L2 Approximation Methods IT Time - dependent Perturbations. The most simple way to describe the tone -dependent perturbations is to consider how our system interacts with an external source of EM radiation. D TRANSITION PROBABILITY. What we need to do is to solve our t-dependent Sh. egn. → it 200 $(H^{(*)} + (\lambda) H^{(*)})_{Y} = H Y.$ We assume that we know the solution of the stationary state (En, Qn) and the only time - evelution is in -i En +/5, \$(~, x) the phase: Ho: Pn (x, t) = (e) Now lets turn on the perturbation : too at this time the system H is very close to H " to {Pu(x, t)} should be a pretty good approximation the whole haviltonion as well. $--\frac{\psi(x,t)}{\psi(x,t)} = \frac{\sum_{n=1}^{\infty} (t) e^{-i\frac{\pi}{2} - i\frac{\pi}{2} - i\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$ So our task is to determine an(t), so our amplitudes will evelve as a function of (E). Note if pett. 15 = o then an(t) = an(o). To obtain the solution we plug In Y(x,t) -> it Z anthe i Ent / h $\phi_n + = 1 Z q_n(t) c$ iEnt/5(1), HPn + Z (it E an (+) e - i Eut/h) & (x) + Hoy = Ert Li Ent/h = 1 Zan H^{CI)} e it I ame - iEnt/t $i(E_f - E_n)t/h$ an e wfu

2 we can introduce two new variables $(\omega_{jn}) \equiv (E_{j} - E_{n})/t_{j}$ and $H_{jn} \equiv \int_{-\infty}^{\infty} \varphi_{j}^{*} H^{(1)}(t) \varphi_{n} d\tau$ Next step is to expand the auplitudes in terms of 1: af (1) = af (0) + laf + laf + 1 af + ... the criteria for this would be : at (1) reat $+ (a_1^{(1)}) + (a_1^{(1)}) = (0)$ it d(at at Z × *an (+) e (wyn t H (1) Collect & terms: it day and not on the left side λ 🗒 : 🗸 $i h a_f^{(1)} = \Sigma a_n^{(0)} e^{i \omega f n t} H_{f h}^{(1)}$ ✓ パ⁽¹⁾: $i\hbar a_{f}^{(2)} = 2a_{h}^{(1)}e^{i\omega f_{h} + (1)}H_{f_{h}}$ x (2): (י) ۲ ۱₽۲ and $\left(i + a_{f}^{(S+1)}\right) = Za_{n}^{(S)} e^{i \omega_{fn} t} H_{fn}^{(1)}$ This is a set of integro -differential 27 which are difficult to solve analytically. Rquetions -> One of the ways to sculify the problem is to consider the time - dependent perturbation li H line this ! H⁽¹⁾ T time Assume that the system H⁽¹⁾ T time is initially at Pi during 0-T. then an⁽⁰⁾ = Sui at t=0 Once we turn off the perturbation the system will fall off into say 197. So the quastion we ask : WHAT is THE PROBABILITY TO TRANSITION FROM ai - af during T?

Pfi = <fli> = afiai from 1: $i \omega_{fi} / t H_{fi}$ af") = it e wy; t / # Hj; Lt ei =) $P_{fi} = |a_{L}^{(i)}|^{2}$ study several important cases; for example Lets -dep. (e.g. de magnetic field) H"(+) = W (x) ho t and $H^{(\prime)}(t) = w(x) e^{-iwt}$ (e.g loser ligh with) CONSTANT PERTURBATION the constant perturbation we get $H^{(1)}(t) = W(x)$ (1) = fig where Hy= So the solution is $a_f^{(i)} = \frac{1}{i\hbar} (\mathcal{H}_f)$ Thus at the 1"order perturbation! $P_{fi} = a_f^{(i)} * a_f$ $\int Gos x = 1 - 2 \sin^2 \frac{x}{2}$ we used $e^{i\omega} + e^{-i\omega} \equiv \cos X$ This is a very interesting -10 result since even for the Wi= CI-Ei independent of time perturbation W(x) a rather non-trivial frequency dependence. we get

