Lecture 8 Lets discuss spin in more detail. In the Heisenberg picture we get (beau + our origin $\frac{dA}{dt} = \frac{1}{it_{h}} [CA, H] \qquad \qquad \begin{array}{c} Back + our \circ right \\ notation; \\ \delta_{\mu} = (B_{1}, -iB\alpha_{\mu}) \end{array}$ For a free Dirac particle H= c.d.p + Bmc2 Lets introduce a time evalution for this particle with an angular momentum Î: $-i\frac{\hbar}{v_{f}}\vec{L} = \Gamma H,\vec{L}$ Consider only one component; say L3 $-i\hbar \frac{\partial L_2}{\partial t} = [H, L_3] = [\overline{Z} \subset \alpha_{\mu} p_{\mu} + \beta_{\mu} c_i^2]$ XIPL - XLPI 1 1= Ly recal and p are matrices and [pm2, xipe - xip] = 0 & B is a matrix [pm2, xipe - xip] = 0 & B is a matrix x amp are scalars it 323 = [Zcdupu, xp2]-[Zcdupu, XLPIJ = -it C Z de Skip2 + it C Z de Sk2P, = -it C (d, P2 - d2P1) =-it (d x P)3 3-component

Here I used [p,x] = -ito; [p;]=0 @
the same we can derive for [2 and k]
in other Words:
dÈ - (+ + -) (-
$\frac{d\vec{E}}{dt} = c(\alpha \times p) \neq 0$
thus I is not a constant of motion.
We should construct a new operator to cancel out -c (dxp) and have
it a good operator, i.g.
$\vec{L} + \vec{A} = is consurved if \frac{d\vec{A}}{dt} = -c (axp)$
We now can demonstrate that
$\vec{A} = \frac{1}{2} \cdot \vec{c}^* \text{where} \vec{c}^* = \begin{pmatrix} \vec{c} & \vec{c} \\ \vec{c} & \vec{c} \end{pmatrix}$
For this purpose we calculate
$-i\hbar \frac{d \sigma_{3}^{*}}{d t} = [H, \sigma_{3}^{*}] =$
$\frac{d}{dt} = \frac{2}{3} \frac{3}{3} \frac$
$\int = \left[\begin{array}{c} C \alpha_{k}, \rho_{k} + \rho_{k} C^{2}, \overline{\sigma_{3}} \right] = 2i \left(\alpha, \rho_{c} - \rho_{1} \alpha_{2} \right)$
Show again we use [Bmc2, 6,]=0 This!
Show again we use $[\beta_{mc}^{2}, 6_{3}^{*}] = 2i(\alpha, p_{c} - p_{1}\alpha_{2})$ This $[\alpha_{3}, 6_{3}^{*}] = 0$ $[\alpha_{3}, 6_{3}^{*$
and oft oft = -io (I used sympy)

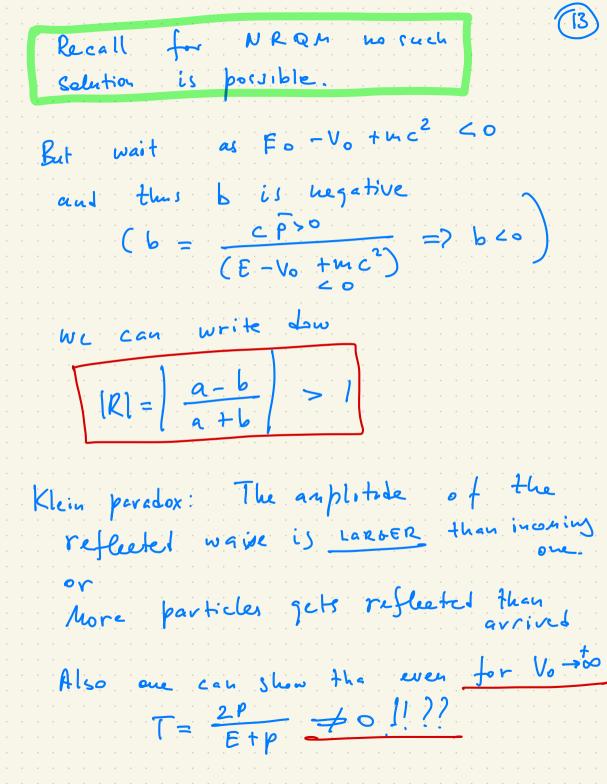
that is: $\frac{1}{2} \frac{dG_3^*}{dt} = C(\alpha \times P)$	JE J CAMPONEN
the same for 5, T and 62, in	short
$\frac{d}{dt} = \frac{F}{2} = \frac{F}{2} \left(\alpha \times \overline{F} \right)$	· · · · · · · · · ·
Combining this with the expression	
$\frac{dL}{dL} = C(\alpha \times \overline{\rho}) \implies \frac{d}{dt} (\overline{L})$	$+\frac{\pi}{2}\vec{6}$
Thus anew quantity:	Spin anguler Moment
· · · · · · · · · · · · · · · · · · ·	Moment
is conserved $d = 0$ d = 0	· · · · · · · · · · · · · · · · · · ·
and the Dirac particle has spla	<u>n</u> 6
Dire PARTICLE IN A POTENTIAL	· · · · · · · · · ·
To solve a problem of a Dirac particle in the potentia we 1 st modify the equation to the potential.	Include
the potential. Intritively we can write down:	

