ( ) . (5.9)B A A B

Explicit solutions for uA and uB can be found in Griffiths (2008).
Defining

φ φ= + = −u u u u, and , (5.10)R A B L A B
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we may rewrite equation (5.8) as

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

σ
σ

ϕ
ϕ

− + ⃗ ⃗
− ⃗ ⃗ −

=
m E p

E p m
.

.
0
0

. (5.11)R

L

If the mass of the fermion is zero the two equations are decoupled and we get

σ ϕ σ ϕ− ⃗ ⃗ = + ⃗ ⃗ =p p p p( . ) 0, ( . ) 0. (5.12)R L
0 0

These are known as Weyl equations and ϕL and ϕR are called Weyl spinors. Since for
a massless particle = ∣ ⃗ ∣p p0 , these equations become

σ ϕ ϕ σ ϕ ϕ⃗ ⃗
∣ ⃗ ∣

= ⃗ ⃗
∣ ⃗ ∣

= −p
p

p
p

.
,

.
. (5.13)R R L L

For m = 0, the states ϕL and ϕR do not get mixed up by the equation of motion. We
have thus two kinds of massless particles named left-handed described by ϕL and
right-handed described by ϕR.

The projection of σ ⃗ along the direction of motion is known as the helicity:

σˆ = ⃗ ⃗
∣ ⃗ ∣

h
p

p
.

. (5.14)

Thus Weyl spinors are eigenstates of the helicity, the left-handed (right-handed)
spinor having negative (positive) helicity. In the absence of a mass term, the helicity
operator commutes with the Dirac Hamiltonian, and the helicity is, therefore, a
good quantum number.

The chiral representation, also called Weyl representation is given by

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟γ γ σ

σ
= = −I

I
0

0
, 0

0
. (5.15)k

k

k
0

Writing

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ

φ
φ γ= =

−
I

I
, 0

0
, (5.16)R

L

5

we have

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ ψ

φ
φ

φ
φ=

−
= −

I
I

0
0

. (5.17)R

L

R

L

5

Defining

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ φ ψ

φ
= =0 ,

0
, (5.18)L

L
R

R

we can write

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥ψ

φ
φ

φ
φ ψ

φ
φ

φ
φ= − − = + −

1
2

,
1
2

. (5.19)L
R

L

R

L
R

R

L

R

L
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Thus

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ψ γ ψ ψ γ ψ= − = +1

2
,

1
2

. (5.20)L R

5 5

The matrix γ5 is called the chirality operator. ψR is an eigenstate of γ5 with eigenvalue
+1, while ψL is an eigenstate with eigenvalue −1.

In the chiral representation we have the correspondence

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ψ =

particle right hand
antiparticle right hand

particle left hand
antiparticle left hand

. (5.21)

The chiral states are mixtures of spin states 1/2 and −1/2.
In 1937 Majorana wrote a Dirac equation which had real solutions. To do that he

used the following representation of purely imaginary matrices

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ σ

σ
γ σ

σ
γ σ

σ
γ σ

σ
˜ = ˜ = ˜ =

−
˜ = −i

i
i

i
0

0
, 0

0
, 0

0
, 0

0
. (5.22)0

2

2
1

1

1
2

2

2
3

3

3

Note that we have γ γ˜ = − ˜μ μ*( ) . The Dirac equation can then be written as

γ ψ˜ ∂ − ˜ =μ
μi m( ) 0. (5.23)

This equation describe neutral spin 1/2 fermions that are their own antiparticles.
The components of ψ̃ are all real. We then only need the two upper components.

There is evidence that particle excitations in some condensed matter systems are
Majorana fermions (Zhao 2013, He et al 2017).

5.2 Two-dimensional Dirac equation
Any mathematical objects that satisfy the so called Clifford algebra

γ γ γ γ μ ν γ= = ≠ =μ μ μ ν{ , } 2, { , } 0 for and ( ) 1, (5.24)0 2

are a good representation for the Dirac equation. In three spatial dimensions, as we
saw, γ μ are ×4 4 matrices. However, in the case of two space dimensions there are
only three matrices and they can be given a two-dimensional representation. The
Pauli matrices σ σ σ, , yz x satisfy the Clifford algebra, and we can write the 2D Dirac
Hamiltonian as

σ σ= ⃗ ⃗ +H c p mc. , (5.25)D
z

2
2

where σ σ σ⃗ = ( , ).yx As before, the massive Dirac Hamiltonian has non-degenerate

energy levels = ± +E p c m c .2 2 2 4 As we will see in chapter 8, identifying c with the
Fermi velocity vF , the Hamiltonian (5.25) for m = 0, can be used to describe the low-
energy properties of electrons in graphene.
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The Dirac equation in (4 + 1) dimensions has been used to study topological
insulators in (4 + 1) dimensions (Qi et al 2008).

5.3 Electrodynamics
Let us start with the Dirac Lagrangian

ψ γ ψ ψ ψ= ∂ −μ
μL i m , (5.26)

where ψ ψ γ= + 0 and we have set ℏ = 1, c = 1. To obtain a U(1) gauge theory, one
requires that L is invariant under the local phase transformation

ψ ψ→ θe , (5.27)i x( )

(where x means μx ). We have

ψ θ ψ ψ∂ = ∂ + ∂μ
θ

μ
θ θ

μe i e e( ) ( ) , (5.28)i i i

and therefore, the Lagrangian is not invariant under the transformation (5.27), since

θ ψ γ ψ→ − ∂μ
μL L ( ) . (5.29)

It is convenient to define

λ θ= −x
q

x( )
1

( ) (5.30)

and then

ψ γ ψ λ→ + ∂μ
μL L q( ) , (5.31)

under the transformation ψ ψ→ λ−e iq x( ) . If we demand that L be invariant under the
local phase transformation (5.27), we have to add a gauge field μA that transforms as

λ→ + ∂μ μ μA A , (5.32)

and define a covariant derivative as

≡ ∂ +μ μ μD iqA . (5.33)

We can verify that

ψ ψ→μ
λ−D e D , (5.34)iq

and L becomes invariant under the local phase transformation.
For the fields μA to be dynamical, we need to introduce terms involving their

derivatives in the Lagrangian. We do that using the field tensor

≡ ∂ − ∂μν μ ν ν μF A A . (5.35)
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This field is gauge invariant, since under the gauge transformation (5.32)

λ λ→ ∂ + ∂ − ∂ + ∂ = ∂ − ∂ =μν μ ν ν ν μ μ μ ν ν μ μνF A A A A F( ) ( ) . (5.36)

A Lorentz invariant Lagrangian for the field μνF is given by (Griffiths 2008):

π
= − μν

μνL F F
1

16
, (5.37)

(where the term −1/16π is just a convention). The Euler–Lagrange equation yields

∂ =μ
μνF 0, (5.38)

which are Maxwell’s equations for empty space. The final result is

ψ γ ψ ψ ψ
π

ψ γ ψ= ∂ − − −μ
μ

μν
μν

μ
μL i m F F q A

1
16

( ) . (5.39)

The first term describes free fermions, the second term the photon and the third term
gives the interaction between fermions and photons. Note that the electric charge
appears only in this term as a coupling constant.

The current density is given by

ψ γ ψ=μ μJ q( ). (5.40)

The current conservation

∂ =μ
μJ 0, (5.41)

follows from the anti-symmetry of μνF .
So, the requirement of local phase invariance, applied to the Dirac Lagrangian,

generates all of electrodynamics and gives the current produced by Dirac particles
with charge q. It is simple to verify that

∂ + ∂ + ∂ =μ νλ ν λμ λ μνF F F 0. (5.42)

This equation can be expressed as closure of the two-form μνF :

=dF 0. (5.43)

We can also show that F = dA, where μA is the one-form vector potential. Gauge
invariance under λ→ +A A d is evident since λ =d 0.2

There is one more term that we could add to the Lagrangian consistent with
gauge invariance given by (Schwartz 2014):

θε θ ε= = ∂θ
μναβ

μν αβ μ
μναβ

ν αβL F F A F2 ( ), (5.44)

where θ is a number and εμναβ is the fully asymmetric 4D Levi-Civita tensor. The
term in equation (5.44) is known as the axion field term, and it has been introduced
in particle physics in order to solve a strong charge-parity violation problem. The
term (5.44) has the following contribution to the action of the electromagnetic field
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∫θα
π

= ⃗ ⃗θS d xdtE B
4

. , (5.45)
2

3

where α = ℏe c/ .2 Sθ is a topological term—it depends only on the topology of the
underlying space, not on the geometry. Since the ⃗E field is invariant under time
reversal, whereas the ⃗B field changes sign, Sθ breaks time reversal symmetry. For a
periodic system, however, there are two values of θ, namely θ = 0 and θ = π, that
preserve the time reversal symmetry. When θ is constant it plays no role in
electrodynamics. However, if we consider θ (x, t), the presence of the axion field
can have profound consequences at surfaces and interfaces, when gradients of θ(x)
appear. This term has been used to study topological magnetoelectric effects in
topological insulators (Hasan and Kane 2010).

5.4 Time reversal
The time reversal operator is defined by

⃗ → − ⃗T t x t x: ( , ) ( , ). (5.46)

The kinetic part in the Lagrangian (5.26) should be invariant under (5.46). To do
this, we need ψγ ψ∂μ

μ to transform as a 4-vector under T, so that (Schwartz 2014)

ψ γ ψ ψ γ ψ∂ ⃗ → ∂ − ⃗μ
μ

μ
μi t x i t x( , ) ( , ). (5.47)

In particular, we need the 0-component to transform as ψγ ψ ψγ ψ→ −0 0 , which
implies ψ ψ ψ ψ→ −+ + . Thus we require T to take i into −i in the whole Lagrangian in
addition to acting on fields. This makes T an anti-linear operator. We can also verify
that T flips the spins of particles, but does not turn particles into antiparticles.

5.5 Gauge field as a connection
In this section I will show another way to treat a gauge field. Let us consider a
complex field ϕ x( ). The physics of the problem does not change by the trans-
formation ϕ ϕ→ αx e x( ) ( )i x( ) . We can choose α x( ) at a point x and α(y) at a point y,
but then it is impossible to compare fields at different points. To solve this problem
we introduce a new field W(x, y) that transform as

→ α α−W x y e W x y e( , ) ( , ) . (5.48)i x i y( ) ( )

Then

φ φ φ φ
φ φ

− → −
= −

α α α α

α

−W x y y x e W x y e e y e x

e W x y y x

( , ) ( ) ( ) ( , ) ( ) ( )

[ ( , ) ( ) ( )].
(5.49)

i x i y i y i x

i x

( ) ( ) ( ) ( )

( )

We see that ϕ ϕ−W x y y x[ ( , ) ( ) ( )] is independent of the choice of a local phase.
Writing δ= +μ μ μy x x , dividing by δ μx and taking δ →μx 0 we get

φ δ φ δ φ
δ

≡ + + −
δμ→

μ μD x
W x x x x x x

x
( ) lim

( , ) ( ) ( )
. (5.50)

0
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φ φ→μ
α

μD x e D x( ) ( ). (5.51)i x( )

Imposing the condition =W x y( , ) 1, we can write for δ μx small

δ δ δ+ = − +μ
μW x x x ie x A x O x( , ) 1 ( ) ( ), (5.52)2

where e is an arbitrary constant. Using equation (5.48) we get

α→ + ∂μ μ μA x A x
e

x( ) ( )
1

( ), (5.53)

and from equation (5.51)

φ φ= ∂ −μ μ μD x x ieA x( ) ( ) ( ), (5.54)

Which is equation (5.33) with e = −q. Here, the gauge field was introduced as a
connection, allowing us to compare fields at different points, despite their arbitrary
phases. We can see the similarity of equation (5.54) with equation (4.58).

As we saw in chapter 4, the tangent space is directly associated with a manifold
and has the same dimension as the manifold. The tangent bundle TM in a manifold
M is defined as ∪= ∈TM T Mp M p . We also mentioned that an internal vector space in
a fiber bundle can be of any dimension and is defined as an independent addition to
the manifold. As an example, let us consider (for simplicity) scalar electrodynamics,
where a wave function ψ takes its values at the complex place C, and take as the base
manifold the space–time R4. We can picture ψ supposing that there is a copy Ep (a
fiber) of the complex plane C associated with each point R∈p 4, and ψ assigns to p
a point in the space Ep. The collection of the spaces R∈E{ }p p 4 forms a vector bundle,
and the map ψ associating p to a vector in Ep is a cross section of the bundle. Just
like the tangent bundle of a manifold, we have a collection of vector spaces that vary
smoothly.

We saw above that to compare ψ at different points (i.e. in different Ep) we had to
introduce a connection, which we take now on the vector bundle, and a covariant
derivative, using an analogy to what was done when we considered Riemannian
geometry. The electromagnetic potential can then be geometrically interpreted as a
connection on the vector bundle in which the field ψ takes its values. Just as with
connections on a manifold, we can study the parallel transport of vectors in a bundle
around a closed path and use this to define a notion of curvature for the bundle. In
analogy to what was done in chapter 4, we define a curvature as the field strength
tensor. Note that the curvature defined in this form for the vector bundle has nothing
to do with the intrinsic Riemannian curvature of the base manifold.

We can study gauge theory (as will be done in the following) independent of any
physical interpretation.

5.6 Chern classes
In chapter 3, we saw that homotopy theory provides a way to measure the twisting
of the fibers of a fiber bundle. Another tool which allows us to measure the
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non-triviality of a fiber bundle is characteristic classes (Mombelli 2018, Rahman
2017). They are invariant under vector bundle isomorphism, and thus capture
information about the isomorphism class of a vector bundle. Chern and Weil
showed that one can construct such characteristic classes in the case of complex
bundles using connections and their curvatures. These bundles appear often in
physics where the connection is a gauge field. To present this concept, I first need to
introduce invariant polynomials. Having in mind that in gauge theory, fiber
bundles are in general complex spaces I will use here complex vector spaces. (In
appendix B, I present a brief discussion of complex manifolds.)

LetM(n,C) denote the space of ×n n complex matrices. An invariant polynomial
on M(n,C) is a function

→P M n C C: ( , ) , (5.55)

which is basis invariant, i.e. which satisfies =−P TAT P A( ) ( )1 for every nonsingular
matrix T. Both the determinant and the trace are invariant polynomials.

The Chern–Weil theorem is as follows: If P is an invariant polynomial of the
2-form curvature Ω defined on a manifold M, then ΩP( ) satisfies:

(a) Ω =dP( ) 0.
(b) If Ω and Ω′ are curvature two-forms corresponding to different connections,

then: Ω′ − Ωd d( ) is exact.

We see from this theorem that we can associate to an invariant polynomial P a
cohomology class of M, which does not depend on the connection used.
Topologically equivalent fiber bundles can be associated to the same cohomology
class of M, represented by P. The cohomology class of M corresponding to P is
called characteristic class of the fiber bundle.

Characteristic classes are topological invariants of the fiber bundle, in the sense
that topologically equivalent bundles have the same characteristic classes. There are
several kinds of characteristic classes, and here I am going to present what is called
Chern classes.

Definition 1. Let E be a fiber bundle on a manifold M whose fiber is the complex
space Ck, and ΩE the curvature 2-form. We define the total Chern class ΩC( )E as

⎜ ⎟⎛
⎝

⎞
⎠π

≡ + Ω = + + + …C E
it

C t C t( ) det 1
2

1 (5.56)E 1 2
2

Ck is called the kth Chern class and each Ck is a cohomology class, i.e.
∈C E H M( ) ( ).k

k2 Chern classes were originally defined to be elements of H*(M)
via algebraic topology. Chern proved its equivalence to Chern classes defined by the
curvature form. Let E and E′ be two complex vector bundles over M, then we have

⊕ ′ = ′C E E C E C E( ) ( ) . ( ).
Now we use the result that if an ×n n matrix A is diagonalized by a similarity

transformation
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= …−SAS diag x x x( , , , ), (5.57)N
1

1 2

and considering that the determinant and the trace are invariant under such a
transformation, we can write

∏+ = + = + + … + + + … +

+ … + …

= + + − + … +

=
−A x x x x x x x

x x x

trA trA trA A

det(1 ) (1 ) 1 ( ) ( )

1
1
2

[( ) ] det .

(5.58)
j

N

j

1

N N N

N

1 1 2 1

1 2

2 2

Using equation (5.58) in (5.56) we get

π
= = ΩC C

i
tr1,

2
. (5.59)E0 1

The Chern class Ck is real and the curvature ΩE is purely imaginary. We write
Ω = Ωi .E

If the dimension of the manifold is 2, only C1 is non-zero. The Chern numbers are
given by

∫=c C . (5.60)l
M

l

The Chern numbers are independent of the choice of the connections. They are
integers, invariant under a continuous deformation of the manifold. Thus, they
reveal the topology of the fiber bundle. Chern showed that there are n topological
invariants associated with every fiber bundle constructed upon a 2n dimensional
orientable manifold. Different Chern numbers imply different topologies, but the
reverse is not true. We also note that there is no Chern number for a base manifold
with odd dimension. The Chern classes are defined for complex vector bundles. The
Pontryagin classes are the analog for real vector bundles. The kth Pontryagin class
pk are given in term of Chern classes as

= −p M C M( ) ( 1) ( ). (5.61)k
k

k2

If E is a real vector bundle, the Euler class of E is given by

π π= Ω = ΩC E Pf( ) det( /2 ) ( /2 ).

5.7 Abelian gauge fields
Using the similarity with electromagnetism, we define an abelian gauge potential, a,
in a manifold of dimension n, as a differential 1-form (Manton and Sutcliffe 2004)

= = …a a dx i n. ( 1, , ) (5.62)i
i
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Let us introduce the field 2-form

∑= = ∂ − ∂ ∧
<

f da a a dx dx( ) . (5.63)
i j

j j
j

i i
i

We have = =df d da( ) 0, so f is closed. Under a gauge transformation α→ +a a d , f
is gauge invariant since α α+ = + =d a d da d d da( ) ( ) . If da = 0, a is closed and the
form a is exact and there exists g such that a = dg. This happens in a simply-
connected space. If the 1-form a is given on a manifold X which is not simply
connected π ≠X( ) 01 , it is possible to have a closed but not exact 1-form a, as we will
see in the Aharonov–Bohm effect (chapter 6).

The field f plays the role of a curvature for the space where the gauge field lies,
and so we can use the results of section 5.6 to construct Chern classes for a gauge
theory. The first Chern class of an abelian gauge field is defined to be the

π
=C f

1
2

. (5.64)1

For a gauge field with base manifold the plane R2, the first Chern number c1 is
defined by

R
∫π

=c f
1

2
. (5.65)1

2

If f is smooth and decays to zero as ∣ ∣⃗ → ∞x more rapidly than ∣ ∣⃗−x 2, c1 is finite (we
should remember once more that this curvature does not come from the intrinsic
geometry of the base manifold R2). In Cartesian coordinates we have

∫ ∫π
= ∂ − ∂

−∞

∞

−∞

∞
c a a dxdy

1
2

( ) . (5.66)y yx x1

Since we can consider fxy as a magnetic field in the plane, c1 is the total magnetic flux
through the plane, divided by 2π. If the plane is embedded in R3, −fxy is the
component of the magnetic field in the z-direction.

Since f = da locally, f is a closed form, satisfying df = 0. Because a is not globally
well defined, f is not necessarily an exact 2-form. For a compact Riemann surface X
without boundary, one obtains the constraint on the first Chern number c1 = an
arbitrary integer.

As we have seen before, 2D surfaces can be topologically classified by their genus,
g, which counts the number of holes. The Gauss–Bonnet theorem states that the
integral of the Gaussian curvature over a closed surface is related to g. The Chern
number defined above is an integral of a related curvature.

Chern forms can be locally expressed as exact forms. The expression whose
exterior derivative gives the Chern form is called a Chern–Simons form. For
instance, for the abelian case studied here we have from equation (5.64)

π=C da/21 , so the Chern–Simons 1-form is given by π=Y a/2 .1
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5.8 Non-abelian gauge fields
I will now briefly present the extension of the gauge theory formalism to the non-
abelian case. This case is natural for a Lagrangian whose global symmetries include
more than just a simple phase rotation.

Let G be a finite dimensional non-abelian Lie Group, and {ta} a base for the Lie
algebra. We will assume that {ta} is orthonormalized satisfying the condition

δ=Tr t t C( )a b ab, where C is a negative constant. The normalization condition implies
that the structure constants f abc are totally antisymmetric in their indices.

