Solutions for MID-TERM

Problem 1.

Calculate the first and second-orders corrections to the energy eigenval-
ues of a linear harmonic oscillator with the cubic term —Auz? added to
the potential. Discuss the condition for the validity of the approxima-
tion.

The Hamiltonian of the perturbed system is H = H©) + AH®) where
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HO = —p2 + ika, H®W = —p23. The first-order correction to energy
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eigenvalues is given by
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In the above expansion each term has unequal powers of @ and a. Hence,
(n|(a+a")3|n) = 0 and EY = 0. The first-order correction to the energy

eigenvalues is thus 0. Next, calculate the second-order correction to E,,.
We have
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Consider the term (n|(a + a)?|m). It is expanded as
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We evaluate each term in the above integral. We obtain
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In the summation in the expression for ESLZ) the nonzero contribution of
{(n|(a+a")®/m) comes from the cases m =n+3,n+1,n—1 and n— 3.
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Problem 3.

Since E,(f) is negative, all the energy eigenvalues are reduced. The
amount of reduction increases with n. This is because due to the cu-
bic term the potential flattens for large x.

The ratio of the change in energy due to the cubic term is
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A condition for the validity of the perturbation theory is that the above
ratio must be small. This requires both p?h/(m3w®) and a = (30n2 +
30n + 11)/4(2n 4+ 1) to be small. « is small provided n is limited to a
low number. We note that for sufficiently large x, the potential V' (z)
is negative and below the origin. Hence, a state with energy below the
maximum, say, A is not truly a bound state but has a small probability
of tunneling out to the right. For low lying states this probability is
negligible. But for higher states the perturbation theory breaks down.

A one-dimensional linear harmonic oscillator is acted upon by the force

For/w
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ground state. Using the time-dependent perturbation theory to first-
order, calculate the probability that the oscillator is found to be in the
excited state at t = oo

—00 < t < oo. At t = —oo, the oscillator is in the

The transition coefficient a( )( t) for the given problem is
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The integral in the above equation can be evaluated using contour inte-
gration. Its value is (7/7)e”*7. Then
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The time 7 — oo corresponds to turning the perturbation slowly,
that is, wr > 1. Hence, the transition probability vanishes. The other
limit wr — 0 corresponds to the application of an impulsive pertur-
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bation with lim ——— = d(t). Therefore, for 7 — 0,
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Problem 4.

A particle of mass m is acted on by the three-dimensional potential
V(r) = —Voe "/ where %/ (Voa?m) = 3/4. Use the trial function e~"/#
to obtain a bound on the energy.

The normalization condition gives N = /1/(n33). Since V is indepen-
dent of 6 and ¢
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Carrying out the differentiation the above integral we get
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If B/a = 2 the above equation is satisfied. Therefore, 5 = 2a. Then
(EYy = —V,/32.



HW4 PHYS 502 Problem 5

Problem 5

Calculate the diﬂ?eregltiad2 cross-section for a central Gaussian potential
Vr)=W/vir)e™ /40~ yunder Born approximation.

Under the Born approximation
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Writing cos(sr) = (e'*" 4+ e7*") /2 and defining = = (r/2a) — isa, y =
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Problem 6

Estimate the ground state of the infinite-well (one-dimensional box)
problem defined by

Vo 0, forlz|<L
oo, for|z| > L,

using the trial eigenfunction ¢ = |L|* — |z|* with « the trial parameter

and compare it with the exact energy value.

We obtain
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From 9(E)/da = 0 we get o = (14 v/6)/2. Since a has to be positive
for physically acceptable solution we choose a@ = (1 + v/6)/2 ~ 1.72.
Then using Eoxact = h272/(8mL?) we obtain

2.72 x 4.44 X 2 X Feyact
E) =
(E) 2.44 x 12

= 1.003 Elexact -

The percentage of error is 0.3%.
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