$H = c \alpha \cdot \overline{\rho} + \rho m c^{2} + V(z) =$
$= -i\hbar c \frac{d}{dz} \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ i & \bullet \end{array} \right) + \left(\begin{array}{c} \bullet & -i \\ $
$+ \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) mc^{2} + V(z)$
where we selected $d \equiv \alpha_2$
$\begin{cases} \text{for } H \Psi = E\Psi = 0 \\ \text{i } H = \frac{2}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + Wc^2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + V \left[\begin{pmatrix} 0 \\ \omega \end{pmatrix} \right]$
$= E \begin{pmatrix} v \\ w \end{pmatrix} \implies uettiplying those us trices$
$ -i\hbar c w' + U (mc^2 + V) = EU $
$\int \frac{dz}{dz} = \omega \left(m c^2 + V \right) = E \omega$
Recell $\Psi_1 = \begin{pmatrix} U_1 \\ w_1 \end{pmatrix}$ and $\Psi_2 = \begin{pmatrix} V_2 \\ w_2 \end{pmatrix}$ those are two bound state
Solutions
So we have & equis for those components

$(-)_{\mathcal{V}_{L}} = (-h_{\mathcal{L}} \omega_{i}) + (mc^{2} + V) \nabla_{i} = E_{1} \omega_{i}$
$ \begin{array}{l} (\cdot) & \nabla_{2} & = \left[-\frac{1}{4} c w_{1}' + \left(mc^{2} + V \right) \nabla_{1} = E_{1} w_{1} \\ & + c \nabla_{1}' - \left(mc^{2} + V \right) w_{1} = E_{1} \nabla_{1} \\ & + c \nabla_{1}' - \left(mc^{2} + V \right) w_{1} = E_{2} \nabla_{2} \\ & - t_{1} c w_{2}' + \left(mc^{2} + V \right) \nabla_{2} = E_{2} \nabla_{2} \\ & + c \nabla_{1}' - \left(mc^{2} + V \right) w_{2} = 6_{2} w_{2} \end{array} $ $ \begin{array}{c} (5) \\ \end{array} $
$w_{1}^{2} = w_{2}^{2}$ $-\sigma_{1}^{*} = h c \sigma_{1}^{2} - (m c^{2} + V) w_{2} = 62 W_{2}^{2}$
$\int f_{1} c \left(\nabla_{1} w_{2}^{\prime} - w_{1}^{\prime} \nabla_{2} \right) = (\varepsilon_{1} - \varepsilon_{2}) \nabla_{1} \nabla_{2}$ $\int \left(f_{1} c \left(\nabla_{1}^{\prime} w_{2} - w_{1} \nabla_{2}^{\prime} \right) = (\varepsilon_{1} - \varepsilon_{2}) w_{1} w_{2}$ $\int f_{1} c \left(\sigma_{1}^{\prime} w_{2} - w_{1} \nabla_{2} \right) = (\varepsilon_{1} - \varepsilon_{2}) \psi_{1}^{*} \psi_{2}$
$or (\pi c (\sigma_1 \sigma_2 - \omega_1 \sigma_2) = (E_1 - E_2) \omega_1 \omega_2$
$ = (\mathcal{E}_1 - \mathcal{E}_2) \psi_1^* \psi_2 $
$f_{1} \subset \frac{d}{dz} \left((v_{1} w_{2} - w_{1} v_{2}) = (E_{1} - E_{2}) \psi_{1}^{*} \psi_{2} \right)$ $f_{2} = E_{1} = E_{2} \implies \frac{d}{dz} \left((v_{1} w_{2} - v_{2} w_{1}) = 0 \right)$ $Degeweret \\ f_{1} = E_{2} \implies \frac{d}{dz} \left((v_{1} w_{2} - v_{2} w_{1}) = 0 \right)$ $Court$
Degenigate Investigate We assume that U and W -> 0 If 2 >00 so the constant =0
that is: $\frac{U_1}{W_0} = \frac{U_2}{W_2}$, Returnin $\frac{U_1}{W_1}$
$\begin{array}{ccc} \circ r & \nabla_{1} & = & \frac{\omega_{1}}{\omega_{2}} & = & \psi_{1} & \propto \psi_{2} \\ \hline \nabla_{2} & = & \frac{\omega_{2}}{\omega_{2}} & = & \psi_{1} & \propto \psi_{2} \end{array}$
meaning they represent the same state and meaning also they are NON-DEGENERATE
and also $\langle \Psi_1 \Psi_2 \rangle = \int_{-\infty}^{\infty} \Psi_1^* \Psi_2 dz \Longrightarrow$