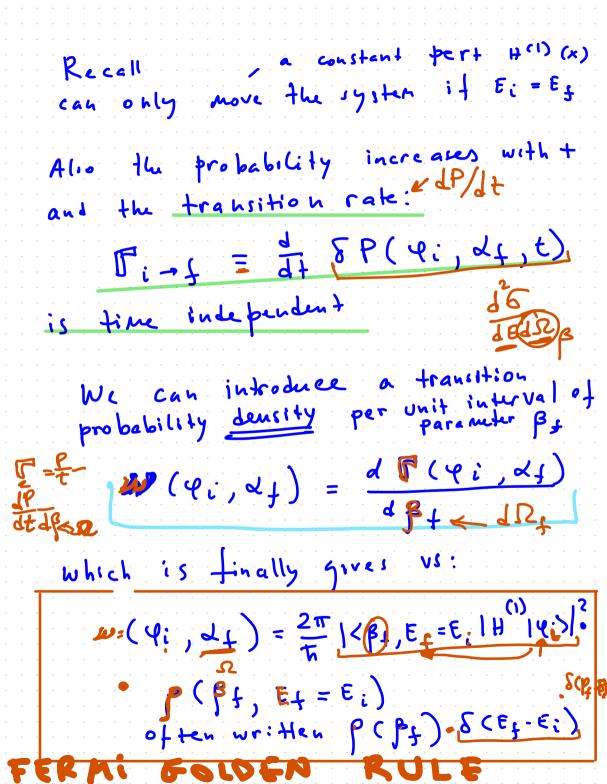
Specific features of the 1st order transition: D Recall we just calculated the transition from the state 1ir -> 1fr 2. SELECTION RULE: if Hfi = o no transition 3. The transition is strongest when wit = of if Ej = Ei for small w_f: sinx = x => P_f: ~T² and the probability per unit of time = Pit ~T = transition rate ~ T. The longer you T ~T expose system the higher chance. (4) IF Ef -Ei = wfi is large Pfi -> 0/ Make scuse shard to move between the high energy states.) ω₁ -ω:= (5) Also if $\sin^2 \omega_{fi} T/_2 = 0 =$ $\omega_{fi} = \frac{2\pi}{T} \cdot n h = 1/2, \dots$ T ho transition $\frac{E_{f} - E_{h}}{E_{i}} \rightarrow E_{f} \frac{E_{f} - E_{h}}{E_{i}} = \frac{2\pi h}{T} \Rightarrow \omega_{f} - \omega_{i} = \frac{2\pi}{T} + \frac{\omega_{hafri}}{physical meaning}?$ 6. The most interesting feature it oscillates ! (7.) What if we transition not into a single particle state, but into a band of states Japping? E FERMI ? in this case: 4Hfi/h2w = SIn (wfi T/2) $P_{f'} = \int_{-\infty}^{\infty} \left[a_{f} \right]^{2} f_{f}(\varepsilon_{f}) d\varepsilon_{f} =$ ±≠ 19:7 ₽€-It de is the density of final states if p=constant $= \frac{2\pi}{5} f_f |H_{fi}|^2 T$ $\int \frac{1}{\sqrt{2}} \frac{5\ln^2}{\xi^2} d\xi = \pi$ FERMI GOLDEN RULE: 8. The transition zate! $\frac{dP_{fi}}{dT} = \int_{fi} = \frac{2\pi}{\hbar} p_{f} |H_{fi}|^2$

12 This equation is also knows an fermi golden tule often it is written as (1)(+) $\Gamma_i \rightarrow f = \frac{2\pi}{2\pi} - \left| < f - 1 + 1i \right| \rho(\varepsilon)$ The F.G.R is the foundation of spectroscopy. 4. For large T the area or the transition rate is largest for the central peak. In this case w(x) #(t -wi -wf $w_{fi} \leq \frac{2\pi}{T}$ If we measure civitis from Pfi we end up withe uncertainty of Dw ~ 21 or the ~ 21 => DE~ 27th or DE~ h (hot h!) or DE .7 ~ h The longer we herforn our the asurement the less certain or definition of (wi barges transition rate corresponds brighten line or highest intensity in an experiment. HARMONIC PERTURBATION Occurs experientally nost often, as we use the external EM radiation sig usuochromatic light, lasers etc. $H^{(1)}(t) = \underline{W(x)} e^{-i\omega t} \leftarrow laser$ we assume the perturbation is switched Again on and off for the time T $e^{i(\omega_{fi} - \omega)t}$ \$ Wex) \$ i de i(w-itw)j $a_1 = \frac{1}{14}$ integr Hit - (1- e. => af(T) [(wfi - w) T/2] and $P_{fi} = a_{f}^* a_{f} =$ -w)

2 JA W(x) 5/12 wif As you see the result is about the same p as W(x) except for wif - wif - w ten notes → for a har monic perturbation Pfi is maxed at (wig-we) wig-w=0 or Ef-Ei=tw → Eg=Ei+tw This means that we is in the formed of This means that we need to shine light with the frequency w to match the transition energy. Et - Ei → For harmonic perturbation we have contribution un from all frequencies w. Consider the case when It's hot a laser but a lamp which delivers all frequencies w What's the Pi-J in this case! simple: We will return $P_{f-i} = \int |a_f|^2 \rho(\omega) d\omega = \frac{4}{4} \int (H_{fi}^{(\omega)}) \frac{2}{5h^2} (\omega_{fi} - \omega) T_{e}^{(\omega)}$ to this in 2 pages. P(w) dw = function under the integral ~ Sin² (w,-w) Selects the frequencies (w) (wfi-w) with - with the prequencies P = 4T |H fi (wif) |² f(wif) Notice the external stimuli can easi the system to go upware stimuli can ease the system to go upward $\rightarrow i.e$ iin $f = m E_m 7 E_h$ and downward. $\Gamma_{mh} = \frac{2\pi}{\hbar^2} \left[H_{mn}(\omega_{mh}) \right]^2 \rho(\omega_{mn})$ and if i=m and f=n $E_m < E_h$ $\Gamma_{hnn} = \frac{2\pi}{\hbar^2} \left| \frac{H_{hnn}}{F_{payakention-hol}} \right|^2 \rho(\omega_{hmn}) = \frac{2\pi}{\hbar^2} \left| \frac{H_{hnn}(-\omega_{mn})}{H_{payakention-hol}} \right|^2 \rho(\omega_{hmn})$ Strice p(w) and p(-w) the Same H(-w)=(H(w))=) Finn=Finn