We will be concerned with a field theory described by the field Φ = Φ … Φ( , , )n1 ,
where Φi are complex scalar fields. The action of the group G can be expressed as

Φ → Φ ∈g g G, , (5.67)

and the indices have been omitted. We are interested in a theory invariant under
space–time dependent gauge transformations

Φ → Φx g x x( ) ( ) ( ). (5.68)

As in the abelian case, we have to introduce a covariant derivative of Φ and a Lie-
algebra-valued gauge field μA x( ). In terms of the basis {ta}, μA can be written as

=μ μA A t . (5.69)a a

We write the covariant derivative as

Φ = ∂ Φ + Φμ μ μD A , (5.70)

and assume that the gauge transformation is given by

→ − ∂μ μ μ
− −A gA g gg . (5.71)1 1

Then

Φ → ∂ Φ + − ∂ Φ
= ∂ Φ + ∂ Φ + Φ − ∂ Φ = Φ

μ μ μ μ

μ μ μ μ μ

− −D g gA g gg g
g g gA g gD
( ) ( )

,
(5.72)

1 1

showing that ΦμD transforms like Φ.
The Yang–Mills field tensor μνF is defined by the following expression

Φ = Φμν μ νF D D[ , ] . (5.73)

or

= ∂ − ∂ +μν μ ν ν μ μ νF A A A A[ , ]. (5.74)

We have under a gauge transformation

→ ∂ − ∂ − ∂ − ∂
+ − ∂ − ∂ =

μν μ ν ν ν μ μ

μ μ ν ν μν

− − − −

− − − − −

F gA g gg gA g gg

gA g gg gA g gg gF g

( ) ( )

[ , ] ,
(5.75)

1 1 1 1

1 1 1 1 1

(where we have used ∂ = − ∂μ μ
− − −g g gg1 1 1, which leads to ∂ = ∂ =μ μ

−g g I( ) 01 ).
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F is a two 2-form (see the similarity with equation (4.66)):

= + ∧F DA A A. (5.76)

It is not closed, however, it satisfies the Biachi identity

= + ∧ − ∧ =DF dF A F F A 0. (5.77)

We can say, in a loose way, that gauge theory is the study of vector bundles over
manifolds, provided with connections satisfying some gauge invariant curvature
condition. I would like to stress once more that curvature of space–time and gauge
field strength is not the same. They are objects of a similar type, but the curvature of
space–time is the curvature of the Levi-Civita connections on the tangent bundle,
and the field strength is proportional to the curvature of a connection on a principal
SU(N) bundle.

5.9 Chern numbers for non-abelian gauge fields
We can use the results of section 5.6 with Ω replaced by F, and for a U(n) gauge
theory to write

π
=C trF

1
2

. (5.78)1

We can show that the Chern classes are invariant under the gauge transformation

=−C gFg C F( ) ( ). (5.79)l l
1

This implies that cl is a closed form: dcl = 0.
The second Chern class C2 is defined as

π
= ∧ − ∧C tr F F trF trF

1
8

[ ( ) ]. (5.80)2 2

If F has noU(1) part, then only the term ∧tr F F( ) contributes (Manton and Sutcliffe
2004). Using = + ∧F DA A A we can write ∧ =tr F F dY( ) ,3 where Y3 is a Chern–
Simons 3-form

⎛
⎝⎜

⎞
⎠⎟= ∧ + ∧ ∧Y tr dA A A A A

2
3

. (5.81)3

Thus, C2 is a closed 4-form since dC2 = 0. The second Chern number ∫=c C2 2 is

characterized by the homotopy π S( )4
4 and it requires a four-dimensional space. We

can define a Chern–Simmons number y3 as
R

∫=y Y3 33
, and it is precisely the Qi et al

(2008) formula for the ‘θ’ term in equation (5.44).
For a general k we have:

⎛
⎝⎜

⎞
⎠⎟π

=C F
1

2
det( ). (5.82)k

k
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In the abelian case the above definitions reduces to

⎛
⎝⎜

⎞
⎠⎟π π π

= = = ∧ ⋯ = ∧ ∧ … ∧C C f C f f C f f f1,
1

2
,

1
8

,
1

2
(5.83)

k
k

k

0 1 2 2

For an abelian field on a closed 4-manifold X, c2 can be non-zero if X has
topologically non-trivial closed two-dimensional submanifolds, and is an integer.

The Chern numbers are independent of the choice of either the gauge, or the
connections. They are integers, invariant under a continuous deformation of the
manifold. As was mentioned above, they reveal the topology of the fiber bundle.

Any gauge theory which does not depend on the metric of the underlying space–
time manifold must have a Lagrangian which depends only on topological terms.
These terms are precisely the characteristic classes of the relevant bundles.

5.10 Maxwell equations using differential forms
In this section I will treat the Maxwell equations in the context of differential forms.
The contravariant antisymmetric electromagnetic tensor μνF is given by

=

− − −
−

−
−

μνF

E E E

E B B

E B B

E B B

0

0

0

0

. (5.84)

x y z

x z y

y z x

z y x

The covariant form η η=μν μα
αβ

βνF F , (where η = +−−−αφ diag( )) written as

=
− −
− −
− −

μνF

E E E

E B B

E B B

E B B

0

0

0

0

, (5.85)

x y z

x z y

y z x

z y x

can be interpreted as a 2-form R× →F V V: . Using the basis (dx, dy, dz, dt) we can
write

= ∧ + ∧ + ∧ + ∧
+ ∧ + ∧

F E dx dt E dy dt E dz dt B dy dz

B dz dx B dx dy.
(5.86)

x y z x

y z

Taking the derivative we find

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

+
∂
∂

+ ∂
∂

∧ ∧ + ∂
∂

+ ∂
∂

−
∂
∂

∧ ∧

×
∂
∂

+ ∂
∂

− ∂
∂

∧ ∧ + ∂
∂

+
∂
∂

− ∂
∂

∧ ∧

dF
B
x

B

y
B
z

dx dy dz
B
t

E
y

E

z
dt dy dz

B

t
E
z

E
x

dt dz dx
B
t

E

x
E
y

dt dx dy.

(5.87)

x y z x z y

y x z z y x
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Using Maxwell’s equations

∇⃗ ⃗ = ∇⃗ × = − ∂ ⃗
∂

B E
B
t

. 0, , (5.88)

we get dF = 0. Thus F is a closed 2-form. We can write F as F = dA, where A is a
1-form, the 4-potential. From equation (5.88) we get

= ∧ + ∧ + ∧ + ∧
+ ∧ + ∧

*F E dy dz E dz dx E dx dy B dt dx

B dt dy B dt dz.
(5.89)

x y z x

y z

Following the same procedures that we arrived at equation (5.87) we find

⎛
⎝⎜

⎞
⎠⎟= ∂

∂
+

∂
∂

+ ∂
∂

∧ ∧ + …*d F
E
x

E

y
E
z

dx dy dz . (5.90)x y z

Now, using the Maxwell equations

πρ π∇⃗ ⃗ = ∂ ⃗
∂

− ∇ × ⃗ = − ⃗E
E
t

B J. 4 , 4 , (5.91)

we find

π ρ
π

= ∧ ∧ − ∧ ∧ − ∧ ∧
− ∧ ∧ =

*

*

d F dx dy dz J dt dy dz J dt dz dx

J dt dx dt J

4 (

) 4
(5.92)x y

z

where ρ J J J( , , , )x y z are the components of the 4-current, and *J is a 3-form. The
equations dF = 0 and π=* *d F J4 are the Maxwell equations in the language of
differential geometry independent of the coordinate system and without mentioning
the metric. From equation (5.92) we get the charge conservation law

=*d J 0. (5.93)
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Chapter 6

Berry connection and particle moving in a
magnetic field

6.1 Introduction
In chapter 3 we saw that the simplest example of a fiber bundle was that of a tangent
bundle: a Riemannian manifold with a tangent vector space attached at each point.
The metric defined on the tangent plane, varying smoothly from point to point,
allowed us to define parallel transport and curvature. In quantum mechanics, we
have instead of a tangent vector space, a Hilbert space, with a Hermitian inner
product, that varies smoothly from point to point in a parameter space. The
structure is in some ways similar.

Let us consider a quantum system described by a Hamiltonian H that depends on
parameters λ = (λ1, λ2,… ,λn) λ ∈ M ,whereM, the manifold of external parameters,
is our base space. The complex vector fiber is the Hilbert space H of the problem,
independent of λ. The evolution with time t of the parameters corresponds to a curve
λ(t), ∈t t t[ , ]i f on the base space. A vector ψ λ∣ 〉( ) continuously defined as a function
of λ is a cross-section of the vector bundle. In the present case we can write ×M H
for the fiber bundle. For simplicity, I am going to use just a single parameter. For
instance, if we have a particle in a box, λ is the side of the box. Now we vary λ
slowly. The adiabatic theorem says that if the time evolution is slow compared with
the characteristic time scale of the system and if the system is in a non-degenerate
eingestate, the system will remain in the same state. The energy gap between
adjacent eigenstates sets the time scale of the system. There are no transitions
between eigenstates during the evolution. (The theorem can apply to degenerate
eigenvalues, in which case the states corresponding to the eigenvalues can mix
among themselves.) As an example, let us consider a particle in the ground state of
an infinite square well in one dimension with λ the size of the box. If λ = a at t = 0 the
initial state is
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ψ π=
a

x
a

2
sin . (6.1)i

⎜ ⎟⎛
⎝

⎞
⎠

If we move the right wall slowly, the particle will remain in the ground state with
wave function

ψ
λ

π
λ

= x2
sin . (6.2)i

⎜ ⎟⎛
⎝

⎞
⎠

However, if the wall is moved suddenly at t = 0, the particle will not instantly adapt
to the change and the resulting state will remain ψi, which is no longer an eingestate
of the new Hamiltonian.

6.2 Berry phase
We start with the Schrödinger equation

ψ λ ψℏ ∂
∂

=i
t

t H t t( ) ( ( )) ( ) . (6.3)

we can choose a basis of eigenstates λ∣ 〉n( ) such that

λ λ λ λ=H n E n( ) ( ) ( ) ( ) . (6.4)n

We suppose that the spectre of H is discrete, the eigenvalues are non-degenerate and
that level crossing does not occur during the evolution. We suppose also that in t = 0
the system is in the nth state, i.e.

ψ λ= n(0) ( (0)) . (6.5)

Although the system remains in the same state it acquires a phase that does not
affect the physics. We can write

ψ λ= ϕt e n( ) ( ) , (6.6)i t( )n

where ϕ θ γ= +t t t( ) ( ) ( )nn n , θ t( )n is the dynamic phase

∫θ λ= −
ℏ

′ ′t E t dt( )
1

( ( )) , (6.7)n

t

n
0

and γ t( )n is the geometric phase. Taking the time derivative of equation (6.6)

ψ λ θ γ
λ∂

∂
= ∂

∂
+ ∂

∂
+

∂
∂

ϕ ϕt
t

e
t

n i
t

t

t

t
e n

( )
( )

( ) ( )
( ) , (6.8)i t n n i t( ) ( )n n

⎛
⎝⎜

⎞
⎠⎟

where

θ∂
∂

= −
ℏ

t
t

E
( ) 1

(6.9)n
n
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Taking equations (6.5), (6.6) and (6.7) into (6.8) we get

λ γ
λ∂

∂
+

∂
∂

=n
t

i
t

t
n

( ) ( )
( ) 0. (6.10)n

Multiplying equation (6.10) by λ〈 ∣n( ) we obtain

γ
λ λ=

d t

dt
i n

d
dt

n
( )

( ) ( ) , (6.11)n

which leads to

∫γ λ λ=
′

′t i n t
d
dt

n t dt( ) ( ( )) ( ( )) . (6.12)n

t

0

Differentiating λ λ〈 ∣∣ 〉 =n t n t( ( )) ( ( )) 1 we get

λ λ λ λ∂
∂

+ ∂
∂

=
t

n t n t n t
t

n t( ( ( )) ) ( ( )) ( ( )) ( ( )) 0, (6.13)⎜ ⎟⎛
⎝

⎞
⎠

or

λ λ λ λ∂
∂

= − ∂
∂

*
n t

t
n t n t

t
n t( ( )) ( ( )) ( ( )) ( ( )) , (6.14)⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

which shows that the phase is real. Coming back to λ j we can write equation (6.12) as

∫ ∫γ λ
λ

λ λ λ λ= ′ ∂
∂

′ =
λ

λ

λ

λ
t i n t n t d A d( ) ( ( )) ( ( )) ( ) , (6.15)

j
j

n

t t

n j
(0)

( )

(0)

( )

,

where

λ
λ

λ= ∂
∂

A i n n( ) ( ) , (6.16)
jn j,

is the Berry vector potential, also called the Berry connection (Berry 1984). In the
language of differential forms

∫γ =t A( ) , (6.17)n
C

n

where the Berry one-form is

λ λ
λ

λ λ λ λ= = ∂
∂

=A A d i n n d i n d n( ) ( ) ( ) ( ) , (6.18)j
j

j
n n j,

and d is the exterior derivative.
As we saw in chapter 4, a connection is a way to compare vector spaces that are

attached to different points of a manifold. In our case, there is a one-dimensional
complex vector space attached at each point in the parameter space, spanned by the
local eigenstate λ∣ 〉n( ) . The Berry connection allows us to compare two vectors from
slightly different points.
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Differentiating λ λ λ∣ 〉 = ∣ 〉H n E n( ) ( ) ( )n we get

λ λ λ λ λ λ+ = +dH n Hd n dE n E d n( ) ( ) ( ) ( ) ( ) ( ) . (6.19)n n

Multiplying equation (6.19) by λ〈 ∣n( ) we find

λ λ λ=n dH n dE( ) ( ) ( ). (6.20)n

Multiplying equation (6.19) by λ〈 ∣m( ) with ≠m n we get

λ λ λ λ λ
λ λ

=
−

m d n
m dH n

E E
( ) ( )

( ) ( ) ( )
( ) ( )

. (6.21)
n m

The states λ∣ 〉n( ) are not uniquely defined, there is a gauge freedom

λ λ λ→ ′ = ω λn n e n( ) ( ) ( ) . (6.22)i ( )n

Note that this is not possible if M has a non-trivial topology. We have now

ω
λ

ω′ = + ∂
∂

= +A A A d . (6.23)
jn j n j
n

n j n, , ,

The gauge transformation of the Berry vector potential is

∫γ γ λ γ ω λ ω λ→ ′ = ′ = − +
λ

λ
t t A d t t( ) ( ) . ( ) ( ( )) ( (0)). (6.24)n n

t

n n n n
(0)

( )

If the path in the parameter space is a closed loop, λ λ=T( ) (0), and then

γ γ γ π→ ′ = + ×t T T( ) ( ) ( ) 2 integer.n n n

The geometric phase around a closed loop is the Berry phase. It is gauge invariant
and cannot be removed.

As an example, let us consider a particle of mass m in a two-dimensional box with
sides a and b. The energy levels are given by

π= ℏ +E
m

n
a

n

b2
. (6.25)x y2 2 2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Here λ λ= =a b, .1 2 We can take n as the state with = =n n 1x y , and starting with
some initial values for a and b, vary them slowly and return to the same values
keeping ≠a b.

As we saw in chapter 5, in electromagnetism the gauge invariance
ω→ ′ + ∂μ μ μA A leads to the fields

=
∂
∂

− ∂
∂μν

μ
ν

ν

μ
F

A

x
A
x

. (6.26)

Doing an analogy, we can define the fields

λ
λ λ

ℑ =
∂
∂

−
∂
∂

A A
( ) , (6.27)

jn ij
n i n j

i,
, ,
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where ℑn ij, is the connection defined in the parameter space.
The corresponding two-form

λ λ= ℑ ∧ =F d d dA
1
2

, (6.28)j
n n jk

k
n,

is the Berry curvature. The Berry curvature does not come from the intrinsic
geometry of the manifold of parameters but rather with how the attached Hilbert
space evolves as parameters change. The Berry curvature is gauge invariant

ω→ ′ = ′ = − = =F F dA dA d dA F . (6.29)n n n n n n n
2

Using Stokes’ theorem we can write

∮ ∫λ λ= − = −γe i A d i dSexp ( ) exp , (6.30)i

C
n j

j

S
n ij

ij
, ,⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠I

where S is a two-dimensional surface in the parameter space bounded by the curve C.
The Berry phase is observable. We can detect interference effects when one system

is taken around a closed path in parameter space, while another system initially
identical to the first is taken around a different path.

6.3 The Aharonov–Bohm effect
Let us consider a particle with charge qmoving in a region where there is a magnetic
potential A

��
. The plane wave solution of the Schrödinger equation is ψ ∝ ⃗ ℏeip r. /

��
,

where ⃗= −p m qA
�� ��

v . Moving the particle slowly around a contractible loop will
generate a local phase ϕ given by

∮ ∫ϕ σ=
ℏ

⃗ =
ℏ

i
q

A dr i
q

B dexp . exp . . (6.31)⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�� �� ��

If the local phases for all contractible loops vanish, the magnetic field is zero. The
Berry phase is an example of a local phase.

The global phase is related to non-contractible loops. To understand this phase let
us consider the double-slit experiment shown in figure 6.1. A solenoid between the
slits and the screen, aligned along the z-direction, gives rise to a magnetic vector
potential in the exterior regions inside and outside the solenoid, but the magnetic
field is zero in the outside region. A classical particle excluded from the solenoid will
not change its motion because B = 0. However, a quantum particle, as mentioned
above, acquires an extra phase factor ϕ. If we perform a gauge transformation

ω→ + ∇A A
�� �� ��

, then

∫ϕ ω=
ℏ

+ ∇ ⃗q
A dr( ). , (6.32)
�� ��

and so we can choose ϕ as we want, all we need to do is to pick a particular form for
ω. However, we are interested in the phase difference
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∫ ∫ϕ ϕ ϕΔ = − =
ℏ

⃗+ ⃗q
A dr A dr. . , (6.33)

P P
1 2

1 2

�� ��

where P1 and P2 are the two paths. We can write equation (6.33) as

∮ϕΔ =
ℏ

⃗
= −

q
A dr. . (6.34)

C P P1 2

��

Using Stokes’ theorem we find

∫ ∫ϕ σ σΔ =
ℏ

∇ × =
ℏ

=
ℏ

Φq
A d

q
B d

q
. . , (6.35)

�� �� �� �� ��

where Φ is the flux through the solenoid. This leads to a shift in the interference
pattern on the screen that can be observed experimentally. Gauge transformation

does not affect the result because here ∮ ⃗ω∇ =dr. 0.
��

The effect is topological. This

happens because the wave function is defined in the plane 2R minus the origin, i.e. a
sheet with a hole in it. The result is the same if we place an infinite thin flux tube
of flux Φ at r = 0. Such a phase is called the global phase (Wen 2004).
Electromagnetism has a U(1) symmetry, which has the same topology as the circle
S1. The definition of a phase is equivalent to mapping S1 to a path around a hole,
this is π =S Z( )1

1 . As we saw in chapter 3, the mapping is characterized by an integer
winding number. Global phases exist only when the space is not simply connected.
They do not affect the classical equations of motion, but will affect the quantum
properties of the particle.

6.4 Non-abelian Berry connections
To complete the study of Berry phases we will present here the non-abelian case that
is used in the non-abelian quantum Hall states. We consider here the case where the
ground state is N-fold degenerate and remains in this situation for all values of the
parameter λ. We will change the Hamiltonian in a way that the degeneracy is not
broken. If we start with the system in one of the N degenerate ground states, and
then vary the parameters in a closed path, the final state could be any one of the
degenerate states in the N-dimensional space. For simplicity, we will assume that the
ground state has energy E = 0 for all values of λ.

