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P3.    Employing first order perturbation theory, calculate the energy of the first three states for an infinite 
square well of width a, whose portion AB has been sliced off. (Note: The line OA is a straight line). 

 







P4.     Consider an electron in a one-dimensional box of length 1 Angstrom. 

(a) Find the first 4 wave functions. Normalize the wave functions and sketch them. 

(b) Compute the corresponding 4 energy levels and sketch an energy level diagram. 
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11.3 N noninteracting bosons are in an infinite potential well defined by V(x) = 0 for 0 < x < a;
V (x) = • for x < 0 and for x > a. Find the ground state energy of the system. What would be the
ground state energy if the particles are fermions.

Solution. The energy eigenvalue of a particle in the infinite square well (Problem 4.1) is given by
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As the particles are bosons, all the N particles will be in the n = 1 state. Hence the total energy

E = 
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If the particles are fermions, a state can have only two of them, one spin up and the other spin down.
Therefore, the lowest N/2 states will be filled. The total ground state energy will be
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11.4 Consider two noninteracting electrons described by the Hamiltonian

H = 
2 2
1 2

2 2
p p
m m

+  + V(x1) + V(x2)

where V(x) = 0 for 0 < x < a; V(x) = • for x < 0 and for x > a. If both the electrons are in the same
spin state, what is the lowest energy and eigenfunction of the two-electron system?

Solution. As the electrons are noninteracting, the wave function of the system y (1, 2) can be
written as

y (1, 2) = y (1) y (2)

With this wave function, the Schrödinger equation for the system breaks into two one-particle
equations:
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where E(1) + E(2) = E, which is the total energy of the system. The energy eigenvalues and
eigenfunctions for a single particle in such a potential (see Problem 4.1) are
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Since x¢s  commutes with b,

[ , ] , , ,x x x x x y y x z zH c p c p c ps s a s a s aÍ ˙¢ ¢ ¢ ¢È ˘= + +È ˘Î ˚ Î ˚Î ˚

From Problem 13.12,

, 0,x x¢ =È ˘Î ˚s a , 2 ,x y ziÍ ˙¢ =Î ˚s a a , 2x z yi¢È ˘ = -Î ˚s a a

, 2 ( ) 0x z y y zH ic p p¢ = - πÈ ˘Î ˚s a a

Hence the result.

13.14 Show that Dirac’s Hamiltonian for a free particle commutes with the operator s ◊ p, where
p is the momentum operator and s is the Pauli spin operator in the space of four component spinors.

Solution. Dirac’s Hamiltonian for a free particle is
2( )H c mc= ◊ + ba p

where
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[s ◊ p, H] = [s ◊ p, ca ◊ p + bmc2]

= c [(s ◊ p), a ◊ p] + [s ◊ p, bmc2]

= 20 0 0 1 0
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p p p

= 0 + 0 = 0

Hence the result.
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Employing first order perturbation theory, calculate the energy of the
first three states for an infinite square well of width a, whose portion AB
has been sliced off. (Note: The line OA is a straight line).

a

Fig. 5.1

(Buflulo)

Solution:
The modification to the Hamiltonian, H’  = 2 5 (0 5 x < a), can

be considered as a perturbation. The unperturbed eigenfunctions and the
corresponding eigenvalues of the first three states are
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The first order energy corrections are then

P1.

P2.



(c) At t = 0, the particle is known to be in the state for which n=1.  At t = 0, a rectangular potential well Vo 
= -104 eV, centered at a/2 and of width 10-12 cm, is suddenly introduced into the well and kept there for 
5x10-18 secs, at which time it is removed. 

After removal of the perturbation, what is the probability that the system will be found in each of the 
states n=2, n=3, and n=4? ( By the way, the height and width of the potential well is characteristic of a 
neutron interacting with an electron). 

 

P6.    Calculate in the Born approximation to the differential and total cross sections for scattering a 
particle of mass m off the 3-dimensional delta-function potential . 

	 	 	 SEE NEXT PAGE FOR PROBLEM P7.

V( ⃗r ) = gδ3( ⃗r )
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Perturbation Theory 381

we have
E(p~m))  = 4FlU - x (g)3 � 2  ,

where m is the eigenvalue of L,.

5047

The Hamiltonian for an isotropic harmonic oscillator in two dimensions
is

H = w(nr  + 7x2  + 1) ,
where ni = a+ai, with [ai, a, � ]  = bij  and [oi,oj] = 0.

(a) Work out the commutation relations of the set of operators
{H,Jr ,Jz,J3}  where

Jl = f (& ++z2), Jz = f (o, � or  - ~~uz),

53 = ; (u;ul - 4~2).

(b) Show that J2 =: 5; + 5: + 5: and 53 form a complete commuting
set and write down their orthonormalized eigenvectors and eigenvalues .

(c)  Discuss the degeneracy of the spectrum and its splitting due to a
small perturbation V. J where V is a constant three-component vector.

(Buffdo)

Solution:

(a) The system can be considered a system of bosons, which has two
single-particle states. The operators uz and ui are respectively creation
and destruction operators. As among their commulators  only [oi, ut] is not
zero, we can use the relation

[ub, cd] = u[b,  c]d + uc[b,  d] + [a, c]bd + c[u, d]b

to obtain

[+Zr,  Cqur] = [U, � UZ,  u~uz]  = [@l, c&2] = 0,

[c+l, c&1] = - [4u2, u;u11  = -c+ )

[U; � Ul,  44 = - [u$32,u~u2]  = u;u2,

[U&l,  u;4 = 4a2 - UpYLl.

P5.
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BERRY’S PHASE FOR SPIN S=1 IN A MAGNETIC MONOPOLE FIELD
A useful model for illustrating the ideas of Berry curvature and Berry’s phase

consists of a spin interacting with a magnetic monopole (referred to as the ‘Dirac
monopole’) field. Consider a spin "⃗ = 1 particle located at #⃗. The Dirac monopole
of magnitude M situated at the origin produces a magnetic field at the position #⃗
given by: $⃗ = %

#3 #⃗ =
%
#2 #̂, with #̂ the unit vector in the radial direction and |#⃗| = #

the distance from the origin which we will take to be fixed. See Figure below.

The interaction hamiltonian is: ' = $⃗ ⋅ "⃗.
1. Write components of the hamiltonian ' in spherical coordinates.
2. Find eigenstates and eigenvalues (remember this is S=1 problem!).
3. Check that those eigenstates are orthogonal and normalized.
4. What are the eigenstates at the north ( = 0 and ) - the south pole?
5. We can now imagine that the spin is moved around a horizontal (constant-

latitude) circle, which means ( is fixed and * is between [0, 2)]. What is
Berry’s phase for this change in position calculated as a contour integral?

6. Calculate the Berry curvature Ω(,*((,*).

7. Calculate the Berry phase as an surface integral over the entire sphere and
set ( = ).

1

P7.

Good luck !