Lets apply those general equations for the simpler case of H (1) = W (x) sin w E This case can be easily treated if we remember that $sln wt = \frac{e^{iwt} - e^{iwt}}{2i}$ and $cos wt = \frac{e^{iwt} + e^{iwt}}{2i}$ So we can convert either case into the problem which we alredy solved: was e-iwt $a_f = \frac{1}{i\pi} H_{+i} e^{i\omega_{+i}t} = \frac{1}{2\pi} H_{+i} \cdot [e^{i(\omega_{+i}-\omega)t}]$ -e i(ati+w)+] and by integration the equation from o to T we get $a_{f} = -\frac{i}{2k} H_{fi} \left[\frac{1-e^{i(\omega_{fi} + \omega)T}}{\omega_{fi} + \omega} - \frac{1-e^{i(\omega_{fi} - \omega)T}}{\omega_{fi} - \omega} \right]$ and $P_{fi} = |a_f|^2 = \frac{|H_{fi}|^2}{|4t_i|^2} \left[\frac{1-e^{i(\omega_{fi}+\omega)T}}{\omega_{fi}+\omega} - \frac{1-e^{i(\omega_{fi}-\omega)T}}{\omega_{fi}-\omega} \right]$ This means that we only get the largest auplitude when $w_{fi} \neq w = 0 \Rightarrow$ $E_f - E_i = \pm \hbar \omega$ This means that if the transition occurs the system Must emmit or absorb a quanta of energy two. ND! READ pages 367-38 for Solved Problems 3 and 4.

L2


Few extra points about of pert. treatment. the validity + Surprizingly the approx. is Not valid if T becomes long: pert. Solu g back to $P(t, w) = \frac{|H_{si}|^2}{4t^2} \cdot \frac{F(t, w-w_{ij})}{4t^2}$ $F = \sqrt{\frac{\sin\left((w_{if} - w)T/2\right)}{(w_{ij} - w)/2}}^2 \frac{(w_{ij} - w)T_{si}}{(w_{ij} - w)/2} = \frac{1}{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad x \to 0 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad x \to 0 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad x \to 0 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ $= \int \frac{\sin x}{x} \cdot T \int_{a}^{2} = 2 \quad \mathbf{F} \to (\overline{T}^{2} \to 0)^{2}$ but any probability must be 21. So we get $T \leq \frac{\pi}{1441}$ which only borns for the 2^d and 3^d we get V (Hun terms which must be constrained too.

+ Another point is about <u>coupling</u> to the states with continious spectrum Let's start with a simple example: A scattering of a <u>spinless</u> particle of mass m off the potential W(r) The state of the particle at time t is 1p> the states of a definitive momentum p and -2 $\underline{E} = \frac{p^{-}}{2m} \rightarrow \frac{\langle \overline{r} | \overline{p} \rangle}{(2\pi t_{n})^{3} / L} = \frac{L}{(2\pi t_{n})^{3} / L}$ (<p(Y(+)))² is the probability density associated with maarmement of momentum p The detector will detect a signal if def the porticle sectors with momentum Pf within a solid angle 5Ry around Pf and Ef = Pf/2m => $5P(P_{f_1}+) = [ip] (2P(y(+)))^2$ P(E) dE dJ2 P(E) = P2 JP/JE

Thus we have $E = r^2/2n$ in 3D DENSITY $\rightarrow P(E) = P^2 \frac{dP}{dE} = P^2 \frac{m}{P} = m\sqrt{2mE} \sim \sqrt{E}$ STATES So going back to the SP(P+, t) = = Sand E P(F) K P1 4 (+) > /2 - the Case Effsest Now we can generalize this equi leds assume that our H^(o) thes a spectrum of eigenstates (d> with <<1 d'> = 5 (d-d') the system at time t is 14(+)> Q: What is a probability of finding a System in a group of final states after a measurement. We characterize the group by the set of parameters or conditions of centered around of and the energy is continious. $sp(a_{1},t) = \int dd [c_{a}]r(t) > l^{2}$ now we can change variables and Introduce the density of final states