As before we have the Schrödinger equation

P Q

γ2

γ1

Φ

Figure 6.1. The Aharonov–Bohm effect. Reproduced from Buniy et al (2013).
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ψ λ ψ∂
∂

= =i
t

H t( ( )) 0. (6.36)

For any choice of the parameters λ, we use an N-dimensional basis of ground states

λ = …n i N( ) , 1, , . (6.37)i

Note that we can use any other choice of bases for each λ. The time evolution of the
basis (6.37) through the Schrödinger equation is given by

ψ =t U t n t( ) ( ) ( ) , (6.38)i ij j

where U(t) is a time-dependent unitary matrix. Taking equation (6.38) into (6.36) we
find

ψ
= +

d

dt
d
dt

U n U
d
dt

n , (6.39)i
ij j ij j

which can be written as

λ
λ= − = − ∂

∂ α

α
+U

d
dt

U n
d
dt

n n n
d
dt

. (6.40)ik ij i j i j

Now we define a non-abelian Berry connection as

λ
= − ∂

∂α αA i n n( ) . (6.41)ji i j

αA is a ×N N matrix and is a gauge connection over the space of parameters. But
the system is invariant under a rotation of the bases at each point

λ λ λ′ = Ωn n( ) ( ) ( ) , (6.42)i ij j

where λΩ( ) is a unitary rotation. The Berry connection is now given by

λ
′ = Ω Ω + ∂Ω

∂
Ωα α α

+ +A A i . (6.43)

But this is the gauge connection studied in section 5.7. As we saw the field strength is
given by

λ
= ∂

∂
−

∂
∂

−αβ
α
β

β
α α βF

A A

A
i A A[ , ]. (6.44)
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Chapter 7

Quantum Hall effect

7.1 Integer quantum Hall effect
In 1980, von Klitzing et al (1980) discovered experimentally that in a two-dimen-
sional electron gas produced at a semiconductor hereto-junction subject to a strong
magnetic field, the longitudinal conductance vanished while quantum plateaus
appeared in the Hall conductance at values νe2/h, where ν is an integer. To
understand the integer quantum Hall effect we start by studying the motion of a
particle in a magnetic field. So, we take a uniform magnetic field B in the z direction.
Using ⃗ = ∇⃗ × ⃗B A we can write

=
∂
∂

− ∂
∂

B
A

x
A
y

. (7.1)z
y x

We can take ⃗ = ˆA Bxj , that is

=A Bx. (7.2)y

Another choice is

= = −A
Bx

A
By

2
,

2
. (7.3)y x

The Hamiltonian for a particle with mass m and charge emoving in the x–y plane in
the presence of the potential ⃗ = ˆA Bxj is

= +H
m

p p
1

2
( ). (7.4)x y

2 2

Using equation (7.2) we have for the momentum → −p p Aie
cy y y, so that we can

write the Schrödinger equation as
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ψ ψ− ℏ ∂
∂

+ ∂
∂

−
ℏ

=
m x y

ieBx
c

x y E x y
2

( , ) ( , ). (7.5)
2 2

2

2⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

The translational invariance in the y direction allows us to write

ψ ϕ=x y e x( , ) ( ). (7.6)n k
iky

n,

Taking equation (7.6) into (7.5) we get

ω ϕ ε ϕℏ − ∂
∂

+ − =l
x

x
l

lk x x
2

( ) ( ), (7.7)B
n n n

2
2

2

2
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

where

ω ≡ ≡ ℏeB
mc

l
c

eB
, . (7.8)B

As we can see, equation (7.7) is the Schrödinger equation for a harmonic oscillator in
the variable ′ = −x x l k2 . We can thus write the solution for this equation as

ψ = − − −
x y e H x l lk

x x
l

( , ) ( / )exp
( )

2
, (7.9)n k

iky
n

k
,

2

2

⎡
⎣⎢

⎤
⎦⎥

where Hn are the Hermitian polynomials, =x l kk
2 , and

ε ω= ℏ +n
1
2

. (7.10)n B
⎛
⎝⎜

⎞
⎠⎟

The wave function (7.9) depends on the quantum numbers n and k, but the energy
(7.10) depends only on n. The levels of the above oscillator, called the Landau levels,
are infinitely degenerate. Landau levels are one of the simplest band structures in
condensed matter physics, they define a complex vector bundle over the momentum
space. Here we have an example where from a bulk Hamiltonian which has
translational invariance along one direction (the y direction in our case), we obtain
an edge Hamiltonian by a partial Fourier transform. The momenta k in the y
direction can then be treated as a parameter. If we plot the energy as a function of k,
we find the dispersion relation. The dispersion contains a bunch of horizontal lines,
which we take as the energy bands. All the quantum states in one band (the same n
but different k) have the same energy. To get a finite number of levels, we consider a
rectangular region of sides Lx and Ly, and then calculate the number of states in this
region. Using the periodic boundary condition we have

= → =+e e e 1. (7.11)i y L k iky ikL( )y y

Thus, k is quantized in units π L2 / y. The situation with the x variable is a little more
complicated since the gauge we have chosen is not translational invariant in the x
direction. But let us use a simple argument. The wave functions are exponentially
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localized around =x kl .k
2 For a region ⩽ ⩽x L0 x, we expect that the allowed values

for k are in the range ⩽ ⩽L l k/ 0.x
2 Thus the total number of states is given by

π π
= =

ℏ
=N

L L
l

eBA
c

eBA
hc2

.
2

, (7.12)y x
2

where =A L L .x y The magnetic flux is given by the magnetic field Bmultiplied by the
area A. So we can introduce the flux quantum ϕ π= ℏc e2 /0 , and write

ϕ
=N

BA
. (7.13)

0

We note that N is the number of electrons in each level n, =n eB hc/B is the number
of states per unit of area. If the number of electrons per unit of area is ne, we define
the filling factor ν by

ν = =n
n

n hc
Be

. (7.14)e

B

e

Whenever the magnetic field takes a value

=B
n hc
ep

, (7.15)e

with p an integer, the filling factor will be an integer and hence ν Landau levels will
be completely filled.

We can arrive at equation (7.12) following another procedure as follows. We start
with free electrons in a two-dimensional box of side L. The energy levels are given by

π= ℏ +E
mL

n n
2

( ). (7.16)x y

2 2

2
2 2

Let us write

π= + = ℏr n n mE L(2 ) /( ) . (7.17)x y
2 2 2 2 2

The number of states with energy less than E is given by

φ π
π

= =
ℏ

E r
L mE

( )
1
4

2
4

, (7.18)2
2

2

since we use only positive values for nx and ny. The number of states with energy
lying in the interval between E and E + δE is

φ δ
π

δ= =
ℏ

G E
d
dE

E
L m

E( )
2

. (7.19)
2

2

The density of states is

π
=

ℏ
g E

Am
( )

2
, (7.20)

2
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where A = L2 is the area. If the particle has spin 1/2 we multiply equation (7.20) by 2. In
the presence of a magnetic field the total number of states does not change, but the states
of free electrons collapse to certain allowed discrete levels satisfying the condition (7.10).
That is, the allowed values for the energy become discrete with a spacing between levels
of ωℏ B. The number of states in the interval ωℏ B is then given by

ω
π

ℏ = ℏ
ℏ

=g E
Am eB

mc
eAB
hc

( )
2

, (7.21)B 2

which is equation (7.12) (the factor 2 is due to the two values of spin). The electrons
are strongly correlated because all the states in a given Landau level are completely
degenerate in kinetic energy.

Our next step is to study the motion of charged particles. The classical equation of
motion for a particle moving in the presence of an electric and a magnetic field is

τ
⃗ = − ⃗ − ⃗ × ⃗ − ⃗

m
d
dt

eE e B
m

, (7.22)
v

v
v

where τ, the damping term, represent the average collision time. In equilibrium
⃗ =d dt/ 0v , and we can write

τ τ⃗ + ⃗ × ⃗ = − ⃗e
m

B
e
m

E . (7.23)v v

The current density is given by ⃗ = − ⃗j n ee v, where n ee is the charge density. Equation
(7.23) can be written as

ω τ ω τ+ = − − = −e e m E e e m E( / ) , ( / ) , (7.24)x B y x y B x yv v v v

which can be written (multiplying equation (7.24) by −nee):

ω τ
ω τ

τ
−

=
j
j

e n
m

E
E

1
1

. (7.25)B

B

x

y

e x

y

2⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Using the Ohm law σ⃗ = ⃗j E , with

σ
σ σ
σ σ= − , (7.26)
xx xy

xy xx
⎜ ⎟⎛
⎝

⎞
⎠

we get, using equation (7.24)

σ σ
ω τ

ω τ
ω τ

=
+

−
1

1
1

, (7.27)DC

B

B

B
2

⎛
⎝⎜

⎞
⎠⎟

where σ τ= n e m/DC e
2 is the direct conductivity. The resistivity ρ σ= −1 is then

ρ
σ

ω τ
ω τ

=
−

1 1
1

. (7.28)
DC

B

B

⎛
⎝⎜

⎞
⎠⎟
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We can write

ρ
τ

ρ ω τ
σ ν

= = =m
n e

hc
e

, . (7.29)xx
e

xy
B

DC
2 2

For a conventional system we expect ρxx to be a constant and ρxy to increase
linearly with field. However, as was said before, von Klitzing and co-workers found
something quite different. They found plateaus in ρxy occurring at values given by
equation (7.29) with ν integer, and dramatic drops in ρxx which takes very small
values when we have a plateau in ρxy. By varying the strength of the B field, the
system turns from one insulator to a metal, and so on. Each insulation state
corresponds to a plateau of ρxy and the step between two neighboring plateaux is a
metallic state. Let us now analyze the integer quantum Hall effect.

A metal layer in the xy-plane in the presence of an electric field in the x direction
supports a current I in the same direction (figure 7.1). By Ohm’s law we have

σ=j Ex x0 , where σ0 is the conductivity. In the presence of a magnetic field oriented
upward along the z direction, the electrons will be deflected in the y direction by the
Lorentz force. However, since the layer has a finite width Ly, the deflected electrons
will run in the edge of the layer. The accumulation of electrons at the edges produces
an electric field Ey (called the Hall field) in the y direction (thus, perpendicular to
the current). The accumulation ceases when the force eEy cancels the Lorentz force,
that is,

=E B c/ . (7.30)y xv

We have =I L jy x, =V L EH y y. The Hall resistance is given by

= = =R
V
I

L E

L j

E

j
, (7.31)

y
H

H y

y x

y

x

where VH is the Hall voltage. Using equation (7.30) and remembering that
=j enx e xv we get

y
x

Ix

B

Figure 7.1. Reproduced from Bieri and Frohlich (2011). Copyright © 2011 Académie des sciences. Published
by Elsevier Masson SAS. All rights reserved.
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= =R
B

cj
B

ecn
. (7.32)H

x

x e

v

The Hall conductance is

σ σ ν ν= = = = =
R

ecn
B

ec n
B

e
hc

1
. (7.33)H xy

H

e B
2

When the magnetic field is very strong, and the temperature is low enough, ν is
quantized and takes on positive integer values. Equation (7.33) is compatible with
equation (7.29). In a Hall system an energy gap separates the occupied and empty
states just like in an insulator. Unlike an insulator, though, an electric field causes
the ‘cyclotron orbits to drift’ leading to a Hall current characterized by the quantized
Hall conductivity (7.33).

7.2 Currents at the edge
A charge e in a magnetic field moves in a circular orbit with radius r under the action
of the force evB. Using the expression for the centripetal force we can write

= → =m
r

e B r
m
eB

. (7.34)
2v

v
v

The energy in a Landau level is

ε = + ℏ
n

eB
m

1
2

. (7.35)n
⎛
⎝⎜

⎞
⎠⎟

In a semi-classical treatment we can put εn equal to the kinetic energy and obtain

= + ℏm n eB(2 1) , (7.36)v

and so

= + ℏ
r n

eB
(2 1) . (7.37)n

In the bulk of a sample, clockwise and counterclockwise pieces of neighboring orbits
overlap, and the current in the bulk vanishes. At the edge, the orbits are truncated in
response to the confining potential created by the boundary. Once an electron is
reflected by the boundary, it still attempts to move in a circular orbit. This induces a
skipping-type motion of an electron at the boundary of the sample, as shown in
figure 7.2 (Philips 2003). Such a motion generates an edge current that flows to the
right in the upper edge and to the left in the lower edge, for a magnetic field oriented
in the positive z-direction. The electronic states responsible for this motion are chiral
in the sense that they propagate in one direction only along the edge. These states are
insensitive to disorder because there are no states available for backscattering and
the charge carriers have a ballistic motion. Each Landau level generates an edge
channel.
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The edge of the sample can be modeled by a confining potential V(x) that varies
slowly in the bulk but rises steeply near the edge. We write

ω ωℏ = + ℏ +n V kl
1
2

( ). (7.38)k c
2

⎛
⎝⎜

⎞
⎠⎟

The group velocity (which represents the electron velocity) is given by

ω= ∂
∂

=
ℏ

∂
∂

=
ℏ

∂
∂

∂
∂k

V
k

V
r

r
k

1 1
, (7.39)kv

where =r kl2. We have v = cE/B, where = −∂ ∂E V r r( )/ is the electric field in the
edge originating from the confining potential. We take E = 0 in the bulk. Writing
Δ = −E k E( ) F , and ˜ = −k k kF , we have for ≈E EF ,

Δ = ℏ k̃. (7.40)v

The fact that the current arises from states at the edge is a novel feature of
quantum Hall systems, and the integer Hall effect can be understood simply as a
quantization of the edge currents. Because the Landau levels are discrete, each
Landau level will generate one edge channel. Consequently, the number of filled
Landau levels, i.e. the filling factor, determines the quantized Hall conductance. The
metallic edges are ‘chiral’ quantum wires (each wire gives one conductance e2/h). The
topological invariant of the bulk 2D material just gives how many wires there have
to be at the boundaries of the system.

We can imagine an interface where a crystal slowly interpolates as a function of
the distance x between a quantum Hall state and a trivial insulator. Somewhere
along the way the energy gap has to vanish, because otherwise it is impossible for the
topological invariant to change. If the system remains insulating, the invariant does
not change. Therefore the system must not remain insulating. If a bulk Hamiltonian
has non-trivial topology, then there should be gapless states localized at the
boundary which reflect the bulk topological invariant. The same idea will apply
to other topological phases. That is: a topological invariant based on the Berry
phase, will lead to a non-trivial edge or surface state at any boundary to an ordinary

rigth-moving

left-moving

Figure 7.2. Adapted from https://topocondmat.org/w3_pump_QHE/QHEedgestates.html.

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

7-7

https://topocondmat.org/w3_pump_QHE/QHEedgestates.html


insulator or vacuum. However, the physical origin of the phenomenon will be
different. I will come back to this subject later.

Our discussion up to now only shows that ρxy is quantized at those values of B at
which an integer number of Landau levels are completely filled, but does not explain
the occurrence of the plateau nor the vanishing of ρxx. The Fermi level jumps from
one Landau level to the next as the levels get filled up. Thus, we should expect σxy to
be a monotonically increasing function of the electron density. The explanation of
the observability of the steps in σxy involves both the presence of impurities and of
states at the edges of the sample. Disorder changes both the spatial extent and the
energy of electronic states. Hence, the degenerate band of states comprising each
Landau level can be thought of as being broadened into a band of states. The
quantum Hall effect occurs only in imperfect samples. If the samples were ideal, the
effect would disappear. I will not go into these details here.

7.3 Kubo formula
It is well known from perturbation theory that in the interaction picture the
temporal evolution of a state ψ∣ 〉t( ) is given by

ψ ψ=t U t t t( ) ( , ) ( ) , (7.41)0 0

where the time-displacement operator U(t, t0) is given by

∫= −
ℏ

U t t T
i

H t dt( , ) exp ( ) , (7.42)
t

t

I0 1 1
0

⎡
⎣⎢

⎤
⎦⎥

HI is the interaction Hamiltonian and T the time-ordering operator. Following Tong
(2016) we suppose that for → −∞t0 the system is in the unperturbed ground state
∣ 〉0 , and write = → −∞U t U t t( ) ( , )0 . From the equation of the canonical momen-
tum operator ⃗ = ⃗ + ⃗p m qA c/v , we have

= + ⃗ ⃗ +p m m q A q A m/2 /2 . /2 , (7.43)2 2 2 2v v

where I have taken c = 1. Neglecting the term in A2 we can write (considering that
the electron has negative charge)

= − ⃗ ⃗H J A. . (7.44)I

In the absence of a scalar potential we have ⃗ = −∂ ⃗ ∂E A t/ and supposing
⃗ = ⃗ ω−E t Ee( ) i t we get ω⃗ = ⃗ ω−A E i e( / ) i t.
Now we are going to calculate ψ ψ< ⃗ > = 〈 ∣ ⃗ ∣ 〉J t t J t t( ) ( ) ( ) ( ) .
We have

< ⃗ > = ⃗−J t U t J t U t( ) 0 ( ) ( ) ( ) 0 . (7.45)1

Expanding equation (7.42) we obtain

∫≈ − ′ ′
−∞

U t i dt H t( ) 1 ( ), (7.46)
t

I
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and then we can write equation (7.45) as

∫< ⃗ > = ⃗ +
ℏ

′ ′ ⃗
−∞

J t J t
i

dt H t J t( ) 0 ( ) [ ( ), ( )] 0 . (7.47)
t

I⎜ ⎟⎛
⎝

⎞
⎠

The term 〈 ∣ ⃗ ∣ 〉J t0 ( ) 0 is the current for E = 0 and we can take it as zero. Using
equation (7.44) and ω⃗ = ⃗ ω−A E i e( / ) i t, we get

∫ω
< > =

ℏ
′ ′ ω

−∞

− ′J t dt J t J t E e( )
1

0 [ ( ), ( )] 0 . (7.48)i

t

j i j
i t

Making a change of variables t″ = t − t′ (since the system is translational invariant in
time) we can write

∫ω
< > =

ℏ
″ ″ω ω

∞
″ −J t dt e J J t E e( )

1
0 [ (0), ( )] 0 . (7.49)i

i t
j i j

i t

0
⎜ ⎟⎛
⎝

⎞
⎠

It follows from equation (7.49) that the Hall conductance σxy can be written in the
form

∫σ
ω

=
ℏ

ω
∞

dte J J t
1

0 [ (0), ( )] 0 . (7.50)xy
i t

y x
0

Inserting ∑ ∣ 〉〈 ∣ =n n 1n into equation (7.50) and using = −J t e J e( ) (0)iH t iH t0 0 we get

∫ ∑σ
ω

=
ℏ

〈 〉〈 〉 − 〈 〉〈 〉ω
∞

− −dte J n n J e J n n J e
1

[ 0 0 0 0 ]. (7.51)
n

y yxy
i t

x
i E E t

x
i E E t

0

( ) ( )n n0 0

Performing the integral, expanding the denominator ω + − −E E( )n 0
1 for small ω

and noting that due to the conservation of the current the contribution from the first
term vanishes and considering that we should have used the current in equation
(7.44), instead of the current density (Tong 2016) we get the final result

∑σ = ℏ
−
−≠

i L L
J n n J J n n J

E E

0 0 0 0

( )
. (7.52)

n 0

xy x y
y x x y

n 0
2

This expression is known as the Kubo formula for the Hall conductance σxy. It is
important to mention that the states ∣ 〉n are the exact eigenstates of the Hamiltonian
and En are the exact energy levels (Fradkin 1991).

7.4 The quantum Hall state on a lattice
As we saw in chapter 2, a two-dimensional lattice with sides Lx and Ly and periodic
boundary conditions can be mapped on the torus T 2. Problems involving a lattice in
solid state physics make use of translational symmetry. The translation operator for

a translation ⃗d is given by = −
→

⃗T ed
id p. , where ⃗p is the momentum operator. For a

periodic system Td commutes with the Hamiltonian. However, in the presence of
a magnetic field Td does not commute with H. This is because H has become a
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function of the magnetic vector potential ⃗A and this changes as we translate the
Hamiltonian. Now we have a translation symmetry that is invariant under a
combination of a translation with a gauge transformation.

If we apply a magnetic field perpendicular to the plane, the wave function at the
edges should be related by a gauge transformation. To see what happens let us start
with the magnetic translator operator

= = − ⃗ ∇⃗ + ⃗− ⃗ ⃗T e id i eAexp [ . ( )], (7.53)d
d p.

where I have taken ℏ = 1. This operator translates a state around a cycle of the torus
back to itself. Let us choose the gauge Ax = 0, By = Bx. Then we have, applying Td to
the wave function and translating it around a cycle of the torus

ψ ψ ψ
ψ ψ ψ
ψ ψ
ψ ψ

= + =
= + = + +
= +
= + +

− +

−

−

T x y x L y x y

T T x y T x L y e x L y L

T x y e x y L

T T x y e x L y L

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ),

(7.54)

y

x x

y x y x
ieBL x L

x y

y
ieBL x

y

x
ieBL x

x y

( )y x

y

y

which leads to
= −T T e T T . (7.55)y x

ieBL L
x y

x y

Imposing the condition that we should get the same result we obtain

π= ∈BL L
e

n n Z
2

, . (7.56)x y

Since generators of translations do not commute with one another in a magnetic
field, electronic states cannot be labeled with momentum. However, if a unit cell
with area 2π/eB enclosing a flux quantum is defined, then lattice translations do
commute, so Bloch’s theorem allows states to be labeled by 2D crystal momentum

⃗k . In the absence of a periodic potential, the energy levels are simply the ⃗k
independent Landau levels. In the presence of a periodic potential with the same
lattice periodicity, the energy levels will disperse with ⃗k .