 $\frac{\operatorname{recall}}{= \operatorname{hc}} \frac{1}{42} \left((\mathcal{U}_1 \mathcal{U}_2 - \mathcal{W}_1 \mathcal{V}_2) \right) = \left(\mathcal{E}_1 - \mathcal{E}_2 \right) \frac{1}{2} \frac{1}{2}$ $\Psi_{i}\Psi_{2}^{*} = \frac{\hbar c}{E_{i} - E_{L}} \frac{4}{4z} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{1} \sigma_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) = \sum_{i=1}^{L} \frac{1}{2} \left(\sigma_{1} \omega_{2} - \omega_{2} - \omega_{2} \right) =$ $\frac{1}{\varepsilon_1 - \varepsilon_2} \left(\left. \bigcup_{i} \right. \left. \bigcup_{j} \right. \left. \bigcup_{j} \right|_{-\infty} \right) \right|_{-\infty} = 0$ or Ψ_1 and Ψ_2 are otthogonal t non-deneracy This means that level crossing cannot occur! When the potential varies smoothly the W.f. also vary smoothly Ez Ez Ez x e some parameter 2.9. k momentum E and far the levels to cross His requiare a SiNGULAR behavior in 24,142 When E=Ec AND SINGULAR POTENTIAL!

(7) (Vefified in graphene) Consider a scattering process by the step potential FREE PARFICUE T 1st we construct the plan wave Dirac's free electron in 1D: $E \psi = (C d_X p_X + \beta mc^2) \psi$ or solution of $i\hbar\frac{\partial\Psi}{\partial t}$ + $i\hbar c\left(\begin{array}{c} o & c_{x} \\ c_{y} \end{array}\right)\frac{\partial\Psi}{\partial x}$ $c^{2} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \psi$ or in the X - component form: mc 4, =0 it 241 + inc 244 $\frac{1}{5} \frac{9}{5} \frac{\psi_L}{5} + i \frac{1}{5} c \frac{9}{5} \frac{\psi_S}{5}$ mc²Y₂ mc = 0 $i\hbar \frac{\partial \Psi_2}{\partial t} + i\hbar c \frac{\partial \Psi_2}{\partial x}$ orty + its or mc *= Note: Y1 couples out to 43 and 42 to 44


2. component 8 ble of this letis into a Spinor, with Yu=Y1 or Y2 $\Psi_{\mathbf{g}} = \Psi_{\mathbf{3}}$ or $\Psi_{\mathbf{Y}}$ for stakonary states we get: With C 41 + (E + me) + = = Vite + (E+me) + (E+me) + (E+me) $\int \mathcal{W} i \not h \in \Psi_3^{-1} + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + c + (F - mc^2) \Psi_2 = o \quad \mathcal{W} = c + (F - mc^2) \Psi_2 = o \quad \mathcal{W}$ in terms of the and the we can rewrite it as a single equation ite yu + (E + me) Ye = 0 \rightarrow litic $\Psi_e' + (E - wc^2) \Psi_e = 0$ rename $\Psi_{4} = 4$ and $\Psi_{e} = w$ $\int \frac{it}{t} c v' + (E + mc^2) w = 0 V$ $\int \frac{it}{t} c w' + (E - mc^2) v = 0 VV$ > d V and using W' from w $i\hbar c\sigma'' + (E + mc^2) w^{1} = \infty$ $w^{1} = \frac{\sigma(E - mc^{2})}{2}$