The nair point: we replace () for E by (E) and the set of some other by parameters (B) Such that $dd = \int (\beta, E) d\beta dE$ generalized density of final states Hun $\Rightarrow \left[SP(\alpha_{j}, t) = \int_{e \in P_{f}} dp de p(p, e) | < p, e| \psi(t) \right]$ $= \alpha \langle s \rangle$ Now we can formulate the FERMI GOLDEN RULE Let's consider that our system is initially life in the eigenstate 14:7 of H^(o)14:> and belongs to the descrete spectrum of H^(o) consider the case as before that $\underline{H}^{(i)}$ is Constant in time t, recall we had $\alpha(t) = |\langle \beta, \varepsilon | \Psi(t) \rangle|^2 = \frac{1}{h^2} |\langle \beta, \varepsilon_t | H''(x) | \Psi(t) \rangle|^2$ E (444 E • $F(t), \frac{E-Ei}{t} \rightarrow \omega - \omega_i$ if Harak $= \left[\frac{\sin(\upsilon_{fi} t/2)}{\omega_{fi} 2} \right]^{2}$

. e.J. 1524 Finally us have : $SP(\varphi_i, \alpha_f, t) = \frac{1}{h^2} \int de de p(Be)$. $P, E \in domain of final states$ • $|\langle p, E| H^{(9)} | \psi_i | \frac{1}{2} + F(t, \frac{E-E_f}{2})$ $a \int d\mathbf{p} \otimes F(\mathbf{E}) \otimes P(\mathbf{E}) d\mathbf{E} \qquad \left| \begin{array}{c} |\mathbf{h}_{i,j}^{(i)} | T^2 & P_{i,j}(\mathbf{f}) & \text{it verier} \\ repidly \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h}_{i,j}^2} \\ \overline{\mathbf{h}_{i,j}^2} & \overline{\mathbf{h$ approximate this function by $\frac{1}{4\pi} = F(t) = 2\pi t \left(\frac{E - E}{2\pi} \right) = 2\pi t \left(\frac{E - E}{2\pi} \right)$ We can Un the other name $V_{p(E,\beta)}|<\dots>|^{2}$ varies slow of with E $V_{p(E,\beta)}|<\dots>|^{2}$ varies slow ofthe V_{aris} slow ofthe V_{ar On the other hand

Now go back to	our 2 problems:
1) Oscillator	with sin-like
perturbation:	Ei - Ej thu
$\mathbf{M}(\varphi; , \alpha_{f}) = \frac{\pi}{2\pi} \langle \boldsymbol{\beta} \boldsymbol{\beta}$	$E_{f} = E_{i+t} + W + (1) + (1) + (1)$
P(\$+)S(E+-E:-t	$E_{+} = E_{i} + h \omega$
2) and scattering	of the massless particle
Tecal the petentic	(WCF) with a
Metrix 12r1	$w(r') = w(r) \delta(r-r')$
W(r) & (r - r')	$w_{1r'} = w_{cr} \delta_{cr-r'}$
162	whet is the probelity.
14 (t=0)>=1> 17> We se	after into the state p centered around Pf
	p centered around
	and such as Pi=Pf
$\mathcal{W}(\mathbf{P}i,\mathbf{P}_{f})=\frac{2\pi}{\hbar}\langle\mathbf{P}_{f}$	$ \overline{W}(r) _{fi} ^2 \rho(\varepsilon_i = \varepsilon_f)$
$M^{(pi, p_{f})} = \frac{2\pi}{\pi} \left\{ P_{f} \right\}$ $Te cal P(E) = m\sqrt{2mE}$ and	crips = (2πta)3/2 cp.r/ta

$\mathcal{U}(\mathbf{r};\mathbf{r};\mathbf{r};\mathbf{r}) = \frac{2\pi}{\pi} \ln \sqrt{2\pi} \mathbf{E}_{i} \cdot \left(\frac{1}{2\pi}\right)^{6}$ $\int \left[d\mathbf{r} \mathbf{e}^{i} (\mathbf{r};-\mathbf{r};\mathbf{r}) \cdot \mathbf{r}/\hbar \overline{W}(\mathbf{r}) \right]^{2}$
T this is just a Fourier transform of the W(r)
Since here IPid is not normalized we can devide 20 by the probability carrant $j_{i} = (\frac{1}{2\pi t_{i}})^{3} \frac{t_{k_{i}}}{m} = (\frac{1}{2\pi t_{i}})^{3} \sqrt{\frac{2E_{i}}{m}}$ $n(q\cdot n\cdot \overline{v})$ $i(\overline{r_{i}}-\overline{r_{f}})\cdot r/t_{h}$
$= \frac{m^{2}}{1} \frac{m^{2}(Pi,P_{f})}{1} = \frac{m^{2}}{4\pi^{2}h^{2}} \int dF dF$
· W(r)) ² This is scell. (ross section in the Born approximation)