Now let us see what happens when we apply fluxes Φx and Φy in the x and y
directions of the rectangle. This is equivalent to a flux Φx perpendicular to the plane
of the torus and a flux Φy along the torus. Since flux = B × area, and if we take Ax =
By, we get Φ = =Bxy A xx x , we can write

= Φ =
Φ

+A
L

A
L

Bx. (7.57)x
x

x
y

y

y

The perturbed Hamiltonian becomes now

∑= Φ

=

H
J
L

. (7.58)
i x y,

I
i i

i
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We will suppose that the ground state ψ∣ 〉0 is non-degenerate and that there is a gap
to the first excited state. The perturbed ground state ψ∣ 〉′0 can be calculated in first
order using perturbation theory. We find

∑ψ ψ′ = +
−ψ≠

n H n
E E

n . (7.59)
n

I

n
0 0

0
0

If we now take Φi as an infinitesimal amount, we get

∑ψ ψ ψ ψ′ −
Φ

=
∂
∂Φ

= −
−ψΦ → ≠L

n J

E E
nlim

1
. (7.60)

n
0 i i i

i

n

0 0 0 0

0i
0

Taking equation (7.60) into the Kubo formula (7.52) we get

σ
ψ ψ ψ ψ

=
∂
∂Φ

∂
∂Φ

−
∂
∂Φ

∂
∂Φ

i , (7.61)xy
y x x y

0 0 0 0
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

or

σ ψ
ψ

ψ
ψ

= ∂
∂Φ

∂
∂Φ

− ∂
∂Φ

∂
∂Φ

i . (7.62)xy
y x x y

0
0

0
0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

The flux Φi is periodic and the space of these parameters is a torus ΦT 2, that should be
distinguished from the initial torus.

The calculation of the Hall conductivity of the lattice model for a particle in a
magnetic field is more complicated and I refer the reader to Tong (2016) where the
subject is very well treated.

7.5 Particle on a lattice
Let us consider a d-dimensional crystal. The Bloch theorem states that the solutions
ψ ⃗r( ) for the equation

ψ ψ ψ⃗ = + ⃗ ⃗ = ⃗H r
p
m

V r r E r( )
2

( ) ( ) ( ), (7.63)
2⎛

⎝⎜
⎞
⎠⎟

where ⃗V r( ) is periodic with the periodicity of the lattice are of the form

ψ ⃗ = ⃗⃗
⃗ ⃗ ⃗r e u r( ) ( ), (7.64)

nk
ik r

nk
.

where ⃗⃗u r( )nk are lattice-periodic and are eigenstates of the Bloch Hamiltonian

⃗ = ⃗⃗ →H k u E k u( ) ( ) , (7.65)nk n nk

where
→
k is a crystal momentum and n labels the bands. The Bloch Hamiltonian is

given by
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⃗ = − ⃗ → ⃗ ⃗H k e He( ) . (7.66)ik r ik r. .

The symmetry of the lattice implies

⃗ + ⃗ = ⃗H k G H k( ) ( ). (7.67)

If we neglect interaction effects we can use a single electron Hamiltonian. As the

quasi-momentum
→
k is restricted to the first Brillouin zone, and is defined up to a

reciprocal lattice vector G, the Brillouin zone has the topology of a d-dimensional
torus Td. For all ⃗ ∈k Td the Hamiltonian H(k) can be represented by a ×N N
matrix with real eigenvalues

< < …< <−E k E k E k E k( ) ( ) ( ) ( ). (7.68)N N1 2 1

We assume that the En(k) are non-degenerate everywhere (i.e. no band crossing).
The evolution of each ⃗E k( )n as ⃗k evolves in the Brillouin torus defines a band, and

we have N bands. If a band is partially filled one has a metal. If there is a gap in
energy between the empty bands above the gap and the filled bands (valence bands)
below, one has an insulator. Note that all conventional insulators are equivalent.

The Bloch Hamiltonian H(k) defines for each
→
k , Hermitian operators on the

effective Hilbert space kH . The collection of all spaces of kH forms a topological
space E which we consider as the total space of a fiber bundle on the base space Td,
which happens to be trivial (due to the vanishing of the total Berry curvature, as will
be discussed in the next section) (Fruchart and Carpentier 2013). We have

π →E T: . (7.69)d

The fiber over ⃗ ∈k Td is a Hilbert space of dimension N (where, as was said before,
N is number of bands) given by all ⃗u k( )n with ⃗k fixed. A cross section is a map →Td

kH that assigns to each point ⃗ ∈k Td a specific state ⃗u k( )n in kH . Note that here we
have a complex Hilbert vector space. But it is of finite dimension and the theory
developed before can be used with very few modifications (as was mentioned in
chapter 5). For details of complex manifolds see appendix B. If no further symmetry
conditions are imposed, the structural group of the bundle is U(N), where N is the
dimension of kH .

If two different Hamiltonians can be deformed into each other continuously they
share physical properties that are homotopy invariant. Any two Hamiltonians
acting on the same bundle of states are topologically equivalent. There are at least
two well-defined subbundles in an insulator: The valence bands bundle (filled bands)
and the conduction bands bundle, which corresponds to all empty bands over the
energy gap. The valence subbundle underlies the ground state properties of the
insulator. The question of whether an insulator is topologically non-trivial or not is
equivalent to asking if the total space of the valence fiber subbundle is non-trivial or
not. Since the complete Bloch bundle is always trivial, the topology of the filled band
will reflect the topological properties of the empty one.
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7.6 The TKNN invariant
As we have seen above, a 2D band structure consists of a mapping from the crystal

momentum
→
k , defined on a torus, to the Bloch Hamiltonian H(k). Here we will

consider an insulator. If there are no accidental degeneracies, when
→
k is transported

around a close loop, the state ∣ 〉uk acquires a well-defined Berry phase given by the
line integral of the Berry connection over T 2, defined by

⃗ = − ∂
∂

=A k i u
k

u m x y( ) , , . (7.70)m k
m

k

In section 6.2 the connection was defined on the space of parameters of the
Hamiltonian; here the connection is defined on the space of states itself. The field
associated with Am is given by

ℑ = ∂
∂

−
∂
∂

= − ∂
∂

∂
∂

+ ∂
∂

∂
∂

A
k

A

k
i

u
k

u
k

i
u
k

u
k

. (7.71)xy
x

y

y

x

k

y

k

x

k

x

k

y

The Chern invariant is the total Berry flux in the Brillouin zone

∫π
= − ℑC d k

1
2

. (7.72)
T

xy
2

2

C is also called the TKNN (from Thouless et al 1982) invariant. As we saw before,
the Chern number is always an integer, and we associate a Cα to each band α.

Using the Kubo formula (7.52) we can write

∫∑σ
π

= ℏ

×
−

⃗ − ⃗

α β β α α β β α

β α

i
d k

u J u u J u u J u u J u

E k E k

(2 )

( ( ) ( ))
,

(7.73)

xy
T

k y k k x k k x k k y k

2

2

2

2

where the sum is over < <α βE E EF , and the index α runs over the filled bands and β
runs over the empty bands. This formula takes into account only off diagonal matrix
elements (α states are below the Fermi energy, whereas β states are above). We have to
integrate in each band. Following Tong (2016) we define the generalized current as

⃗ =
ℏ

∂
∂ ⃗J

e H

k
, (7.74)

where ⃗H k( ) is given by equation(7.66). Equation(7.73) can then be written as

∫∑σ
π

=
ℏ

×
∂ ∂ − ∂ ∂

⃗ − ⃗

α β β α α β β α

β α

ie d k

u H u u H u u H u u H u

E k E k

(2 )

( ( ) ( ))

(7.75)

xy
T

k y k k x k k x k k y k

2 2

2

2
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where ∂ = ∂ ∂k/m m, m = x,y, and we always sum with the condition < <α βE E E .F

We have

∂ = ∂ − ∂
= − ∣∂
= − − ∂ ∣

α β α β α β

β α
α β

β α
α β

u H u u H u u H u

E k E k u u

E k E k u u

( )

( ( ) ( ))

( ( ) ( )) .

(7.76)
k m k k m k k m k

k m k

m k k

We do not have the term proportional to ∂ βEm because α and β are distinct bands.
Taking equation (7.76) into (7.75) we obtain

∫∑σ
π

=
ℏ

∂ ∣ ∣∂ − ∂ ∣ ∣∂α β β α α β β α( )ie d k
u u u u u u u u

(2 )
. (7.77)xy

T
y k k k x k x k k k y k

2 2

22

As we assumed the Fermi energy is in a gap between two bands, we have

∑ ∣ ⟩⟨ ∣ + ⟩ ∣ =α α β β( )u u u u 1. (7.78)k k k k

The sum over the empty bands can then be written as

∑ ∑= −
β α

β β α αu u u u1 . (7.79)k k k k

The second term vanishes by symmetry and so we can write

∫∑σ
π

=
ℏ

∂ ∂ − ∂ ∂
α

α α α α( )ie d k
u u u u

(2 )
. (7.80)xy

T
y k x k x k y k

2 2

22

The sum in equation (7.80) is only over the filled bands α. Using equation (7.71), we
have the final result

∑σ
π

= −
ℏ α

α
e

C
2

. (7.81)xy

2

The Chern number (and therefore the Hall conductivity) is a topological invariant in
the sense that it cannot change when the Hamiltonian varies smoothly. This helps to
explain the robust quantization of the Hall conductivity. A non-zero Chern number
may also be interpreted as a topological obstruction to globally defining a basis of
valence Bloch eigenvalues for H. We have seen in chapter 4 that the total Gaussian
curvature is quantized only when we consider a closed 2D manifold without edges.
For Berry curvature, the same is true.

To see if a system is a topological insulator we have to calculate C for a given
model. In the next chapter I will present a simple example.

For the case of a single non-degenerate band, we can define the projection
operator = ∣ 〉〈 ∣P u uk k k at each point of the Brillouin zone. The projection operator is
invariant under U(1)transformations of uk. Equation (7.80) can then be written as
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∫σ
π

=
ℏ

∧ie d k
tr dP dP P

(2 )
[ ], (7.82)xy

T
k k k

2 2

22

where

= ∂ + ∂dP P dk P dk , (7.83)k x k x y k y

is a differential form where the coefficients are operators (the wedge product acts
only on dkx and dky).

The work of TKNN was performed in a system without edges. The topological
role of the edge states was unclear since the TKNN integers are written in terms of
the bulk wave functions. On the other side, if one uses Stokes’ theorem in equation
(7.72), we get zero since there is no boundary in the Brillouin zone in T 2. However,
this procedure, as shown by Hatsugai (1993), is incorrect. The phase of the wave
function is not well-defined globally over the Brillouin zone (BZ). There is no choice

of a global gauge where the energy eigenstate ∣ 〉uk is a smooth function of
→
k

everywhere. Therefore, one cannot apply Stokes’ theorem here. Dividing T 2 into
several regions, requiring that the wave functions is an analytical function of kx and
ky on the BZ, and using a geometry with edges, Hatsugai (1993) has shown that the
Chern invariant in the case of an infinite sample, with no edges, is equivalent to the
number of edge states for finite samples.

7.7 Quantum spin Hall effect
The quantum spin Hall effect was first studied in graphene, and later in HgTe
quantum wells with stronger spin–orbit coupling. The spin–orbit term λ= ⃗ ⃗H L S.SO

leads to a momentum dependent force on the electron, somewhat like a magnetic
field. To study this effect we start with the Lorentz transformation for electro-
magnetic fields

′⃗ =
⃗ − ⃗ × ⃗

−
⊥

⊥B
B E c

c

/

1 /
. (7.84)

2

2 2

v

v

In a reference frame moving with velocity ⃗v relative to an electric field ⃗E (caused by
the atoms in the crystal), we have a magnetic field ⃗ = ⃗ × ⃗B E c/v , neglecting higher
order terms. The interaction with a spin σ ⃗ is given by

σ σ σ⃗ ⃗ → ⃗ ⃗ × ⃗ → ⃗ ⃗ × ⃗B p E k E. . ( ) . ( ). (7.85)

Each spin component sees an opposite magnetic field. However, the spin dependence
means that the time reversal symmetry is different from a real magnetic field.

Let us consider now a uniformly charged cylinder in the presence of an electric
field ⃗ = ˆ + ˆE E xi yj( ). Then we have

σ σ⃗ × ⃗ ⃗ = −E k E k x k y( ). ( ). (7.86)z y x
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The above expression is called spin–orbit interaction, because the deduction is
similar to the one for the standard spin–orbit interaction.

The quantum hall state requires an external magnetic field which explicitly breaks
the time reversal symmetry. Quantum spin Hall (QSH) states, in contrast, are time
reversal (TR) invariant and do not require an external magnetic field. Strong spin–
orbit coupling acts like an internal magnetic field without violating the TR
symmetry. An applied electrical field causes oppositely directed Hall currents of
up and down spins. The charge current is zero, but the spin current is non-zero.
Within such materials, we can have the spin-up forward mover and the spin-down
backward mover on the upper edge. In the bottom edge, the spin and associated
momentum direction are reversed (figure 7.3). To have backscattering the spin of the
carriers has to be flipped. Such a spin-flip scattering process is forbidden for non-
magnetic impurity (Saha and Jayannavar 2016).

The quantum spin Hall effect is the prototype of a topological insulator with time
reversal symmetry. A topological phase is insulating, but always has metallic edges/
surfaces, where the conduction occurs, when put next to vacuum or an ordinary
phase. Topological insulators will be studied in chapter 8.

7.8 Chern–Simons action
Here we are going to study a topological Lagrangian, that is, a Lagrangian that does
not make use of the metric tensor gij. The Chern–Simons Lagrangian in (2 + 1)
dimensional space–time is given by

κε= − ∂μνλ
μ ν λL a a

1
2

, (7.87)

where μa is a U(1) gauge field, κ is a constant and εμνλ is the antisymmetric symbol
defined by

Figure 7.3. Reproduced from Brüne et al (2013).
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ε ε ε ε ε ε= = = = = = −1, 1, (7.88)012 201 120 021 210 102

the other components are zero. In a (2 + 1) dimensional topological theory the
contraction of indices is carried out through the use of the antisymmetric symbol εμνλ.

The topological invariant Chern–Simons action

∫=S a d xL[ ] , (7.89)CS
3

(not the Lagrangian density) is gauge invariant. The Chern–Simons action is
sometimes called a Hopf invariant (see section B.3).

Writing the field a as a 1-form = μ μa a dx and using equation (7.87), equation
(7.89) assumes the compact form

∫κ= − ∧S a a da[ ]
2

. (7.90)CS

We can make the gauge transformation ω→ + ∂μ μ μa a , and get

ε ε ε ω∂ → ∂ + ∂ ∂μνλ
μ ν λ

μνλ
μ ν λ

μνλ
μ ν λa a a a a . (7.91)

The resulting change in the action is then

∫δ κ ε ω= − ∂ ∂μνλ
μ ν λS d x a

2
( ). (7.92)3

The integral is gauge invariant up to a total derivative. It vanishes under the
assumption that we may drop boundary terms. But we should be careful. If ω is not
single valued, the proof of gauge-invariance is not quite correct. There are some
situations where the total derivative does not vanish.

The Chern–Simons term (7.87) respects rotational invariance, but breaks both
parity and time reversal. In d = 2 + 1 dimensions, parity is defined as

→ → − →x x x x x x, , , (7.93)0 0 1 1 2 2

and correspondingly

→ → − →a a a a a a, , . (7.94)0 0 1 1 2 2

The measure ∫ dx3 is invariant under parity (although → −x x ,1 1 the limits of the
integral also change). Thus the Chern–Simons action can only arise in systems that
break parity.

Using the Euler–Lagrange equation, we obtain the following equation for the μa
fields

κε ∂ =μνλ
ν λa 0. (7.95)

If we define the tensor = ∂ − ∂μν μ ν ν μf a a , we get from equation (7.95)
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=μνf 0. (7.96)

We can couple the fields μa to a source μJ , which is the conserved current of some
other field, writing

κε= − ∂ +μνλ
μ ν λ μ

μL a a a J
1
2

. (7.97)

The equation of motion is now

κε κε= ∂ =μ μνλ
ν λ

μνλ
νλJ a f

1
2

. (7.98)

We can show that the current is conserved: ∂ =μ
μJ 0.

Analogous with electromagnetism we can define = ∂ − ∂b a a2 1 1 2 as a magnetic
field, and ∂ − ∂a ai i0 0 the ith component of the electric field ei. Writing ρ=μJ J( , ) we
get from equation (7.98)

ρ κ κ κ κ= ∂ − ∂ = − = −∂ + ∂ = ∂ − ∂a a b J a a J a a( ) , ( ), ( ), (7.99)1 2 2 1
1

0 2 2 0
2

0 1 1 0

or κε= −J e ji ij .
We see that the charge density is locally proportional to the magnetic field. Thus

the effect of a Chern–Simmons field is to tie magnetic flux to the ‘electric’ charge.
Integrating over the two-dimensional space we get the charge of the source field

∫κ= −q bdx . (7.100)2

We remark that the integral gives the flux of the μa field.
The presence of the εμνλ symbol means that the action in Euclidean space picks up

an extra factor of i. We know that the electron wave function transform as ω ℏeie / , and
this term should be single valued and not ω. Due to the S1 geometry of τ, if the gauge
transformations wind around the circle with ω π τ β= ℏ e2 / (where β is the period of τ)
the exponential ω ℏeie / remains invariant.

As was mentioned above, the Chern–Simons action is invariant under gauge
transformations that vanish at the boundary, i.e. ω = 0 on the boundary. Now let us
see what happens at the edge. We choose a0 = 0 and from the equation of motion we
get ε =a 0ij

j . We can, therefore write ϕ= ∂ai i , where ϕ is a function. Substituting this
into equation (7.89) we get

∫ ∫
∫
∫ ∫

κ ε κ ϕ ϕ ϕ ϕ

κ ϕ ϕ ϕ ϕ

κ κ

= ∂ = ∂ ∂ ∂ − ∂ ∂ ∂

= ∂ ∂ ∂ − ∂ ∂ ∂

= ∇
→

×→ = → →

S a a d xdt d xdt

d xdt

u d xdt u d l dt

2 2
( )

2
[ ( ) ( )]

2
( )

2
.

(7.101)

j y y

y y

ij
i x x

x x

0
2

0 0
2

0 0
2

2

where φ φ φ φ⃗ = ∂ ∂ ∂ ∂u ( , )x y0 0 . Therefore, at the boundary (assuming runs along x) we
get the following term, after integration by parts
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∫κ ϕ ϕ= − ∂ ∂S dxdt
2

. (7.102)t xedge

This is a topological term. However, as shown by Moore (2014), to obtain an
accurate physical description of the theory we need to include non-topological
terms. For details the reader is referred to Moore (2014).

7.9 The fractional quantum Hall effect
In 1982, Tsui et al observed that using high magnetic fields, quantum plateaus
appeared at filling factors ν with rational fractions (ν = 1/3, 2/3, 1/5, 2/5, 3/5, 12/5,…).
Known as the fractional Hall effect, this effect originates fundamentally on the
electron–electron interaction as well as the Landau level quantization. When

ν< <0 1, the zeroth Landau level is only partially filled. This gives huge ground
state degeneracy for free electrons and therefore electron–electron interactions should
be responsible for this effect. Fractional quantum Hall (FQH) states constitute a new
state of matter which is described by a topological field theory, and one way to study
these states is by means of a low-energy effective theory which captures the response
of the quantum Hall ground state to low-energy perturbations. We will be interested
in general properties of the model, without worrying about the microscopic details.
We will be interested only in the case with ν1/ equal to an odd integer. (For other
cases see the references.)