9 For $v'' + \frac{p}{b^2}v = 0$ v=Ae ipx/t + B e - ipx/t and $w = -(i\hbar\varepsilon)$ $E + mc^2$. Based on this we can write down: $\begin{aligned}
& U_{L}(x) = A \left(e^{iPX/t_{5}} + R e^{-iPX/t_{5}} \right) \\
& U_{L}(x) = A \left(e^{iPX} - eR e^{iPX/t_{5}} \right) \\
& W_{L}(x) = A \left(e^{iPX} - eR e^{iPX/t_{5}} \right) \\
& Ta \equiv CP/(E + mc^{2}) \\
& From solution for < we set the solution for < we set the solution for > by Replacing E by E-V_{0}
\end{aligned}$ The W. J. for x 20 is: $\psi_{2} = \begin{pmatrix} v_{2} \\ u_{2} \end{pmatrix} = A \begin{bmatrix} 1 \\ a \end{bmatrix} e^{ip x/h}$ $F = R \begin{pmatrix} 1 \\ -a \end{pmatrix} e^{ipx/\hbar} = A \left[u_{+}c + R \\ u_{-}e^{-ipx/\hbar} \right]$ where $u_{\pm} = \begin{pmatrix} 1 \\ \pm a \end{pmatrix}$ for x > + these is no reflected wave $Y_{2} = \left(\begin{array}{c} v_{2} \\ w_{2} \end{array} \right) = D \overline{u} e^{ipx/\hbar}$

here $\overline{u} = \begin{pmatrix} 1 \\ b \end{pmatrix}$ $\widehat{p} = p(E^{-V_0}) = \frac{1}{c!} (E^{-V_0})^2 - \frac{1}{c!} (E^{-V_0})^2 - \frac{1}{c!} (E^{-V_0})^2 - \frac{1}{c!} \frac{1}{c!} (E^{-V_0})^2 - \frac{1}{c!} \frac{1}$ usual to dedermine those constants A, D and R we use $\begin{cases}
\Psi_{<}(\circ) = \Psi_{>}(\circ) \\
\Psi_{<}^{1}(\circ) = \Psi_{>}^{1}(\circ)$ For $\psi_{<}^{1}(\circ) = \Psi_{>}^{1}(\circ) \\
= A E \Psi_{+} e^{ipx} A_{+} + Ru_{-}e^{ipx/k} \\
\psi_{<}^{1}(e^{ipx}) = A E \Psi_{+} e^{ipx} A_{+} \\
= A E \Psi_{+} e^{ipx} A_{+} \\
= e^{ipx/k} \\
= e^{ipx/k}$ $\Rightarrow A (U_{+} + RU_{-}) = D\overline{u} =)$ $A \left[\begin{pmatrix} 1 \\ a \end{pmatrix} + R \begin{pmatrix} 1 \\ -a \end{pmatrix} \right] = D \begin{pmatrix} 1 \\ b \end{pmatrix}$ $= \left| \begin{array}{c} A & (1+R) = D \\ A = ((-R) = bD \end{array} \right|$ $\rightarrow R = \frac{a - b}{b + a}$ $T = \frac{2a}{a+b}$

Behavior of the w. f. depends on vo (1)
Consider O E > Vo + mc2
② Vo -mc ² ∠ E ⊂ Vo tuc ¹
$\mathbb{O} \qquad F > \gamma_{\circ} + \cdots c^{2} \Rightarrow$
$E^2 > m^2 C' + V_0 + 2m C' V_0 = >$
$\begin{pmatrix} E^{2} - m^{2} c^{1} > 0 \\ p^{2} c^{2} = E^{2} - m^{2} c^{1} a s > 0 \Rightarrow \end{pmatrix}$
<u>Pisreal</u>
Since $E = V_0 > u_c^2 (E = V_0)^2 >$ $> u_c^2 (V_0 > u_c^2 (E = V_0)^2 >$
Since $E = V_0 > h_c$ $(E = V_0) >$ $= \int (E = V_0)^2 - h_c^2 C^4 \int \frac{1}{2}$ $= \int E - V_0 = h_c^2 C^4 \int \frac{1}{2}$
A => and P is real
as such if NRQM!
$E > V_0 + mc^-$ i p x - i p x $x < 0; p + e x > 0 e^{i p x}$
incohing reflected transmitted