L3 ADIABATIK SUDDEN PEKTURBATION VS. The system will Not VER SLOWER notice the the Jupport has usved time this kind of procen we call - addiabatic procen. More Eigorously: A physical system remains in its state if a given perturbation acts slow mough and if there is a gap between the eigenvalue and the rest of the Hamiltonian spectrum. J speetrum of H time Lets calustete Pf: for this case -real function $H^{(1)}(t) = W(x) V(t)$ eq. $V(t) e^{2t} ocn cc1$ so the function is almost We also assure that perturbation linear int. was on for the long time R.g. - as and the system was in \$; Question: what is the probabily to find the system at \$ at time t As before $datter (t) = \frac{1}{i\hbar} + \frac{0}{fi} V(t) \cdot t$ $a_{f}(t) = (+++i) (x) + V(t) + i^{i} + i^{i}$ Lets try to solve as approxi nation: V(+) is almost constant within dt $V(t) e^{i} \xrightarrow{a_f(t)} \approx \frac{H_{fi}}{i\pi} \frac{V(t)}{i\pi} e^{i\omega_{fi}t}$ $V = -\frac{H_{fi}}{\pi\omega_{fi}} \cdot e^{i\omega_{fi}t} \cdot V(t) \rightarrow |a_f|^2$ Since Vito e

L 2 Since the perturbation is small we: Conclude that lagizer or /Hit zetwit $P_{f_i} = \frac{|H_{f_i}^{(i)}|^2 V^2(t)}{|V_{f_i}^2|^2} e.g. V(t) = eO_{f_i}^2 = >$ and $\hbar^2 \omega_{fi}^2$ W(x) $P_{fi} = \frac{|H_{fi}^{(0)}|^2}{|H_{fi}^{(0)}|^2}$ Hi 12 27+ On the other hand if the we plug in V(t) into we plug integral W(X) the exact integral V(t) $\Rightarrow a_{f}(t) = \frac{H_{fi}^{(i)}}{i\hbar} \int_{\infty}^{t} \frac{t}{t} e^{2t} e^{i\omega_{fi}t} dt$ EXACT integral: $=\frac{H_{fi}^{(1)}}{\frac{1}{2}} \frac{i'(\omega_{fi} - i\eta_{fi})t}{\frac{1}{2}} \frac{I_{fi}^{(2)}}{\frac{1}{2}} \frac{I_{fi}^{(1)}}{\frac{1}{2}} \frac{I_{fi}^{(2)}}{\frac{1}{2}} \frac{I_{fi}^$ t (with - in) # 2 (w 2 + 4 2) for small of they are the same. GO OVER Problem 5 P. 370 SUDDEN APPROXIMATION Assume we applied an ult-ra fast pulse by switching at t'=t'. Examples include - electron losses in of high energy Collisions with neutral targets laser ablation procen - core - hole ionization multielectron transitions of complex atoms 14,2 H (0) (1 H (1) ton H⁽⁰⁾ and H⁽⁰⁾+1H⁽¹⁾ ton > time +=+' Khowh are So what happens to Y(t)? H()

L2 10 For $t \leq t'$ $| H^{(\circ)} p_n \leq E_u \phi_u + t \leq 0$ $\pm 2\pm 1$ $H + \Phi_n^2 = \epsilon_n + \Phi_n^2$ t70 $\psi' = Z a_n \psi_n e^{-i \epsilon_n t/\hbar}$ $\psi' = Z a_n \psi_n e^{-i \epsilon_n t/\hbar}$ here \$m and Em are for the perturbed system. How to define and? Use the continuity of the amplitude of probability at t=0, i.e. * Zau Pu = Zam Pm at t= 0 $Za_{\mu} < \phi | \phi_{\mu} ? = Za_{\mu} < \phi_{f} | \phi_{\mu} ? = Z \delta_{fm} a_{m}^{2}$ $a_f^7 = Z_a_n \times \phi_f^7 [\phi_n^7]$ - if we assume that for the system is in the state i = ai =1 Sni < \$ 1 14 -7 = $a_f = \sum_{i=1}^{n}$ $a_j^2 = \langle \phi_j^2 | \phi_i^2 \rangle$ this kind of trivial is not it? One planliar observation: to get at we need eigenstates for the initial and final state of the system. But there can be a situation when (f = i = h however those are identical quantum numbers or the same eigenstates BUT for different energies or eigenvalues En and En eigenvalues En and En and En FEn?

let me illustrate this:

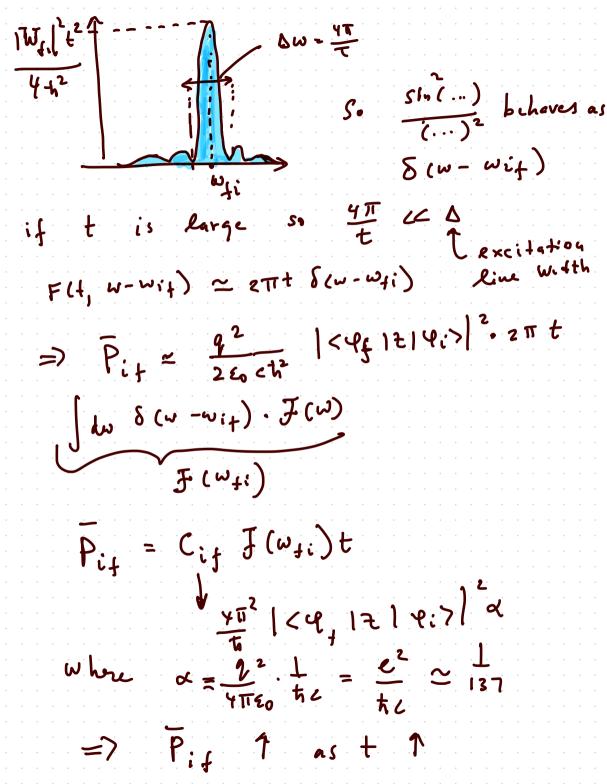
A V(x) => == == == ===== 24 The question is when we suddenly enlarged the well what is the probability to find the particle in the Same ground state. So the quantum numbers are the same] -202 Recall: for the $\phi_n^2 = \sqrt{\frac{2}{L}} s_n^2 \frac{J \times u}{L} = \frac{J^2 h^2}{2mL^2} \left(\frac{J}{n} \right)$ the $p_h^2 = \sqrt{\frac{1}{L}} s \ln \frac{\pi x}{2L} h \qquad E_h^2 = \frac{\pi^2 h^2}{2m(2L)^2}$ The transition auplitude $a_{1} = \langle \phi_{1}^{2} | \phi_{1}^{2} \rangle = \int_{0}^{2} \phi_{1}^{2} \phi_{1}^{2} dx$ Since \$1 = 0 when x> L we can simplify $= \int_{0}^{L} \psi_{1}^{2} \star \psi_{1}^{4} dx = \int_{0}^{\sqrt{2}} \int_{0}^{L} \frac{\pi x}{2L} \int_{0}^{\sqrt{2}} \frac{\pi x}{2L} \int_{$ states h. $= \frac{\sqrt{2}}{L} \begin{bmatrix} a_{m} = \langle \phi_{m}^{2} | \phi_{1}^{2} \rangle = \\ = \frac{\sqrt{2}}{L} \begin{bmatrix} \sin \frac{\pi \times \psi}{2L} & \sin \frac{\pi \times \psi}{L} & dx \\ = \frac{\pi}{R} \begin{bmatrix} \frac{(-1)}{h-2} & -\frac{(-1)^{(h+1)}/2}{h+2} \end{bmatrix}$ $= \frac{\psi \sqrt{2}}{\pi} \frac{(-1)^{(h+1)/2}}{h^{2} - \psi} \quad (proof this) \\ = \frac{\psi \sqrt{2}}{\pi} \frac{(-1)^{(h+1)/2}}{h^{2} - \psi} \quad (m+3)/2 \\ = \frac{1}{2} \frac{1}{h^{2} - \psi} \quad (m+3)/2 \\ = \frac{1}{2} \frac{1}{h^{$ for odd in and o Finally the probability Pif = Pn = for even m. $\int a_{n}^{*} a_{n} = \frac{32}{(\pi^{2}(h^{2}-4)^{2})} \sim \frac{1}{h^{4}} \text{ for odd } h = 2k+1}{0} \quad \text{for even } h = 2k$ for even h = 2k kg1,1,3, ... in other words the system never can be found in moving from 117 -> 12? ! Sudden Perturbation ins 147 . Low selection rules Sudden Perturbation introduce new scleetion rules!!

NBI

HOW A TOM INTERACTS WITH LIGHT? Recall we already considered the case of H⁽¹⁾ ~ Shout and ended up with creasonce $w_{fi} = (E_f - E_i)/t_i$ + Fields and potentials associated with EM field. $\begin{array}{c} e.q.\\ \text{MONOCLUREOMATIC} \quad E \quad \omega = c \\ \text{Light} \quad o \\ \text{K} \\ \text{K}$ Recall from EM $\int \overline{E}(\overline{r},t) = -\frac{2}{2T}\overline{A}(r,t)$ $\overline{B}(\overline{r},t) = \nabla \times A(r,t) \Longrightarrow$ $E(\overline{r}_{1}t) = iw A_{0} \overline{e_{z}} e^{i(k\cdot y - wt)} + C.c.$ $B(\overline{r}_{1}t) = ik A_{0} \overline{e_{x}} e^{i(k\cdot y - wt)} + C.C.$ Let i choose the time origin such that Ao is pure imaginary => iw A_{0} \overline{e_{x}} e^{i(k\cdot y - wt)} + C.C. $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ $iw A_{0} = e^{i(k\cdot y - wt)} + C.C.$ Then we obtain: $\begin{cases} \overline{E}(\overline{r},t) = \mathcal{E} \ e_{\overline{x}} \ cos(ky - wt) \\ \overline{B}(\overline{r},t) = \mathcal{B} \ e_{\overline{x}} \ cos(ky - wt) \end{cases} \text{ and pointing vector} \\ \overline{E}(\overline{r},t) = \mathcal{B} \ e_{\overline{x}} \ cos(ky - wt) \\ \overline{E}(\overline{r},t) = \mathcal{B} \ e_{\overline{x}} \ cos(ky - wt) \end{cases}$ HAMILTONIAN H = $\frac{1}{2n} \left[\overline{p} - 2\overline{A}(\overline{R}_{1} t) \right]^{2} + V(\overline{R}) - \frac{2}{n} \overline{S} \cdot \overline{B}(R_{1} t)$ interaction of spin \overline{S} with \overline{B} from eisht. $H = Ho + W(t) , Ho = \frac{p^2}{2m} + V(R)$ $= W(t+) = -\frac{q}{m} \overline{P} \cdot \overline{A}(R,t) - \frac{q}{m} S \cdot B(R,t) + \frac{L^2}{m} \left[A(R,t) \right]^2$ Notice if $A(R,t) \rightarrow 0$ $W(t) \rightarrow 0$