Let us rewrite equation (7.33) as

σ ν
π

ν
π

= =
ℏ

→ =
ℏ

J
E

e
J

e
E

2 2
. (7.103)xy

x

y
x y

2 2⎛
⎝⎜

⎞
⎠⎟

The density of charge can be calculated as: (−e) × (number of states per Landau
level) × (filling factor)/area. That is

ρ ν
π

= − = −
ℏ

eJ
e

B
2

. (7.104)0
2

We take B < 0, so that (−e)B > 0. Introducing the potential vector A in (2+1)
dimensions we can write

= ∂ − ∂ = ∂ − ∂B A A E A A, .y
x y

x i
t

i
i

t

From equations (7.103) and (7.104) we can write

ν
π

ε− = −
ℏ

∂μ μνλ
ν

λeJ
e

A
2

. (7.105)
2⎛

⎝⎜
⎞
⎠⎟

Now we look for an effective Lagrangian that produces equation (7.105). To do this
we introduce another U(1) gauge field aμ which couples to the electromagnetic field
Aμ and write
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π
ε= ∂μ μνλ

ν λJ a
1

2
. (7.106)

This current automatically satisfies the conservation law. Using the Euler–
Lagrange equation we can verify that the simplest effective Lagrangian that leads
to equation (7.106) is given by

π
ε

π
ε= − ∂ + ∂ +μνλ

μ ν λ
μνλ

μ ν λ
μ

μL
s

a a
e

A a j a
4 2

, (7.107)

with ν=s 1/ and jμ = 0. The first term on the right is the Chern–Simons Lagrangian.
The source jμ will create excitations with a charge l (constrained to be an integer).
Note that we have two gauge fields. One field of electromagnetism Aμ which gives
rise to the electric field ⃗E and magnetic field B, whose excitations couple to the
charge −e, and a topological field aμ, whose excitations couple to the charge l. So,
the FQH quasiparticles carry charge e and charge l.

Let us localize the quasiparticle source term at ⃗x0. We have then

δ= ⃗ − ⃗μ
μj a la x x( ). (7.108)0

(2)
0

From the equation of motion δ δ =L a/ 00 we get

π
ε

π
δ= ∂ = − + ⃗ − ⃗eJ a

e
s

B
el
s

x x
1

2 2
( ). (7.109)ij i j

0
2

(2)
0

The first term on the right-hand side is the electric charge density expected from
the FQH ground state and indicates that the filling fraction ν π= −J eB(2 / )0 is
indeed ν = s1/ . The second term corresponds to the increase in the electron density
associated with excitations. We see then that the source term creates FQH
quasiparticles with electric charge

= −Q le s/ . (7.110)

We also see that the excitations created by the source term (7.109) is associated with
l/s units of the aμ flux. Thus, if we have two quasiparticle excitations carrying
aμ charges of l1 and l2, and move one around the other in a circle, we obtain a phase
of 2π × (number of aμ flux quanta) ×(aμ charge), namely

ϕ πΔ = l
s

l2 . (7.111)1
2

If we set l1 = l2 = l, the two quasiparticle excitations will be identical. Interchanging
them will induce half of the phase in equation (7.111), that is

θ π= l s/ . (7.112)2

The angle θ will determine the statistics of the quasiparticles. Therefore, we conclude
that the excitations of the FQH ground state are quasiparticles with electric charge
−el/s and aμ charge of l. From experiments we know that k = 1/s has values such as
1/3 and thus this means that the quasiparticles carry a fraction of the electron charge
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and possess fractional statistics. The FQH quasiparticle excitations can be called
quasielectrons and quasiholes. A single electron has electric charge −el/s = −e, and
thus l/s = 1. Therefore, it carries l = s units of aμ charge. From equation (7.112) we
get θ π= s, and considering that electrons are fermions we conclude that s is an odd
integer, which is what we wanted to deduce. Electrons with l = s = 3 units of
aμ-charge form a fractional quantum Hall condensate with ν = 1/3. The quasielec-
trons in this condensate carry fractional charge −e/3 and aμ-flux of 2π/3, because of
their strong coulomb interaction. The fractional quantum Hall effect can be
regarded as the integer quantum Hall effect of these quasiparticles.

For more details of the above discussion see Wen (2004) and Lancaster and
Blundell (2015). The original explanation of the FQH effect was made by Laughlin
using a trial wave function approach, but here I was concerned with the topological
aspects of the problem.
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Chapter 8

Topological insulators

8.1 Two bands insulator
In this chapter I will first consider lattice models with non-vanishing Chern numbers
without a magnetic field (and therefore no Landau levels), but with time reversal
breaking symmetry. Later I will discuss systems with time reversal symmetry. A
topological insulator, like an ordinary insulator, has a bulk energy gap separating
the highest occupied electronic band from the lowest empty band. The edge in two
dimensions of a topological insulator, however, necessarily has gapless states.

The simplest example of a topological insulator is a particle in a two-dimensional
lattice with two internal degrees of freedom. The translational motion is described
by wavectors kx and ky. We have thus two bands, one above and one below the band
gap. We have a two-dimensional Hilbert space at each point of the Brillouin torus. If
the lowest band is filled one has the so-called Chern insulator.

Since the one particle system has two levels, the Hamiltonian can be written as a
2 × 2 Hermitian matrix. We can use as a basis the three Pauli matrices

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ σ σ= = − =

−
i

i
0 1
1 0

, 0
0

, 1 0
0 1

, (8.1)x y z

and the unitary matrix σ = I0 . The most general two band Hamiltonian is then
written as (Tong 2016)

��
σ σ σ σ= + + +H k h h h h( ) , (8.2)x x y y z z 0 0

or

⎛
⎝⎜

⎞
⎠⎟

��
=

+ −
+ −

H k
h h h ih

h ih h h
( ) , (8.3)

z x y

x y z

0

0
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and we suppose that the terms hμ are periodic on the torus. (We can generalize the
procedure to an N-band model, where now σi are spin S = (N − 1)/2 matrices.) In the
single particle Hamiltonian, the vector

�� ��
h k( ) acts as a ‘Zeeman field’ applied to a

‘pseudo-spin’ σi of a two level system. Solving the eigenvalues equation
�� �� �� ��

ω=H k u k k u k( ) ( ) ( ) ( ), (8.4)1,2 1,2 1,2

we find
�� �� �� �� ��

ω = ± + +k h k h k h k h k( ) ( ) ( ) ( ) ( ) , (8.5)x y z1,2 0
2 2 2

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�� ω
ω

= +
+
+

+
−

u k
h

h h
h ih( ) 1

1
. (8.6)

z

x y
x y1,2

1,2
2

2 2

1/2 1,2

A shift in the energy of both levels has no effect on the topological properties,
provided the system remains insulating. Thus, we can take h0 = 0. The system is then

insulating provided
�� �� �� ��

= + +h k h k h k h k( ) ( ) ( ) ( )x y z
2 2 2 never vanishes on the whole

Brillouin torus.
Let us consider the eigenvalues

��
u k( )1 corresponding to the filled band. We can

construct a map that assigns
��

u k( )1 to each point of the Brillouin torus, defining a
one-dimensional vector bundle on the torus.

The Hamiltonian (8.2) can be parameterized by a vector
��
h , written in spherical

coordinates as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�� θ ϕ
θ ϕ

θ
=h h

sin cos
sin sin

cos

. (8.7)

The parameter space is a 2-sphere S2. We can write u1, the eigenstate of the filled
band, as

⎛
⎝⎜

⎞
⎠⎟

θ
θ

=
−

φ−
u

esin( /2)
cos( /2)

. (8.8)
i

1

At the north pole we have

⎜ ⎟⎛
⎝

⎞
⎠=

−
u 0

1
, (8.9)1

and at the south pole

⎜ ⎟⎛
⎝

⎞
⎠=

φ−
u e

0
,

i

1
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which is not well defined. We can otherwise write

⎛
⎝⎜

⎞
⎠⎟

θ
θ

˜ = =
−

φ
φu e u

e

sin( /2)

cos( /2)
, (8.10)i

i1

which is not well defined at the north pole. It is not possible to have a coherent phase
convention for all points of the sphere, i.e. it is not possible to get rid of this
singularity. The base manifold cannot be covered by one open set. There is always
an obstruction to define a continuous eigenvector on the whole sphere. The topology
of a vector bundle on the sphere is not trivial. The transition functions from
trivializations on the superior hemisphere UN to the trivialization on the inferior
hemisphere US is thus a phase change on the equator.

Let us introduce the unitary vector

��
�� ��
�� ��=n k
h k

h k
( )

( )

( )
, (8.11)

that describes a point on a sphere S2. When we move on the Brillouin torus, �� ��
n k( )

leads to a map →T S .2 2 The Chern number for this system is given by

⎛
⎝⎜

⎞
⎠⎟

��
�� ��

∫π
= ∂

∂
× ∂

∂
∧C n

n
k

n
k

dk dk
1

4
. . (8.12)

T x y
x y1

2

This is the pull-back, via
��
n , of the 2-sphere S2 winding number (i.e. it is the index of

the mapping from the Brillouin torus to S2, counting the winding of this map around
the sphere).

8.2 Nielsen–Ninomya theorem
Let S[ψ] be the Euclidian action describing fermions on a regular lattice of even
dimensions with periodic boundary conditions, and suppose that S is local,
hermitian and translation invariant. Then the theory describes as many-left handed
as right-handed states. Equivalently, the theorem implies that there are as many
states of chirality +1 as of chirality −1. This means that in a lattice of even
dimension, Dirac points (massless fermions) always appear in pairs, where each pair
comprises opposite chirality (Nielsen and Ninomiya 1981).

8.3 Haldane model
A simple example of a two-band model displaying a topological insulating phase
was proposed by Haldane (1988). This model is of interest because it provides not
only a simple two-band description of the quantum Hall effect, but also a stepping
stone to the two-dimensional quantum spin Hall insulator (Kane 2013). As there is
no pure magnetic field, the quantum Hall conductance originates from the electron
band structure for the lattice instead of the discrete Landau levels created in a strong
magnetic field.
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This model describes graphene in a periodic magnetic field, which is, on average,
zero. Graphene is a 2D form of carbon that has been widely studied. The interesting
fact in graphene is that the conduction band and valence band touch each other at
two distinct points in the Brillouin zone. Near those points the electronic dispersion
resembles the linear dispersion of massless relativistic particles, described by the
Dirac equation.

The simplest description starts with a tight-binding model of spinless electrons on
a two-dimensional honeycomb lattice. The honeycomb lattice is a bipartite but not a
Bravais lattice. It can be viewed as composed of two interlacing triangular
sublattices, A and B. Every site has three nearest neighbors on the other sublattice,
and six next-nearest-neighbors on the same sublattice. The lattice parameter (the
shortest distance between nearest neighbors) will be set as unity.

The base vectors of the Bravais lattice can be chosen as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

�� ��
= − = −

−
b b3/2

3/2
, 3/2

3/2
. (8.13)1 2

The Hamiltonian of Haldane’s model is written as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ ∑ ∑= + + −

< > ≪ ≫ ∈ ∈

H t i j t i j M i i j j , (8.14)
i j i j i A j B, ,

2

where ∣ 〉i is an electronic state localized at site i, <,> means nearest neighbors and
≪,≫ next-nearest-neighbors. The parameters t and t2 are hopping terms. The last
term is a sublattice symmetry breaking term with on-site energies M for sites on
sublattice A, and −M for sites on sublattice B, which breaks inversion symmetry. A
local magnetic field is added in such a way that the flux through a unit cell vanishes.
This can be done by assuming that the nearest neighbor hopping coefficient is real
and the nearest neighbor hopping coefficient acquires a phase: → ϕt t ei

2 2 , where the
phase ϕ due to local magnetic flux is taken as a parameter of the model. Fourier
transforming the Hamiltonian (8.14) we obtain the Bloch Hamiltonian

�� ��
σ= μ

μH k h k( ) ( ) , (8.15)

where σμ are the Pauli matrices and

�� �� �� ��
∑ ∑φ φ= = −
= =

h t k b h M t k b2 cos cos( . ), 2 sin sin( . ), (8.16)
i i1

3

1

3

i z i0 2 2

�� �� �� �� �� �� �� ��
= + + = −h t k b k b h t k b k b[1 cos( . ) cos( . )], [ sin( . ) sin( . )]. (8.17)x y1 2 1 2

The two energy bands touch each other when
��

∥ ∥ =h 0. For =h 0z this occurs at the
corners of the Brillouin zone:

�� �� �� �� ��
= + ′ = −* *( )K b b K K

1
2

and (8.18)1 2
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where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

�� ��
π π= − = −

−
* *b b2 1/ 3

1/3
, 2 1/ 3

1/3
. (8.19)1 2

At a generic point this degeneracy is lifted, and the system is an insulator, except
when φ= ±M t3 3 sin2 (Fruchart and Carpentier 2013). At the other points the
system is an insulator. If we are interested in topological invariants when this
condition is not satisfied, we can change the Hamiltonian as long as we do not close
the gap and we can take

��
∣ ∣h everywhere. This is the case studied in section 8.1, and

the Chern number can be calculated using equation (8.12).
In figure 8.1 we show the phase diagram for the Haldane model with the Chern

numbers (as calculated in Fruchart and Carpentier 2013) in each region. In the
critical lines which separate insulating phases with different Chern numbers, a phase
transition takes place and the system is not insulating: it is a semi-metal.

In Haldane’s model, the time reversal symmetry is broken, and the gap at the
Dirac points opens because

���
≠h K( ) 0z , but

�� ��� �
= =h K h K( ) ( ) 0x y . We can linearize

(8.15) around a Dirac point
���
K with

�� �� ���
= +k K q and get a massive Dirac

Hamiltonian with mass
��

=m h k( )z

v σ σ σ= ℏ + +H q q m( ) . (8.20)F x x y y z

The dispersion
�� ��v= ± ∣ℏ ∣ +E q q m( ) F

2 2 has an energy gap ∣ ∣m2 .
It can be shown (Fruchart and Carpentier 2013) that the masses

���
=m h K( )z and���

′ = ′m h K( )z have the same sign in the trivial case, and the opposite signs in the
topological case.

Graphene is time reversal invariant and parity-invariant. When both symmetries
are present hz is zero. The Nielsen–Ninomiya theorem implies that Dirac points
come in pairs in a time reversal invariant system. Hence, the simplest case is one with
two Dirac points

���
K and

���
′K . For small �� �� ���

≡ −q k K , we can write
�� �� ��v= ℏh q q( ) F ,

C=0

�–

C=0

0

C=+1
C=–1

3 3

�3 3

M t2

2
� �
2

f

Figure 8.1. Adapted from www.researchgate.net/figure/Phase-diagram-of-the-Haldane-model-33-as-a-function-
of-the-Aharonov-Bohm-flux-ph_fig5_264624015.
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where vF is a velocity. So,
�� �� ��v σ= ℏH q q( ) .F has the form of a 2D massless Dirac

Hamiltonian.
Another simple model with a nontrivial Chern number was proposed by Qi et al

(2006) investigating the quantum Hall effect in a two-dimensional paramagnetic
semiconductor. The Hamiltonian is given by

��
σ σ σ= + + + +H k k k m k k( ) sin sin ( cos cos ) , (8.21)x x y y x y z

with energies

= ± + + + +±E k k k k m k k( , ) sin sin ( cos cos ) . (8.22)x y x y x y
2 2 2

Physically, this model describes the quantum anomalous Hall effect realized with
both strong spin–orbit coupling (σx and σy terms) and ferromagnetic polarization
(σz term).

For general values of m, the system is an insulator with a gap. However, the gap
vanishes (and the bands touch each other) if m = 0, or = ±m 2. Near the point kx =
ky = 0, equation (8.22) can be written as

= ± + + +±E k k m( 2) . (8.23)x y
2 2

If m = −2, the gap vanishes at kx = ky = 0, and
��

= ±∣ ∣±E k . In the neighborhood of
this point (a Dirac point) the dispersion relation takes a form of a cone (Dirac cone).
For m = 2, we have a Dirac cone at π= = ±k kx y . For m = 0, we have two cones.
One is located at π= = ±k k0,x y , and the other at π= ± =k k, 0.x y The Chern
number of this system is

⎪
⎪⎧⎨
⎩

=
< <

− − < <c
m

m
1 for 0 2

1 for 2 0
0 otherwise

. (8.24)1

For m = −2, the gap occurs at kx = ky = 0 (Γ point); for m = 0, at kx = 0, ky = π and
kx = π, ky = 0 (two inequivalent X points); for m = 2, at kx = π, ky = π (M point).
Note that π= ±k ,x π= ±ky are all equivalent. For all other values the spectrum is
gapped.

8.4 States at the edge
Let us consider an interface in the two band Dirac model where the mass m at one of
the Dirac points changes sign as a function of y (Hasan and Kane 2010). We will
take m(y) > 0 for the trivial insulator for y > 0, and m(y) < 0 for the topological
insulator for y < 0. We can set m(0) = 0. The Hamiltonian obtained by replacing

��
q

by
��

− ∇i in equation (8.20) noting that we have translation symmetry in the x
direction is (Fruchart and Carpentier 2013)

⎛
⎝⎜

⎞
⎠⎟=

− ∂ − ∂
− ∂ + ∂ −

H
m y i

i m y

( )

( )
. (8.25)

x y

x y
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We can rotate the basis using the unitary matrix

⎜ ⎟
⎛
⎝

⎞
⎠=

−
U

1

2
1 1
1 1

, (8.26)

to get

⎛
⎝⎜

⎞
⎠⎟

α
β

α
β

− ∂ ∂ +
− ∂ + ∂

=( ) ( )i m y

m y i
E

( )

( )
, (8.27)

x y

y x

or

α β
β α

− ∂ − = − ∂ + =
∂ − = ∂ − =

i E m y

i E m y

( ) ( ( )) 0

( ) ( ( )) 0
. (8.28)

x y

x y

The exact solution is

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥
⎛
⎝

⎞
⎠v∫ψ ∝ − ′ ′x y e

dy
m y( , ) exp ( ) 1

1
, (8.29)

y

q
iq x

F0x
x

with energy v= ℏE q q( ) .x F x
This band of states intersects the Fermi energy EF at qx = 0, with a positive group

velocity vℏ F and thus corresponds to a right moving chiral edge mode.
Solving the Haldane model in a semi-infinite geometry with an edge at y = 0 we

obtain the energy levels as a function of the momentum kx along the edge as shown
in figure 8.2.

The difference NR − NL between the number of right moving and left moving
modes, is an integer topological invariant characterizing the interface. We have the

conduction bandE

EF

–� 0 �

valence band

k

Figure 8.2.
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bulk-boundary correspondence − = ΔN N nR L , where Δn is the difference in the
Chern number across the interface.

In a trivial insulator the surface states have an even number of Fermi level
crossings. In a topological insulator the surface states are gapless and cross the
Fermi energy an odd number of times.

8.5 Z2 topological invariants
Here I will comment briefly on the subject, for a more detailed exposition see the
excellent text by Kane (2013). For a recent review and references see Shankar (2018).

Since the Chern invariant is odd under time reversal, the topologically nontrivial
Chern states can only occur when time reversal symmetry is broken either by an
external magnetic field or by magnetic order. A consequence of the time reversal
symmetry and inversion symmetry is the fact that the Berry curvature must vanish
when this happens. In a material with only spin–orbit the Chern numbers always
vanish. Kane and Mele (2005) found a new topological invariant in time reversal
invariant systems of fermions. But it is not an integer. It is a parity ‘odd’ or ‘even’,
that is a ‘Z2 invariant’. Systems in the ‘odd’ class are 2D topological insulators.