(2) $V_o - m c^2 \leq E \leq V_o + mc^2$ in this case $(E - V_o)^2 \leq m^2 c^4$	
•r $P = [(E - V_0)^2 - m^2 C$ is imaginated	y] [12
Then we have for: x = 0 in coming t ve fleetel in NRQM.	ally Love
Finally E < Vo -mc ²	
$E - V_0 (-mc^2 \Rightarrow)$ $E - V_0 (E - V_0) < 0 and$ $(E - V_0)^2 m^2 c^4 \Rightarrow$	
P is Real Meaning that we have oscil behaviour after the barrier !!??	(atiry

Dirac electron in the field (17) Electric field is described by Ap (ig, A) and Dirac equ Ap Cig, A) and Dirac equ is simply is multipled as $\sqrt{p} \rightarrow \overline{p} - \frac{e_A}{e_A}$ is simply is multipled as $\sqrt{p} \rightarrow \overline{p} - \frac{e_A}{e_A}$ $\left(\begin{array}{c} \varepsilon^{-\alpha\varphi} \\ (\varepsilon^{-mc^{2}}) \\ \varepsilon^{2} \\ \varepsilon^{2} \\ \varepsilon^{2} \end{array} \right) \left(\varepsilon^{2} \\ \varepsilon^{2$ (6. p),w c (e . p) 5 TE-eq Now we are interested in positive Solutions In the E = E + mc² form $(2mc^{L} + \mathcal{E} - eq)W = c\sigma. (P - \frac{e}{c}A)\sigma$ in a weak field \mathcal{E} and \mathcal{E} are small so 2 m c w ≅ (5. (p - ≥ A) 5 => $W \simeq \frac{1}{2mc} \sigma \cdot (\overline{p} - \frac{e}{c} A) \sigma$ $\begin{pmatrix} E - e\varphi - mc^2 \end{pmatrix} \sigma = C \left(\sigma \cdot \left(P - \frac{e}{c} A \right) \right)^2 \sigma \implies \\ \uparrow E = E + mc^2 \qquad Zme$

(5) $\frac{1}{2m}\left[\mathbf{e} \cdot \left(\mathbf{p} - \frac{\mathbf{e}}{2} \mathbf{A} \right) \right]^{2} \mathbf{v} = \left(\mathbf{E} - \mathbf{e} \mathbf{\varphi} \right) \mathbf{v}$ Using $(\epsilon, B)(\epsilon, c) = B \cdot c + i \epsilon \cdot (B \times c)$ with $B = C = (P - \frac{2}{c}A) \rightarrow i\pi\nabla$ $\left(\overline{\sigma} \cdot \left(\overline{\rho} - \frac{e_A}{h} \right) \right)^2 = \left(\overline{\rho} - \frac{e_A}{h} \right)^2 + i\overline{\sigma} \int \left(\frac{1}{\rho} - \frac{e_A}{h} \right)_X$ $\begin{array}{l} x \left(p - \xi \right) \left\{ \begin{array}{c} y = \left(p - \xi \right)^{2} - \xi \right\} \\ p \times p + \xi \\ z & A \times A + p \times A - A \times p \\ z & p = i \pm \nabla \end{array} \right.$ $\overline{B} = \overline{V} \times \overline{A}$ where $\vec{B} = \vec{P} \times \vec{A}$ thus the equ: $\frac{1}{2} \ln \left[\sigma \cdot \left(p - \frac{e}{c} A \right) \right]^{2} = \left(\varepsilon - eep \right)^{2}$ be comes $\frac{1}{2m}\left(p-\frac{e}{c}A\right)^{2} - \frac{e\pi}{2mc}\sigma \cdot B + e\varphi \int v_{z} = \varepsilon \sigma$ B=V×B PAULI EQUATION the extra term - etto. B suggest that an electron in the Magn field gains extra energy - H.B = - et B = - HB-B

· · · · · · · · · · · · · · · · · · ·	Imr inte	r action	top RE. the t	AP	PP	9 - or blt 493 - 495
 	ተႱ	e Enf	o F Section			
· · · ·	· · · · · ·	· · · · · · · · ·		· · · · ·		
· · · ·	· · · · · ·	· · · · · · · · ·		· · · · ·		
· · · ·	· · · · · ·	· · · · · · · · ·		· · · · ·		
· · · ·	 	· · · · · · · · ·	 	 	· · · · · ·	