if the intensity of light is Low 9 [A(R,+)] can be neglected compared to A $= \mathcal{W}(t) \cong \mathcal{W}_{I}(t) + \mathcal{W}_{I}(t)$ $-\frac{1}{2}\overline{S}\cdot\overline{B}R,+)$ $-\frac{1}{m}\bar{p}\bar{A}(K,+)$ By the way it's interesting to compare WI/WI For example since S~th and B~koAo since (B=ikAoexe + C.C) $\frac{W_{II}}{W_{I}} \sim \frac{a_{o}}{\lambda} \quad c \in I \quad for the optical spectrum.$ but hot for x-rays FLECTRIC DIPOLE HAMILTONIAN Start with A(r) \rightarrow put into $W_I = -\frac{\gamma}{m_Z} P [A_0 e^{i x Y} - i w t]$ + c.c.] , expand e tiky = 1+ tiky - 2k²y²+.. b/c $Y \sim a_0 \rightarrow kY \sim \frac{a_0}{\lambda}$ cci for optical interaction range Thus e ~ 1 hammen.

· · · · · · · · · · · · · · · · · · ·	$W = -\frac{n}{m} P_2 \left[A_0 \cdot I \cdot e^{-i\omega t} + c \cdot c\right] =$ $= since i \omega A_0 = \frac{\varepsilon}{2} =$ $= -\frac{q}{m} P_2 A_0 \cdot \frac{i\omega}{i\omega} \left[e^{-i\omega t} + e^{+i\omega t}\right]$ $= -\frac{q}{m} P_2 \frac{\varepsilon}{2} \cdot \frac{1}{i\omega} \cdot \left[e^{-i\omega t} + e^{-i\omega t}\right]$ $= -\frac{q}{m} P_2 \frac{\varepsilon}{2} \cdot \frac{1}{i\omega} \cdot \left[e^{-i\omega t} + e^{-i\omega t}\right]$
· · · ·	$= \frac{q}{m} \frac{\epsilon}{W} + \frac{q}{2} \frac{s}{\omega} \frac{\omega}{\omega} + \frac{\omega}{\omega} = \frac{q}{\omega} \frac{\epsilon}{\omega} + \frac{q}{\omega} \frac{s}{\omega} + \frac{q}{\omega} + \frac{q}{\omega} \frac{s}{\omega} + \frac{q}{\omega} + $
· · · ·	$1^{(t)}$ approx. ignore $W_{\overline{u}}$: $W(t) \approx W_{PE}(t)$
· · ·	Matrix ELEMENT OF WDE
· · · ·	Lets assume we know $14i > and 14j > f H^{\circ}$ Ei Ef $\leq \psi_{1} \mid W_{De} \mid \forall_{i} ?= \frac{q \cdot \epsilon}{m \cdot \omega} sm \cdot \omega + \leq \psi_{1} \mid P_{2} \mid \psi_{i} ?$
· · ·	if we porset about mashetic part of Hamiltonian $[2, Ho] = i\hbar \frac{2Ho}{2PE} = i\hbar \frac{P_2}{m} = >$
· · · ·	1 [2 117] P. D = < #1 2 Ho - Ho 2 Vi7 =
· · · ·	$= -(E_{f} - E_{i})(\langle \varphi_{f} Z \varphi_{i} \rangle) = -\frac{it}{m} \langle \varphi_{f} P_{z} \varphi_{i} \rangle$ $= -(E_{f} - E_{i})(\langle \varphi_{f} Z \varphi_{i} \rangle) = -\frac{it}{m} \langle \varphi_{f} P_{z} \varphi_{i} \rangle$ $= -\frac{it}{m} \omega_{fi} \langle \varphi_{f} Z \varphi_{i} \rangle$ $= -\frac{it}{m} \omega_{fi} \langle \varphi_{f} Z \varphi_{i} \rangle$
NB	if you choose a frame xyz not zelated to the light polarization but to symmetry of Gi and Gt you will have to replac it by the compination of X, Y, 2 operatory $E T^2$ along E_2