To proceed, I will present briefly the concept of time reversal symmetry. A
physical system has time reversal symmetry if it is invariant under the trans-
formation T: → −t t. In the Brillouin zone T changes

�� ��
−k kinto . Kramers showed

that the square of the time reversal operator is connected to a 2π rotation, which
implies that T 2 = (−1)2s, where S is the total spin quantum number of a state. Thus,
time reversal symmetry takes the complex conjugate of the wave function and
rotates the spin. So, the operation of time reversal symmetry T for spin 1/2 particles
is given by the anti-unitary operator πσΘ = i Kexp( )y , where K is the complex
conjugation. Note that Θ = −12 . Anti-unitary operators act as follows on any two
generic states ϕ∣ 〉 and ψ∣ 〉:

ϕ ψ ψ φ φ ψΘ ∣Θ = ∣ = ∣ *. (8.30)

A consequence of time reversal symmetry is the Kramers’ theorem that says that all
einenstates of a time reversal invariant Hamiltonian are at least two-fold degenerate.
The proof is as follows. If a non-degenerate state ψ∣ 〉 existed, then ψ ψΘ∣ 〉 = ∣ 〉c for
some constant c. This leads to ψ ψΘ ∣ 〉 = ∣ ∣ ∣ 〉c2 2 , which is not possible because
∣ ∣ ≠ −c 1.2 Kramers degeneracy, in the absence of spin–orbit interactions, is simply
the degeneracy between up and down spins. The two partners of a Kramers pair live
in the same fiber. With the additional structure given by the time reversal symmetry,
the Bloch bundle modeling the band structure becomes a quaternionic vector
bundle.

If a Bloch Hamiltonian is T invariant, we should have
�� ��

Θ Θ = −−H k H k( ) ( ). (8.31)1

To obtain a Z2 invariant we start by defining a unitary matrix
�� �� ��

= Θ −w k u k u k( ) ( ) ( ) , (8.32)mn m n
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called the ‘sewing matrix’ where
��

∣ 〉u k( )m are occupied Bloch states. Using the fact
that Θ is anti-unitary and Θ = −12 , leads to

�� ��
= − −w k w k( ) ( ). (8.33)T

That relation implies that the matrix w is anti-symmetric at points of the Brillouin
zone Td where

�� ��� �
= −K K . There are 2d such points in Td. So, in 2d there are four

special points
���
Ka in the bulk of the Brillouin zone where this happens. At these time

reversal invariant points, the filled band fiber of a Z2 topological insulator is
equipped with a quaternionic structure. As we saw in section 2.12 the determinant of
an anti-symmetric matrix is the square of its Pfaffian. We define

��

��δ = = ±Pf w K

w K

[ ( )]

det[ ( )]
1. (8.34)a

a

a

It is always possible to choose
��

∣ 〉u k( )m continuously throughout the Brillouin zone,
so the branch of the square root can be specified globally, and the Z2 invariant is

∏ δ− =
=

ν( 1) . (8.35)
a 1

4

a

This formulation can be generalized to 3D topological insulators (Fruchart and
Carpentier 2013). The theory did not take into account the geometric framework
behind and was mathematically established only in 2016 (Fiorenza et al 2016).

The association
�� ��

→k H k( ) is a map →H T H: d
her, where Hher is the space of

Hermitians ×n n matrices. Taking into account the action of T on Td, then to
specify a map with time reversal symmetry it is enough to know the restriction of H
onto a fundamental domain of the T action (8.31). (As the time reversal maps the
fibers at

��
k and

��
−k , there is a redundancy in the description of the system on the

whole Brillouin torus.) Such a choice of fundamental domain is called the effective
Brillouin zone (EBZ). This EBZ consists of half of the Brillouin torus, keeping only
one member of each Kramers pair

�� ��
−k k( , ), except at the boundary. In the 2D-case

the EBZ is given by the region π π π× −[0, ] [ , ], which we can regarded as a cylinder
= ×C S I1 . The boundary of this EBZ (denoted ∂EBZ) still has a nontrivial action

on T and we can consider a fundamental domain of the boundary of the EBZ, which
we call Rd−1. In 2d, we have R1 = [0, π].

Using this idea, Fu and Kane (2006) proposed another form of the Z2 invariant
given by

⎡
⎣⎢

⎤
⎦⎥∮ ∫ν

π
= −

∂
A F

1
2

(mod. 2) (8.36)
EBZ EBZ

where A is the total Berry connection (the sum of the Berry connections of all bands)
constructed from Kramers pairs, and F = dA is the Berry curvature. In the trivial
case, ν = 0, while ν = 1 for the nontrivial case. They also showed the equivalence
between this expression and the previous one. In 2005 Kane and Mele (2005)
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generalized the spinless Haldane model to a graphene lattice of spin 1/2 electrons
with spin–orbit coupling. The strong spin–orbit coupling was introduced to replace
the periodic magnetic flux in the Haldane model. We will not consider the Kane–
Mele model here.

Unlike Chern insulators, Z2 topological insulators also exist in three dimensions.
In three-dimensional topological insulators, the topological invariants are para-
meterized by four binary ν ν ν ν( , , , )0 1 2 3 in Z( ) .2

2 The hallmark of the Z2 topological
order in 3D is the existence of surface states with a linear dispersion and obeying the
Dirac equation. The dispersion for surface states arise around a single, or an odd
number, of Dirac points in the Brillouin zone (in two-dimensional materials these
Dirac points occur only in pairs, in agreement with the Nielsen–Ninomya theorem).
In three dimensions, the Z2 invariant (8.36) can be shown indirectly to be identical to
the Chern–Simons invariant y3 presented in section 5.8.
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Chapter 9

Magnetic models

In this chapter I will treat the one- and two-dimensional antiferromagnetic
Heisenberg model. I will be interested only in the topological properties. The
thermodynamic and dynamical properties of these models have been presented in a
very clear and extensive way in the book by Sachdev (2011).

9.1 One-dimensional antiferromagnetic model
First I will consider the topological term given by equation (1.28) written as

∫ ∫ω
π

ρ ε⃗ = ⃗ ∂ ⃗ × ∂ ⃗
β

μν
μ νn d dt n n n[ ]

1
8

. [ ], (9.1)
0

1

0

where I have assumed periodic boundary conditions in time β⃗ = ⃗n n( ) (0), ρ is an
auxiliary coordinate ρ ∈ [0, 1] and the ⃗n field is extended to ρ⃗n t( , ) in such way that

⃗ =n t( , 0) (0, 0, 1) and ⃗ = ⃗n t n t( , 1) ( ). The indices μ ν, take values t, ρ. The term ω ⃗n[ ]
is an oriented area in the sphere swept out by the curve ⃗n t( ).

In an antiferromagnetic spin chain, the neighboring spins prefer antiparallel
alignment and we have ⃗ → − ⃗n n( 1)i

i
i. Then the topological term can be written as

∑ ω⃗ = − ⃗S n S n[ ] ( 1) [ ]. (9.2)
i

i
itop

The contribution of two neighboring configurations ⃗ +ni 1 and ⃗ni evaluate, respec-
tively, the areas bounded by the curves ω ⃗ +n[ ]i 1 and ω ⃗n[ ]i . The area difference is given
approximately by

∫ ∫

∫ ∫ ∫

δω
π

ρ ε δ

π
ρ ε δ

π
δ

= → ∂ ⇀×∂ →

= ∂ ⃗ ⃗ × ∂ ⃗ = ⃗ ⃗ × ⃗

β
μν

μ ν

β

μ
μν

ν

β

d dt n n n

d dt n n n dt n
dn
dt

n

1
4

.[ ]

1
4

{ . [ ]}
1

4
. ,

(9.3)
0

1

0

0

1

0 0

⎛
⎝⎜

⎞
⎠⎟
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where I have used δ δ⃗ ∂ ⃗ × ∂ ⃗ =μ νn n n. [ ] 0 because all three vectors δ ⃗ ∂ ⃗ ∂ ⃗μ νn n n, , lie in
the same plane (tangent to the two-dimensional sphere ⃗ =n 12 ).

The term

∫ δ ⃗ ⃗ × ⃗dt n
dn
dt

n. , (9.4)
⎛
⎝⎜

⎞
⎠⎟

is odd with respect to spin inversion, i.e.

ω π ω ω− ⃗ = − ⃗ = − ⃗n t n t n t[ ( )] (4 [ ( )]) [ ( )]. (9.5)

Converting differences into derivatives when the continuum limit is taken and
further using the fact that derivatives are contributed by every other link on the
chain (resulting in a factor of 1/2) we have for the topological Euclidian action

∫ τ ω τ= ∂ ⃗S
iS

dxd n x
2

[ ( , )], (9.6)xtop

or

∫ τ
τ

θ= ⃗ ∂ ⃗
∂

× ∂ ⃗
∂

≡S
iS

d dxn
n
x

n
i q

2
. . (9.7)top

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Terms of this kind are generically called Wess–Zumino terms. The treatment of
the Heisenberg model using the path-integral method is well presented in the book
by Fradkin (1991). He showed that the Wess–Zumino term distinguishes ferromag-
nets from antiferromagnets. For the antiferromagnet he obtained a non-linear sigma
model, but the action in the path integral had a contribution due to the topological
term equal to 2πSq, where S is the spin and q the winding number. The topological
term then gives a contribution

= −πe ( 1) . (9.8)i Sq Sq2 2

Thus if S is an integer, the spin chain is described, at low energies, by the non-linear
sigma model. For half-integer S, each topological class contributes with a sign which is
positive (negative) if the winding number q is even (odd). The integer and half-integer
spin chains fall in different universality classes. An important result of this difference is
that the integer spin chains have a gap, while the half-integer chains do not.

Now, I will treat the antiferromagnetic chain with nearest-neighbor exchange
using another procedure proposed by Affleck (1989). The Hamiltonian is given by

∑= ⃗ · ⃗ +H J S S . (9.9)
i

i i 1

I will consider a bipartite lattice and since we expect that at least the short-order
should have Néel character we can split the spin field into two pieces, the order
parameter ⃗n , and a small varying part ⃗l :

⃗ ≈ ± ⃗ + ⃗S Sn l , (9.10)i i i
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where ⃗n and ⃗l vary slowly on the scale of the lattice. Following Affleck (1989) we
combine each spin on the even site, 2i, with the spin to its right, at (2i + 1) (figure 9.1).

⃗ + = ⃗ + ⃗ ⃗ + = ⃗ − ⃗+ +l i S S n i S S S(2 1/2) ( )/2, (2 1/2) ( )/2 . (9.11)i i i i2 2 1 2 1 2

Assuming that ⃗l and ⃗n are slowly varying variables we can write

⃗ ⃗ = ⃗ + +
⃗ ⃗ = − ⃑ + ⃗ −

+ ⃗ − ⃗ + − ⃗ − ⃗ +

+ ⃗ + ⃗ −

≈ ∂ ⃗
∂

− ⃗ ∂ ⃗
∂

+ ∂ ⃗
∂

⃗ + ⃗

+

−

S S l i

S S S n i n i

S l i n i n i l i

l i l i

S
n
x

S l
n
x

n
x

l l

. 2 (2 1/2) constant

. (2 1/2). (2 3/2)

[ (2 3/2). (2 1/2) (2 3/2). (2 1/2)]

(2 1/2). (2 3/2)

2 . . 2 .

(9.12)

i i

i i

2 2 1
2

2 2 1
2

2
2

2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The Hamiltonian can then be written as

∫= ⃗ + ∂ ⃗
∂

− ⃗ ∂ ⃗
∂

+ ∂ ⃗
∂

⃗H J
dx

l S
n
x

S l
n
x

n
x

l
2

4 2 . . , (9.13)
2 2

2⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

or

∫ θ
π

= ⃗ − ∂ ⃗
∂

+ ∂ ⃗
∂

H dx g l
n
x g

n
x

v
2 4

1
, (9.14)2

2

2

2⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
where v = 2JS, g = 2/S and θ π= S2 . This Hamiltonian can be obtained from the
following Lagrangian density

θ
π

ε= ∂ ⃗ ∂ ⃗ + ⃗ ∂ ⃗ × ∂ ⃗μ
μ μν

μ νL
g

n n n n n
1
2

.
8

. ( ), (9.15)⎜ ⎟⎛
⎝

⎞
⎠

where the first term is the Lagrangian for the one-dimensional non-linear sigma
model, with the constraint ⃗ =n 12 , and μ = x t, . The topological term is equal to the
one obtained by Fradkin (1991).

9.2 Two-dimensional non-linear sigma model
Let us start with the following Lagrangian in two dimensions

= ∂ ⃗ ∂ ⃗μ μL
g

n n
1
2

( ). ( ) (9.16)

2i-3   2i-2 2i-1  2i 2i+1 2i +2
. .    x    .    .   x  .        . x .   .  

Figure 9.1.
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with μ = x, y, it and subject to the constraint ⃗ ⃗ =n n. 1. In section 9.1 it was shown
how the Heisenberg antiferromagnet for integer spins becomes the O(3) non-linear
sigma model in the continuum limit and of course equation (9.16) for g = 2/S
describes the Néel phase of the 2D antiferromagnet. However equation (9.16) is
more general. Varying the parameter g we get a quantum phase transition to a
paramagnetic phase (which can be obtained when we add terms to equation (9.9) for
the 2D case such as next-nearest-neighbor interaction). The topological term
vanishes on the 2D square lattice for all smooth spacetime configurations of ⃗n in
the Néel state (Sachdev 2011). However, there are important singular configurations
on ⃗n x y y( , , ) that do yield a non-vanishing contribution to the topological term in
the quantum paramagnetic phase. A simple solution to equation (9.16) is the linear
(harmonic) solution that corresponds to the spin wave (or magnons) excitation.
However, here I will be interested in more general topological solutions known as
skyrmions.

The action for the Lagrangian (9.16) can be written as

∫= ∂ ⃗
∂

− ∇ ⃑S
g

dtdxdy
n
t

n
1
2

( ) . (9.17)
2

2
⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

Writing ⃗ =n n n n( , , )1 2 3 and considering that the allowed values of ⃗n form the surface
of a sphere Sint

2 , we can use stereographic projection of this sphere onto a plane with
Cartesian coordinates w1 and w2 to write,

=
+

=
+

w
n

n
w

n
n1

,
1

. (9.18)1
1

3
2

2

3

Introducing the complex variables z = x + iy, and w = w1 + iw3, equation (9.18) can
be rewritten as

= +
+

w z
n in

n
( )

1
. (9.19)1 2

3

From equations (9.18) and (9.19) we get

=
+ ∣ ∣

=
+ ∣ ∣

= − ∣ ∣
+ ∣ ∣

n
w

w
n

w
w

n
w
w

2 Re
1

,
2Im

1
,

1
1

. (9.20)1 2 2 2 3

2

2

Now we derive some relations:

= − − → ∂ = − ∂ − ∂μ μ μn n n n n n n n n1 , (9.21)3
2

1
2

2
2

3 3 1 1 2 2

∂ = − ∂ =μ μn n n n a, with 1, 2 (9.22)a a3 3

(remember that we sum over repeated indices),

∂ ∂ =
∂ ∂

= ∂ ∂μ μ
μ μ

μ μn n
n n n n

n n
n n n n

( )( ) 1
( )( ). (9.23)a a b b3 3

3 3 3 3

3
2

3
2
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Using these expressions we can write the Lagrangian as

= ∂ ∂ + ∂ ∂μ μ μ μL
g

n n
n n
n

n n
1
2

. (9.24)a a
a b

a b
3
2

⎛
⎝⎜

⎞
⎠⎟

We also have

∂ = + ∂ + ∂μ μ μn n w w n(1 ) , (9.25)a a a3 3

= + = +
+

= −
+

= −
+

ww w w
n n

n
n
n

n
n(1 )

1
(1 )

1
1

, (9.26)1
2

2
2 1

2
2
2

3
2

3
2

3
2

3

3

∂ = −
∂
+μ

μw w
n

n(1 )
. (9.27)a a

3

3
2

Taking equation (9.27) into (9.25) we obtain

∂ = + ∂ + + ∂μ μ μn n w w n w w(1 )[ (1 ) ]. (9.28)a a a b b3 3

Using the above results, we get after some calculations

= + ∂ ∂μ μL
g

n w w
1
2

(1 ) . (9.29)a a3
2

Using now

+ =
+

n
ww

(1 )
4

(1 )
, (9.30)3

2
2

we can write equation (9.24) as

∫=
+ ∣ ∣

∂
∂

− ∂
∂

− ∂
∂

S
i

g
dtdzdz

w c
w
t

w
z

w
z

2
(1 )

1
2

. (9.31)
2 2 2

2 2 2⎧⎨⎩
⎫⎬⎭

Using

∂
∂

∂
∂

= ∂
∂

+ ∂
∂

w
x

w
x

w
x

w
x

, (9.32)1
2

2
2

together with the Cauchy–Riemann condition

∂
∂

= ∂
∂

∂
∂

= − ∂
∂

w
x

w
y

w
y

w
y

, , (9.33)1 2 1 2

we find

∂
∂

+ ∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

w
x

w
y

w
z

w
z

w
z

w
z

2 , (9.34)
2 2

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠
⎫⎬⎭
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which allows us to write

∫ π=
+ ∣ ∣

∂
∂

− ∂
∂

+S
i

g
dtdzdz

w c
w
t

w
z g

q
8

(1 )
1

4
4

, (9.35)
2 2

2 2⎛
⎝⎜

⎞
⎠⎟

where

∫π
=

+ ∣ ∣
∂
∂

∂
∂

− ∂
∂

∂
∂

q
dxdy

w
w
z

w
z

w
z

w
z

1
(1 )

. (9.36)
2

⎜ ⎟⎛
⎝

⎞
⎠

Using the Euler–Lagrange equations we obtain

∂
∂

− ∂
∂ ∂

+
+ ∣ ∣

∂
∂

∂
∂

− ∂
∂

=w
t

w
z z

w
w

w
z

w
z

w
t

1
2

2
1

4 0. (9.37)
2

2

2

2

2
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Any analytic function w(z) or w z( ) automatically solves equation (9.37) for t = 0. A
general solution can be written as

∏= −
−=

w z
z a
z b

( ) , (9.38)
i

N

1

i

i

⎛
⎝⎜

⎞
⎠⎟

where ai and bi are complex numbers.
Writing θ φ θ φ θ⃗ =n (sin cos , sin sin , cos ), we get from equation (9.19)

θ
θ

θ=
+

=
ϕ

ϕw
e

e
sin

1 cos
tan

2
. (9.39)

i
i⎜ ⎟⎛

⎝
⎞
⎠

Let us now write = φz rei and consider the simple solution

λ=w z z( ) / . (9.40)

We obtain φ ϕ= and =θ λtan( )
r2
.

We see that

θ π θ= → = = ∞ → ∞ =r r0 (0) and ( ) 0.

Static solutions with non-zero but finite energy are called skyrmions in condensed
matter (see figure 9.2). (They are not strictly solitons since they have an instability
associated with changes in their scale.) The solutions must satisfy (Manton and
Sutcliffe 2004, Rajaraman 1987)

⃗ ⃗ = ⃗ ⃗ → → ∞
→∞

n r n r n rlim ( ) , grad 0, (9.41)
r

(0)

Note that as we tend to infinity in coordinate space in different directions, ⃗ ⃗n r( ) must
approach the same limit ⃗n (0), otherwise ⃗ ⃗n r( ) will depend on the coordinate angle
even at r = ∞ and the angular component of the gradient will not satisfy equation
(9.41). This boundary condition spontaneously breaks the O(3) symmetry to an O(2)
symmetry. We may identify the points at infinity as a single point, i.e. the space can
be identified with a sphere Sphys

2 . Since the ⃗n field lives on a sphere of unit radius Sint
2 ,

any finite-energy static configuration ⃗ ⃗n r( ) is a mapping of Sphys
2 into Sint

2 . We saw in
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section 3.3 that all non-singular mapping of one sphere S2 into another can be
classified into homotopy sectors: π =S Z( )2

2 . So, each field configuration is
characterized by an integer, that here we call the topological charge q. The charge
q can be interpreted as the number of lumps (skyrmions) in the field configuration.

Calculating q using the expression

∫π
ε= ⃗ ∂ ⃗ × ∂ ⃗μν μ νq n n n dxdy

1
8

. ( ) , (9.42)

we can show that this equation is equivalent to equation (9.28). Calculating q for the
solution

λ
= −

w z
z z

( ) , (9.43)
n

0⎜ ⎟⎛
⎝

⎞
⎠

where n is a positive integer, λ a real number and z0 a complex number, we find q = n.
Skyrmions plays an important role in the study of low temperature properties of

two-dimensional magnetic systems.
Static solutions to the two-dimensional sigma model correspond to Euclidian

solutions to the one-dimensional model. On the other side, topological time
dependent solutions for the Euclidian action of the two-dimensional non-linear
sigma model which corresponds to static solutions for the model in three dimensions
are called instantons (map of S3 into S2). There are no smooth solutions with non-
trivial winding numbers in three dimensions. We have a singular solution where ⃗n
points form a center. Such a solution is called a hedgehog.

The topological action for skyrmions in a ferromagnet is given by (Tanaka and
Takayoshi 2015)

∫ ρω= ⃗S dtdxdy n t x y[ ( , , )], (9.44)top

where ρ is the density of skyrmions. We assume that the time dependence takes the
form ⃗ = ⃗ ⃗ − ⃗n n r R t( ( )), where ⃗R t( ) stands for the center of the skyrmion. Using the
fact that the variation of the surface angle is given by

Figure 9.2. In this example of a skyrmion, the field at infinite points in positive z direction, while near the
origin it points in the −z direction. It has topological charge of +1.
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∫δω δ= ⃗ ⃗ × ∂ ⃗dtn n n. , (9.45)t

we obtain for the force acting on a skyrmion

δ
δ

π ρ⃗ = − ⃗ = ⃗ × ˆF
S

R
Sq z4 . (9.46)top v

Thus a skyrmion in motion behaves like a charged particle in the presence of a
magnetic field proportional to ρẑ.

Skyrmions have also been used to study quantum Hall ferromagnets (Girvin
2000).

9.3 XY model
In this section I will consider the two-dimensional XY model. I start with the
quantum model described by the following Hamiltonian

∑= − +
< >

( )H J S S S S , (9.47)
i j

j
y

j
y

,
i
x x

i

where <i, j> means next-nearest-neighbor interactions. Although the spins are
constrained to lie in a plane, the quantum spin ⃗S has three components. Using the
Villain representation (Villain 1974)

= + − +

= + − +

φ

φ

+

− −

S e S S

S S S e

( 1/2) ( 1/2) ,

( 1/2) ( 1/2) ,
(9.48)

i
i

i
z

i i
z i

2 2

2 2

i

i

where φi is the angle the ith spin makes with some arbitrary axis we can write
equation (9.47) as (Pires 2007)

∑ ϕ ϕ= − ˜ −
< >

H J S S[( ) cos( )], (9.49)
i j

j
,

i
z

i
2 2

where ˜ = +S S S( 1).2 I will consider only slowly varying configurations, that is,
those with nearly equal adjacent angles. Expanding up to quadratic terms and using

φ
φ

∂
∂

= − = −
t

i H i JS[ , ] 2 , (9.50)n
n n

z

we get in the continuum limit

∫ φ φ φ= ∂
∂

+ ˜ ∂
∂

+ ∂
∂

H dxdy
t

JS
x y

1
2

, (9.51)
2

2
2 2

⎜ ⎟ ⎜ ⎟
⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥
⎫
⎬
⎭

neglecting a constant term. The effective low energy Hamiltonian of a superfluid or a
superconductor has a form similar to equation (9.51). The Lagrangian for
Hamiltonian (9.51) is given by
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∫ φ= ∂
∂

+L dxdy
t

H (9.52)

where the first term in the right-hand side of equation (9.52) is a topological term.
From now on I will consider the classical case where we have a system of rotors.

The equation of motion for the classical model is

ϕ ϕ ϕ∂
∂

+ ∂
∂

− ∂
∂

=
x y c t

1
0. (9.53)

2

2

2

2 2

2

2

This equation admits spin wave solutions; however, I will be interested in
topological solutions called vortices. A static vortex solution is given by

φ = − y xtan ( / ). (9.54)1

If we consider a vortex configuration, as we go around some closed path containing
the center of the vortex, φ will change by 2π for each revolution of the spin. We have
thus a mapping →S S1 1, i.e. π S( ).1

1 The vorticity q is given by (figure 9.3)

∮π
ϕ = = ± ± …d r q q

1
2

( ) , where 0, 1, 2, . (9.55)

For an isolated vortex the energy is

π≈E J R a2 ln( / ), (9.56)

where R is the radius of the system and a the lattice spacing. The energy increases
logarithmically with the size of the system. Thermal generation of vortices produces
an even number of vortices and antivortices. Bound pairs have lower energies than
free vortices, but have low entropy. In order to minimize the free energy the system
undergoes a topological transition at a critical temperature TBKT, called the
Berezinskii, Kosterlitz, Thouless temperature resulting from the unbinding of
vortex–antivortex pairs. There is no local order parameter below TBKT, and the
correlation functions decay algebraically.

Vortex Antivortex

Figure 9.3. A vortex with vorticity +1 and a antivortex with vorticity −1.
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9.4 Theta terms
Let us address again the effect of topology in the path integral formalism using what
was presented in section 4.16. In general we have (Altland and Simons 2010)

∫∑ ϕ=
∈

ϕ−Z D e , (9.57)
W G

W
S[ ]

where G is the homotopy group and ∫ ϕD W is the integration over a ‘topological
sector’ (a homotopy class defined by an element ∈W G) of the theory. As we saw in
chapter 1, there are cases when we have

ϕ ϕ ϕ= +S S S[ ] [ ] [ ], (9.58)0 top

where ϕS [ ]top is a topological action term, that depends only on the topological class
of the field ϕ. If this happens we can write

∫∑ ϕ=
∈

ϕ− −Z e D e , (9.59)
W G

F W
W

S( ) [ ]0

where ϕ≡F W S( ) [ ].top We can suppose that the action is linear in the field and
therefore linear in the topological index so that we can write

θ=F W i W[ ] , (9.60)

up to a constant. So the term θ−e i W weighing the different sectors assumes the form
of a phase. The topological action is sometimes called a θ-term. Theta terms are
topological terms of a particular type. Essentially, they are just complex weights of
different topological sectors in the path integration.

We saw in chapter 4, that the degree of a map is a topological invariant. Then we
can define a general coordinate invariant representation of the θ-term as

∫ϕ θ ϕ ω= *S i[ ] . (9.61)
M

top

The reader is also referred to Altland and Simons (2010) where several examples of
the θ-term are presented. Equation (9.61) is a particular example where Gurevich
theorem (section 4.10) applies: there is a correspondence between homotopies
(degrees of mapping) to cohomologies (integral of a form).

Up to now we have been studying maps →S S .d d Let us increase the target space
to Sd+1. Then all configurations become contractible π =+S( ) 0d

d 1 . It does not mean,
however, that a geometric phase vanishes. It exists due a non-zero homotopy group
π̃ =+

+S Z( ) .d
d

1
1 To see that we extend the mapping π → +S S: d d 1 continuously to

π̃ →+ +D S: d d1 1 where the base space is the boundary of the disk = ∂ +S Dd d 1. We
write

∫π π ω= ˜* +
+

W [ ] , (9.62)D
D

d 1
d 1
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where π ω˜* +d 1 is the pull-back of the volume form on the target space to the auxiliary
diskDd+1. Equation (9.62) is multiply-valued andWD is defined modulo integer. The
term

π π=S i kW[ ] 2 , (9.63)WZ D

with k an integer is called a Wess–Zumino term. Under the reduction back to Sd this
term converts into a θ term (Abanov 2009, Abanov and Wiegmann 2000).
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Appendix A

Lie derivative

A.1 Integral curve
As we saw before, a vector field v on a smooth manifoldM is an assignment to every
point ∈p M of a vector ∈p T M( ) pv . In a local coordinate system we have (Curtis
and Miller 1985)

= ∂
∂

p p
x

( ) ( ) . (A.1)i
i

p

v v

Given two vector fields u and w we can define a new vector field [u, w], called the
commutator of u and v, by

= −u w f u w f w u f[ , ]( ) [ ( )] [ ( )]. (A.2)

In terms of components we have

= ∂
∂

− ∂
∂

u w u
w
x

w
u
x

[ , ] . (A.3)j
j j

i
i

j

i

A curve on a manifold M (as we saw before) is the smooth mapping

σ →I M: ,

where ⊂I R, and if ∈t I we have σ ∈t M( ) . The ‘curve’ is defined to be the map
itself, not the set of image points in M (see figure A.1).
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An integral curve σ of a vector field v is a curve in the manifold M whose tangent
at σ=p t( ) is the vector v(p) with ∈p M . This is

σ σ σ= = ∂
∂

d t
dt

t
x

( )
( ( )) ( ) . (A.4)i

i
v v

Example. Let us consider in 2R the vector field = ∂ ∂ − + ∂ ∂y x y x y/ ( ) /v and the
curve σ =t x t y t( ) ( ( ), ( )). The integral curves of the vector field v satisfy the equation

=( , ) .dx
dt

dy
dt

v We have then = = − +y y x, ( )dx
dt

dy
dt

, and so

+ + =dx
dt

dx
dt

x 0,
2

2

which is the equation for the damped harmonic oscillator.
I am going to skip some theorems since they are too mathematical for our

purposes. For any vector field v on the manifold M there exists a smooth map
σ × →M M:. R called the flow of v, written as σ p( )t with ∈t R, and ∈p M, such
that σ =p p( ) ,0 σ σ σ= +p p( ( )) ( ),t s t s and

σ σ=d
dt

p( ( )). (A.5)t
tv

The flow is a diffeomorphism with inverse σ− .t Geometrically, σt sends each ∈p M
to the point obtained by moving along the integral curve of v through p for a time t.
Since σt is a map →M M we can think of the component σt

i with respect to the local
coordinates xi. Using equation (A.5) we get for small t

σ = + +p x p t p O t( ) ( ) ( ) ( ). (A.6)t
i i i 2v

M

σ

Figure A.1. A curve in the manifold M.
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The set of points (t, p) with ∈t R and ∈p M is an open set of the space × MR and
then a smooth manifold of dimension n + 1. Here I am supposing that M is a
compact manifold

A.2 The Lie derivative
In general, geometric objects can be compared only if they are defined at the same
point in the manifold. The geometric operation that provides the measure of the rate
of change of a map is called the Lie derivative (Ebrain 2010, Friedman 2017,
Harmark 2008). The simplest case is that of a function. The derivative →f M: R
with respect to a vector field u, quantifies how much f changes along the flow of u.
We use the difference between f in the point p and f in the translated point σ p( )t :

σ= −
→

f p
f p f p

t
£ ( ) lim

( ( )) ( )
, (A.7)

t 0
u

t⎡
⎣⎢

⎤
⎦⎥

which becomes

σ= =
=

f p
d
dt

f p u f£ ( ) ( ( )) ( ) . (A.8)u
t

t
p0

Let us now turn to the case of vectors. But until we provide additional information,
the concept of a vector field derivative is not well defined. We want to measure the
rate of change of a vector field as we move from one point to another in the
manifold, which means that we are implicitly comparing tangent vectors defined at
different points p and q of M. There is no unique way to do this, since tangent
vectors in p are in the tangent space TpM and tangent vectors in q are in a different
space TqM. There are several ways to define mappings between these two spaces, but
there is no special or natural mapping. As we saw before, choosing a particular
mapping between tangent spaces in the manifold imposes an additional structure
called a connection. The derivative that uses a connection defined in M is the
covariant derivative. The Lie derivative provides an alternative method, which does
not require a connection, to derive vector fields and therefore apply in a general
unstructured smooth manifold.

If u and v are vector fields in a variety of M the Lie derivative, which gives the
measure of the rate of change of v in the direction of u, can be defined as follows.

Let ∈q M be defined by σ= ≡q p p t( ) ( )t , and v a tangent vector ∈p T M( ) pv .
Note that both vectors u and v are tangent vectors at p, but only u is tangent to the

curve described by the point p (t). Let M and N be smooth manifolds and f a
mapping →f M N: , with ∈ ∈p M q N, . If c is a curve in M with =dc dt u(0)/ ,
then f.c is a curve in N. We saw in chapter 3 that →Df T M T N: p q takes a tangent
vector in M into a tangent vector in N. Now, if M = N, →f M M: , with f (p) = q
where ∈p q M, , takes a tangent vector at p into a tangent vector at q.

In figure A.2, u is a tangent vector to the curve p (t) (not shown in the figure) and v
is the vector we want to calculate the variation along the curve. We know that σt
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takes the point p at t = 0 in the point p (t) = q. We have that σ=q p( ) ( ( ))tv v is the
vector v at the point q.

We also know that σ →D T M T N:t p q takes a tangent vector in p in the tangent
vector in q and therefore the inverse mapping σ −D( )t

1 takes the tangent vector in q in
the tangent vector in p (pulls back the vector). Note that v (p) is tangent to a curve
c̃ t( ) that passes through p, but this curve is not the curve σ=p t p( ) ( )t which u is
tangent. The difference between v (q) and v (p) in the point p is then given by

σΔ = −−D q p( ) ( ) ( ), (A.9)t
1v v

which leads to the following definition of the Lie derivative

σ σ= −
=

−p
t

D p p£ ( ) lim
1

[( ) ( ( )) ( )], (A.10)
t 0

u t t
1v v v

or

σ σ=
=

−p
d
dt

D p£ ( ) ( ) . . ( ). (A.11)u
t

t t
0

1v v

The derivative £uv(p) measures how v(p) changes, as compared with what would
happen were it simply ‘dragged along’ by the vector field u. Writing the Lie
derivative in terms of coordinates it is easy to show that

=w u w£ [ , ]. (A.12)u

The Lie derivative has the following properties
(a) + = +w w£ ( ) £ £ .u u uv v
(b) £u( fv) = f £uv+ (£u f )v.
(c) =£ [£ , £ ].u u[ , ]v v

v ( p)

v (q)

q = st( p)

(Dst)
–1v (q)

p

Δ

st

Figure A.2. Lie derivative of a vector.
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The Lie derivative of a 1-form α can be obtained taking a vector field v and the
function f = α(v). We have

α α= +f£ (£ ). . £ , (A.13)u u uv v

which gives

α α α= −d u u(£ ). ( . ) [ , ]. (A.14)u v v v

The Lie derivative can be generalized to tensors. In particular a Killing vector on a
(pseudo-) Riemannian manifoldM is a vector field u which has the property that Lie
differentiation with respect to it annihilates the metric:

=g£ 0. (A.15)u

A.3 Interior product
Let M be a manifold of dimension n, ω ∈ Λ + M( )k 1 a k + 1 form and v is a vector
field. We define the interior product Λ → Λ+i M M: ( ) ( )k k1

v by

ω ω… = …i ( , , , ) ( , , , ).k k1 2 1v v v v v vv

So ωiv is a k-form. It can be shown that
(a) + =di i d £ .v v v
(b) =i i[£ , ] .u u[ , ]v v
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Appendix B

Complex vector spaces

The definition of a vector space presented in chapter 1, can be extended to the
complex case taking the scalars as complex numbers. The scalar product is now
substituted by the Hermitian product (Groecheneg 2016, Kobayashi 1987).

Let V be a vector space over the complex numbers. A Hermitian product on V is a
rule which to any pair of elements v, u of V associates a complex number, denoted
v u, , satisfying the following conditions:

(a) We have v v=u u, , for all v, u ∈V (the bar denotes complex conjugate).
(b) If, u, v, w ∈ V, then v v+ = +u w u u w, , , .
(c) If α ∈ C , then v vα α=u u, , , v vα α=u u, , .

The Hermitian product is called positive definite if v v ⩾, 0 for all v ∈ V , and
v v >, 0 if v ≠ 0.

B.1 Complex manifolds
At first it seems that the definition of a complex manifold is similar to that of a
smooth manifold, replacing open subsets of Rn by open subsets of Cn, and smooth
functions by holomorphic functions. However, the complex analogous often yields
more restrictions.

Let z denote any point of some neighborhood of a fixed point z0, where the
neighborhood is within the domain of definition of a function f. The derivative of f at
z0 is defined by the equation (Churchill 1960)

′ = + Δ −
ΔΔ →

f z
f z z f z

z
( ) lim

( ) ( )
, (B.1)

z 0
0

0 0

where Δ = −z z z0.
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We say the f is complex differentiable, or holomorphic, if and only if the limit
exists for every ∈x U ( ⊂U C ). The derivative of a complex differentiable function
is always continuous. Every holomorphic function is infinitely many times complex
differentiable.

Let M be a bounded compact n-dimensional manifold with boundary ∂M . For
every smooth (n − 1) form ω we have the Stokes’ theorem

∫ ∫ω ω=
∂

d . (B.2)
M M

The function →f U C: (where v= +f x y u x y i x y( , ) ( , ) ( , )) is holomorphic if and
only if u and v are differentiable and satisfy the Cauchy–Riemann condition:

v v∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x y x

u
y

, . (B.3)

We introduce the complex 1-form = +dz dx idy, and define a second complex
1-form as v v vω = = + + = − + +f z dz u i dx idy udx dy i udy dx( ) ( )( ) ( ) ( ). Note
that dz and = −dz dx idy are linearly independent.

A complex valued function f, such that u and v are differentiable, satisfies the
Cauchy–Riemann condition only if ω = f z dz( ) satisfy dω = 0.

Proof:

v v
v v

− + +

= ∂
∂

∧ − ∂
∂

∧ + ∂
∂

∧ + ∂
∂

∧

d udx dy i udy dx
u
y

dy dx
x

dx dy i
u
x

dx dy i
y

dy dx

[( ) ( )]

.

Using ∧ = − ∧dx dy dy dx we find

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

v vω = ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

∧d
u
y x

i
u
x y

dx dy. (B.4)

So dω = 0 implies the vanishing of both the real and imaginary part, which
corresponds to the Cauchy–Riemann condition.

Definition 1. Let X be a topological space together with an open covering {Ui} with
∈i I , and homeomorphisms: ϕ → ′U U:i i i, where ′ ⊂U Ci

n is an open subset. If for
every pair (i, j) the induced mapping

∩ ∩φ φ φ φ→− U U U U. : ( ) ( ), (B.5)j i i i j j i j
1

is holomorphic, we say that X is endowed with the structure of a complex manifold
of complex dimension n. The pair ϕU( , )i i are called charts.

The covering ∪=X Ui i introduces a system of locally defined complex
coordinates.
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Definition 2. Let X be a continuous manifold and →f X C: a continuous map. We
say that f is holomorphic if for every chart ϕU( , ) as above, the composition

ϕ ′ →−f U C. :1 is a holomorphic function on U′.

If X is a compact, connected, complex manifold, then every holomorphic function
→f X C: is constant. This implies that a compact complex manifold cannot be

embedded into any Cn.
We can think of a vector bundle →E X as a family of complex vector spaces over

X. To each point ∈x X we associate a vector space π− X( ).1 The complex manifold
E is the total space, X is the base, and π the structure map.

A complex line bundle L over a manifold M is a manifold L and a smooth
mapping π →L M: , such that (Murray 2016)

(1) Each fiber π =− m L( ) m
1 is a complex one-dimensional vector space.

(2) Every ∈m M has an open neighborhood ∈U M for which there is a
diffeomorphism ϕ π → ×− U U C: ( )1 such that ϕ ∈ ×L m C( ) { }m for every
m, and the map ϕ∣ → ×L m C: { }L mm

is an isomorphism.

A Hermitian manifold is a complex manifold with a smoothly varying Hermitian
inner product on each (holomorphic) tangent space. We can also define a Hermitian
manifold as a real manifold with a Riemannian metric that preserves a complex
structure.

The Grassmannian Gr(m, n), which is the space of m-dimensional subspaces of an
n-dimensional complex vector space Cn (with ⩽m n) is relevant to the classification of
topological phases of condensed matter because it is associated with n-dimensional
quantum system with m occupied levels.

Let V be a real vector space. The complexification of V is defined by taking the
tensor product of V with the complex numbers (thought of as a two-dimensional
vector space over the real numbers):

= ⊗V V C. (B.6)C

Every vector v in VC can be written in the form

v v v= ⊗ + ⊗ i1 , (B.7)1 2

where v v ∈ V,1 2 . It is common to write: v v v= +1 2.
Let V be a vector space with dimension n over the complex numbers. If {en} is a

basis for V and v ∈ V we can write v = + + … +x e x e x en n1 1 2 2 , where xi are
complex numbers. Writing = +x a ibi i i, where ai and bi are real numbers we have
v = + + … + +a e b ie a e b ien n n n1 1 1 1 . Then {en, ien} is a basis for the underlying real
vector space VR of dimension 2n.

If η is a complex vector bundle, then the underlying real bundle ηR has a canonical
orientation.

Proof: Let V be a finite dimensional complex vector space with basis {en} over C. As
was demonstrated above the set {en, ien} gives a real basis for VR. This ordered basis
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determines the required orientation for VR, since if {e′n} is another complex basis of
V, then there is a ×n n complex matrix A (with det ≠A 0) which transform the first
basis into the second. This transformation does not alter the orientation of the real
vector space, since A is the coordinate change matrix. Then the underlying ×n n2 2
real matrix AR has: = ∣ ∣ >A Adet det 0.R

2 Hence AR preserves the orientation of the
underlying real vector space. We may apply this construction to each fiber of η to
obtain the required orientation of ηR.

By the above discussion, we conclude that every complex manifold is oriented,
since an orientation of the tangent bundle of a manifold induces an orientation of the
manifold itself.

Let us consider a closed curve γ →S C: /{0}1 in the complex plane without the
zero. The winding number of γ can be expressed as the complex integral

∫ ∫γ λ
π π

= = =
γ λ

w
i

dz
z i

d z[ ] deg[ ]
1

2
1

2
log , (B.8)

and γ ∈w Z[ ] is an integer.

B.2 Complex projective space
A complex projective space CPn (C) is the set of lines in Cn+1 passing through the
origin. If = … ≠z z z( , , ) 0n0 , the z determines the same line if z = cz′ for some
complex ≠c 0 and they are called equivalent. CPn (C) is a complex manifold. It can
be shown that CP1 is diffeomorphic to the sphere S2.

B.3 Hopf bundle
The Hopf bundle describes a 3-sphere in terms of circles and ordinary spheres. Hopf
found a many-to-one continuous map from the 3-sphere onto 2-sphere such that
each distinct point of the 2-sphere comes from a distinct circle of the 3-sphere
(Penrose 2007).

The unit 3-sphere + + + =x x x x 11
2

2
2

3
2

4
2 inR4 can be thought of as a 3-sphere in

C2, defined by the equation ∣ ∣ + ∣ ∣ =w z 1,2 2 where w = x1 + ix2, z = x3 + ix4. Let us
consider now the space CP1 of complex straight lines in C2 passing through the
origin. Each line is given by an equation of the form aw + bz = 0, where a and b are
complex numbers (not both zero). This line is a copy of a complex plane, and it
meets S3 in a circle S1, which we can think of as a unit circle in that plane. These
circles are the fibers of the bundle. The different lines can meet only at the origin, so
no two distinct S1s can have a point in common. Thus, this family of S1s constitute
fibers giving S3 a bundle structure. We can multiply a and b by the same non-zero
complex number and get the same line: it is the ratio a/b that distinguishes one line
from another. The space of such ratios is a Riemann sphere S2, which we identify as
the base space of the bundle. Thus the 3-sphere is realized as a disjoint union of
circular fibers. The Hopf bundle is the simplest non-trivial vector bundle over the
sphere S2.
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If we write R= ∈ + + =S x y z x y z{( , , ) , 1},2 3 2 2 2 R= ∈S a b c d{( , , , ) ,3
4

+ + + =a b c d 1}2 2 2 2 , the Hopf map π →S S: 3 2 is given by

π = + − − + −a b c d a b c d bc ad bd ac i( , , , ) [( ), 2( ), 2( ) ]. (B.9)2 2 2 2

Since π =S Z( )3
2 , there is an associated integer called the Hopf invariant. This

invariant cannot be the degree of the mapping, since the domain and target spaces
have different dimensions. We can define the mapping as follows. Let ω denote the
area 2-form on the target S2 and let �� ω= *f n be its pull-back under

��
n to the domain

S3 (here
��
n is a 3D unit vector). Since ω is closed, f is also closed. The triviality of the

second cohomology group of 3-spheres =H S( ) 02 3 demands its pull-back to be an
exact 2-form, which we write as f = da. The Hopf invariant is then given by
integrating the Chern–Simmons 3-form over S3

∫π
= ∧W f a

1
4

. (B.10)
S2 3

This integral is independent of the choice of a, because if α→ +a a d , we have

∫π
α αΔ = − =W d f df

1
4

( ( ) ( ) ) 0, (B.11)
S2 3

because df = 0, and by Stokes’ theorem the integral of d( fα) is zero over a closed
three-manifold.

If we consider a two-band insulator in 3D and take the Brillouin zone as a sphere
S3, we can use the same Hamiltonian used in 2D and from the mapping π =S Z( )3

2

conclude that there are many different non-trivial phases. However, by adding a few
trivial bands and using what is called the K-theory it can be shown that the
topological phases disappear (Thiang 2017).
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Appendix C

Fubini–Study metric and quaternions

C.1 Fubini–Study metric
Let us consider a Hamiltonian H(λ) that depends smoothly on the set of parameter
λ λ λ= …( , , )N1 (Cheng 2013). If ψ λ( ) is a parameter-dependent wave function we
can try to define a quantum distance upon an infinitesimal variation of the
parameter λ by

ψ λ λ ψ λ δψ δψ ψ ψ λ λ
γ σ λ λ

= + − = ∣ = ∂ ∣∂
= +

μ ν
μ ν

μν μν
μ ν

ds d d d

i d d

( ) ( )

( ) ,
(C.1)

2 2

where γμν is the real and σμν the imaginary parts of ds2. Using the property that the
inner product is Hermitian we have

γ σ γ σ+ = −μν μν νμ μνi i , (C.2)

which gives γ γ=μν νμ, and σ σ= −μν νμ. Therefore, σ λ λμν
μ νd d vanishes due to the

antisymmetry of σμν and symmetry of λ λμ νd d . We can then write

γ λ λ= μν
μ νds d d . (C.3)2

However, the above expression is not gauge invariant as we can see by taking

ψ λ ψ λ′ = α λe( ) ( ) , (C.4)i ( )

and defining

ψ ψ γ σ∂ ′∣∂ ′ = ′ + ′μ ν μν μνi . (C.5)
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We find

γ γ β α β α α α σ σ′ = − ∂ − ∂ + ∂ ∂ ′ =μν μν μ ν ν μ μ ν μν μν, , (C.6)

where β λ ψ λ ψ λ= 〈 ∣∂ 〉μ μi( ) ( ) ( ) is the Berry connection, which is purely real due to the
normalization ψ λ ψ λ〈 ∣ 〉 =( ) ( ) 1. The Berry connection upon the above gauge trans-
formation changes as β β α′ = + ∂μ μ μ . We define a gauge invariant metric using the
following expression

γ β λ β λ= −μν μν μ νg ( ) ( ). (C.7)

It is easy to show that under the gauge transformation we get λ λ′ =μν μνg g( ) ( ).
We can verify also that the covariant derivative

ψ ψ ψ ψ ψ= ∂ − ∂μ μ μD , (C.8)

transforms as ψ∣ 〉. The last term projects out parts of ψ∣∂ 〉μ not orthogonal to ψ∣ 〉.
The Fubini–Study metric is defined as

λ ψ λ ψ λ ψ λ ψ λ ψ λ ψ λ= ∂ ∣∂ − ∂ ∣ ∣∂μν μ ν μ νQ ( ) ( ) ( ) ( ) ( ) ( ) ( ) . (C.9)

We define =μν μνg QRe , σ =μν μνQIm .
Taking the inner product of ψ λ∣ 〉( ) and ψ λ λ∣ + 〉d( ) , and expanding in a Taylor

series we obtain

ψ λ ψ λ λ β λ λ ψ λ ψ λ λ λ∣ + = + + ∣∂ ∂ + …μ
μ

μ ν
μ νd i d d d( ) ( ) 1 ( )

1
2

( ) ( ) (C.10)

Using the fact that ψ ψ〈 ∣∂ 〉 is purely imaginary we find that ψ ψ ψ ψ〈∂ ∣∂ 〉 + 〈 ∣∂ ∂ 〉μ ν μ ν is
also purely imaginary. We then get

ψ ψ ψ ψ γ∣∂ ∂ = − ∂ ∣∂ = −μ ν μ ν μνRe Re . (C.11)

Equation (C.10) can then be written

ψ λ ψ λ λ γ λ β λ λ λ λ λ λ∣ + = − − = −μν μ
μ ν

μν
μ νd d d g d d( ) ( ) 1

1
2

( ( ) ( )) 1
1
2

( ) . (C.12)

The quantum distance between quantum states labeled by λI and λF can be written as

∫ψ λ ψ λ λ λ λ∣〈 ∣ 〉∣ = −
λ

λ

μν
μ νg d d( ) ( 1

1
2

( ) (C.13)F I
I

F

The last term is called the geometric quantum distance.
As an example let us consider a two-level quantum system living in C2, with wave

function

⎛
⎝⎜

⎞
⎠⎟ψ

θ
θ

=
φ

x
e

( )
cos( /2)

sin( /2)
. (C.14)

i
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We have

ψ ψ θ ψ ψ∣∂ = ∣∂ =ϕ θi cos ( /2), 0, (C.15)2

ψ ψ θ ψ ψ θ∂ ∣∂ = ∂ ∣∂ = −ϕ ϕ ϕ θ icos ( /2),
1
4

sin . (C.16)2

ψ ψ∂ ∣∂ =θ θ 1/4. (C.17)

The components of the Fubini–Study metric are then given by

θ= = =θθ θφ φφg g g
1
4

, 0,
1
4

sin . (C.18)2

We see that the metric agrees with the standard metric on a sphere of radius 1/4.
The field associated to the connection βμ, is given by

β β ψ ψ ψ ψℑ = ∂ − ∂ = ∂ ∣∂ − ∂ ∣∂μν μ ν ν μ μ ν ν μ( )i . (C.19)

From the normalization condition ψ ψ〈 ∣ 〉 = 1, we get

ψ ψ ψ ψ∣∂ = − ∂ ∣μ μ . (C.20)

Using equation (C.20) in (C.19) and comparing with equation (C.9) we find

σℑ = − = − = −μν μν νμ μν μνi Q Q Q( ) 2Im 2 . (C.21)

We can also write

= − ℑμν μν μνQ g
i
2

. (C.22)

Suppose now that that there is a large gap between the ground state ϕ λ∣ 〉( )0 and
the first excited state, such that transitions can be ignored. We have

λ ϕ λ λ ϕ λ=H E( ) ( ) ( ) ( ) , (C.23)0 0 0

with

ϕ λ ϕ λ δ∣ =( ) ( ) . (C.24)n n0 0

Taking the derivative of equation (C.23) we find

ϕ ϕ ϕ∂ + ∂ = ∂μ μ μH H E( ) . (C.25)0 0 0 0

Using equation (C.20) we find

ϕ ϕ
ϕ ϕ

ϕ ϕ

∣ =
∂
−

≠

∂ = ∂

μ

μ μ

H

E E
n

H E

, if 0,

.

(C.26)n
n

n
0

0

0

0 0 0
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On the ground state we have

∑

∑

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= ∂ − ∂ = ∂ ∣ ∣∂

=
∂ ∂

−

≠

≠

μν μ μ μ ν

μ ν

( )Q

H H

E E

1

( )
.

(C.27)
n

n

0

0

n n

n n

n

0 0 0 0 0 0

0 0

0
2

Note. Sometimes the distance between two states ψ∣ 〉 and ϕ∣ 〉 (not normalized) is
presented in the literature as

γ ψ ϕ ψ ϕ ϕ ψ
ψ ψ ϕ ϕ

= ∣ ∣
∣ ∣

( , ) arccos . (C.28)

Taking ϕ ψ δψ= + , and using the expansion = −ds dscos 1 1
2

2 2, we get the
former result for the Fubini–Study metric.

C.2 Quaternions
Quaternions have being used in the study of Landau levels in topological insulators
in three dimensions (Li and Wu 2013). It is appropriate, therefore, that I comment
on this subject briefly here.

In the 19th-century, the Irish mathematician William Rowan Hamilton (1805–65)
generalized the complex numbers to a four-dimensional space, with the imaginary
basis-vectors extended from one (i) to three (i, j, k) with the following property
(Penrose 2007)

= = = = −
= − = = − = = − =

i j k ijk
ij ji k jk kj i ki ik j

1
, , .

(C.29)
2 2 2

A quaternion q can be written as

= + + +q q iq jq kq (C.30)0 1 2 3

where qi are real numbers.
Quaternions satisfy the commutative and associative laws of addition and the

distributive laws of multiplication over addition, namely

+ = + + + = + +
= + = + + = +

a b b a a b c a b c
a bc ab c a b c ab ac a b c ac BC

, ( ) ( )
( ) ( ) , ( ) , ( )

together with the existence of additive and multiplicative ‘identity elements’ 0, and 1,
such that

+ = = =a a a a a0 , 1 1

we define = − − −*q q iq jq kq0 1 2 3 and the norm of q is given by

= = + + +*q qq q q q q . (C.31)
0
2

1
2

2
2

3
2
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For each non-zero quaternion q, there is an inverse q−1 that satisfies

= =− −q q qq 1.1 1

We have

=− * * −q q qq( ) .1 1

The real number qq* cannot vanish unless q = 0.
If q1 = (x1, y1, z1, w1) and q2 = (x2, y2, z2, w2), we have
q1q2 = x1x2 − y1y2 − z1z2 − w1w2 + x1y2 + y1x2 + z1w2 − w1z2
+ x1z2 + z1x2 + w1y2 − y1w2 + x1w2 + w1x2 + y1z2 − z1y2.
We can define vector spaces over quaternions, however, there is no satisfactory

quaternionic analogous of the notion of a holomorphic function.
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Appendix D

K-theory

Before presenting the K-theory I will introduce a few concepts.

D.1 Rings
A ring is a set S, together with two operations → +x y x y( , ) and →x y xy( , )
satisfying

(1) S is a commutative group under the operation → +x y x y( , ) . (This is, S is
a commutative group under addition.)

(2) (xy)z = x(yz).
(3) x(y + z) = xy + xz; (y + z)x = yx + zx.

If xy = yx for all x and y in S, we say that the ring S is commutative. If there is an
element 1 in S such that 1x = x1 for each x, we say that S is a ring with identity, and
1 is called the identity for S.

The set of integers, with the usual operations, is a commutative ring with identity.

D.2 Equivalence relations
An equivalence relation on a set X is a relation that is reflexive, symmetric and
transitive. That is, for all a, b and c in X we have

(1) a ∼ a,
(2) a ∼ b if and only if b ∼ a,
(3) if a ∼ b and b ∼ c then a ∼ c.

The equivalence class of a under ∼, denoted [a], is defined as = ∈ ∣ ∼a b X a b[ ] { }.
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Examples:
– ‘equal to’ on the set of numbers,
– ‘has the same absolute value’ on the set of real numbers,
– ‘has the same birthday as’ on the set of all people.

D.3 Sum of vector bundles
Given two vectors bundles π →E X:1 1 , π →E X: ,2 2 over the same base space X, we
can define a third vector bundle over X whose fiber over each point of X is the direct
sum of the fibers of E1 and E2 over this point. Thus, we define the direct sum of E1

and E2 as the space

v v v vπ π⊕ = ∈ × ∣ =E E E E{( , ) ( ) ( )}. (D.1)1 2 1 2 1 2 1 1 2 2

There is then a projection ⊕ →E E X1 2 sending v v( , )1 2 to the point v vπ π=( ) ( ).1 1 2 2

The fibers of this projection are the direct sum of the fibers of E1 and E2.

D.4 K-theory
The classification of all the different vector bundles over a given base space with
fibers of a given dimension is in general very difficult. In the absence of a full
classification, there are two directions we can take to make some partial progress on
the problem. One way is to look for invariants which distinguish at least some of the
different vector bundles. I have discussed this topic in the text. Another procedure is
to look for a rough classification using a weaker equivalence relation instead of the
notion of isomorphism. In this section, I will present a brief discussion of this
approach. I will follow mainly Eguchi et al (1980), Karoubi (1978) and Hatcher
(2017) and the reader is referred to these and other references mentioned here.

The so-called K-theory is a powerful tool, in some ways more powerful than
ordinary cohomology to compare vector bundles. Here, I will treat only the complex
K-theory which is somewhat simpler than the real K-theory and suppose always that
the base space is compact. In the following, I will suppose that the fibers of a vector
bundle π →E X: are vector spaces of different dimensions, but assume local
trivializations

π → ×− U U( ) ,n1

where U is an open set in the base space X. The dimensions of the fibers are locally
constant (however, it is not so globally if X is disconnected).

Suppose now that we have the following relation

⊕ ≈ ⊕E F E F . (D.2)1 2

At first sight we can think that we could introduce a formal difference operation
which would allow us to cancel F from both sides and get ≈E E .1 2 However, the
cancellation does not hold for vector bundles in general. For instance, if =E TS2

and R= ×F S ,2 2 F is trivial, whereas E, the tangent bundle of the sphere S2, is non-
trivial. Adding NS2, the bundle of normal vectors to S2, to both bundles E and F, we
obtain the same trivial bundle R×S .2 3 That is
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R R⊕ = × ⊕ = × ⊕ = ⊕E NS S F NS S E NS F NS, , so . (D.3)2 2 3 2 2 3 2 2

If we could perform the formal cancellation we would get E = F, which is false.
We can resolve the problem with the formal differences of vector bundle

isomorphism using the notion of stable equivalence. In the following, I will write
the trivial n-dimensional vector bundle over a fixed base space X as In. If E1 and E2

are two vector bundles over X (not necessarily of the same dimensions) we say that
E1 and E2 are stably equivalent (or stably isomorphic) and write ≈E E

s
1 2 if

⊕ ≈ ⊕E I E In n
1 2 for some n. In the same way we write E1∼ E2 if

⊕ ≈ ⊕E I E In m
1 2 for some m and n. Both ≈

s
and ∼ are equivalence relations.

Equivalence classes of either sort of operation of direct sum are well-defined,
commutative and associative. A zero element is the class of I°. Taking the sum with
trivial bundles serves to eliminate pathologies arising from low fiber dimensions. It
can be shown that:

If X is compact, then the set of ∼-equivalence classes of vector bundles over X
forms an abelian group with respect to ⊕. This group is called K̃ X( ).

If E is a vector bundle, we can always find a complementary bundle F such that
⊕ ≈E F I m is trivial for some m. For the direct sum operation ≈

s
equivalence

classes, only the class I°, the zero element, can have an inverse since

⊕ ≈ → ⊕ ⊕ ≈E E I E E I I , (D.4)
s

n n
1 2

0
1 2

for some n, which happens only if E1 and E2 has 0-dimensions. However, although
there is no inverse, we have the cancellation property:

⊕ ≈ ⊕ → ≈E E E E E E , (D.5)
s s

1 2 1 3 2 3

since we can add to both sides of ⊕ ≈ ⊕E E E E
s

1 2 1 3 a bundle ′E 1 such that

⊕ ′ ≈E E I n
1 1 for some n.
For a compact base manifold X, we can construct an abelian group K(X)

consisting of formal differences E − E′ of vector bundles E and E′ over X, with
the equivalence relation

− ′ = − ′E E E E (D.6)1 1 2 2,

if and only if ⊕ ′ ≈ ⊕ ′E E E E .
s

1 2 2 1 The addition rule is

− ′ + − ′ = ⊕ − ′ ⊕ ′E E E E E E E E( ) ( ) ( ). (D.7)1 1 2 2 1 2 1 2

The zero element is the equivalence class of E − E for any E, and the inverse of E − E′
is E′ − E. There is a homomorphism → ˜K X K X( ) ( ) sending E − In to the ∼ class of
E. This is well-defined since if E − In = E′ − Im in K(X). Then

⊕ ≈ ′ ⊕E I E I , (D.8)
s

m n

which leads to E ∼ E′.
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Using the tensor product, we can define a natural multiplication for vector
bundles. If E1 and E2 represent elements of K(X), then products in K(X) will be
represented by the bundle ⊗E E .1 2 Thus, for arbitrary elements of K(X) represented
by differences of vector bundles, we define their product in K(X) as

− ′ − ′ = ⊗ − ⊗ ′ − ′ ⊗ + ′ ⊗ ′E E E E E E E E E E E E( )( ) .1 1 2 2 1 2 1 2 1 2 1 2

This makes K(X) a commutative ring with identity I1.
To summarize: we have obtained a weaker notion of isomorphism of vector

bundles by defining two vector bundles over the same base space X to be stably
isomorphic if they become isomorphic after direct sum with Im for some m (where m
can be different for the two bundles).

If X are spheres, the so-called Bott Periodicity asserts that K̃ S( )m is Z for n even,
and 0 for n odd, so we have a period two.

(Note: For the real case, the group is named ˜KO X( ) and ˜KO S( )n has period
eight.)

The K-theory has been used to classify topological insulators (Zhao 2013), since
adding an extra flat band to an insulator does not affect its topological classification.
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