FLECTRIC	Dipole	TRANSITION	RULES
if < 41 12 is called if it's = 0 t	Dipole A ren go to ti e.g. 9 but	the transition 19 LLOWED and further expansion and drupole transition since dipole >> a rey are smell.	i> → 1 eg> i in W(t), , Magnetic dipole U other terms
· · · · · · · · · · · · · · · · · · ·	$(r) = R_{h,e_{1}}$	$F) Y_{e_i}^{m_i} (\Theta \varphi)$.
< 4:121 ≠ 0 if	$P_i > - \int R_f = R_i$	$ \sqrt{\frac{4\pi}{3}} Y_{i}^{\circ}(\theta) = 1 $ $ \sqrt{\frac{4\pi}{3}} Y_{i}^{\circ}(\theta, \phi) Y_{i}^{\circ} $ $ -+1 \text{and} \text{Imp} $	$(\Theta) Y_{e_i}(\Theta, \varphi)$ $= m_i$
I. Comments: 7 odd opera	=> it +r -2	$m_{f} = m_{i} \pm 1 if \in E$ connect only stat of <u>Different</u> b/c parity of the arc those of => $B C = C_{i}$.	l_{i} , l_{j}
2. IF there is the electron is cla we should cleman	a SPIN Ecr)L·S sifical as	- ORBIT term we should Rabe L, S, J, m wi	-) 1h J=2≠s

	in the 1 l, s, j, m? basis =>
• •	والمستعمل والمنافعة المستعدين والمستعمل والمستعمل والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والمستع
	we can show that the first case the second tates: $ \begin{cases} $
• •	$\delta m_{J} = \pm 1, \delta$
• •	NON RESONANT EXCITATIONS
• •	Letti assume the atom is excited by the non-resonant
	w.
	What neppens (1) which oscillate with foreced w
	What hoppens 11 that atom will acquire an electric What hoppens 11 that atom will acquire an electric dipole moment <d>(t) which oscillate with foreced w</d>
	and ~ E. This model of Tam
	the optical properties to the second se
	with this model we can calculate the polarization
• •	induced by Cisht
• •	let l bezin the goal isto calan(cte 14(t)) as a function of E in the 1st order.
	as a function of E in the 1st order.
• •	We also assume that at $t=0$ $ \Psi(t=0)\rangle = \Psi_0\rangle$ is known.
• •	is known.
	The sign that I approx. We use the permitted
	(1) I are in the protect
• •	$W_{L} = \sum_{i=1}^{n} (i) \qquad i w t \qquad (i w)$
	where we get $(1) ^2 e^{i(\omega_{\pm i} + \omega)t} e^{i(\omega_{\pm i} - \omega)t}$
	$P_{1} (1+\omega) = \frac{ H_{\pm i} }{ H_{\pm i} } \left(\frac{1-\omega}{ H_{\pm i} } - \frac{1-\omega}{ H_{\pm i} } \right)$
· ·	$i_{i} \rightarrow f_{i}$ f_{i} f_{i} f_{i}
	$H^{(1)} = W = \frac{1}{m\omega} \langle \varphi_{h} f_{2} \varphi_{v} \rangle \qquad $
	(i) $ H_{ni} = 7 = m(+ip) \phi_{2} + i cot/4$
• •	$W W r = u_h(\tau) = \frac{1}{2i\pi} \begin{bmatrix} -1 & -1 \\ -2i\pi \end{bmatrix} = \frac{1}{2i\pi}$

Thus we can write down $|\psi(t)\rangle = |\psi_0\rangle + \sum_{n\neq 0} \frac{q_E}{2mi \, t \, \omega} < \varphi_n |P_2| \varphi_0\rangle$ $\frac{e^{-i\omega_{ho}t} - e^{-i\omega t}}{\omega_{ho} - \omega}$ this we find From $\begin{array}{l} part \\ \text{of home} \\ \text{of home} \\ \text{of home} \\ \text{ferms in } l^{S} \text{ order } \mathcal{E} \\ \text{ferms which oscillate with the hatural} \\ \text{ferms which oscillate with the hatural} \\ \text{frequencies} \\ \text{frequencies}$ < (q, 1P2 140) by << (q, 12 140) = = im wf: < 4, 1214; > We end Up! $< D_2/(t) = \frac{21^2}{t} E G_0 \omega + \sum_{n} \frac{\omega_{no} |\langle \varphi_n| Z | \varphi_0 \rangle/2}{\omega_{no}^2 - \omega^2}$ Some discussion is due: Oscillator StRENGTH. lets define 2m. wno. 1<qn 1-2 1 qo >12/th = Jno is a real demensionless characterizing 1920 ~ 19n7 Show that : Efno =1 (Thomas - Reiche - Kuhn) sun rule Excitations RESONANT

RESONANT Excitations Consider with ~ w of light AIP:> a Bohr atom Recall that for the dipole approximation $P_{i \rightarrow f}(t, w) = \frac{\chi^{2}}{e\pi^{2}} \left(\frac{wf_{i}}{w}\right)^{2} \left|\langle \varphi_{f} | \mathcal{Z} | \varphi_{i} \rangle\right|^{2}$ $\xi^2 \cdot F(t, u - \omega_{ti})$ $\frac{\sin\left[\left(\omega_{+};-\omega\right)^{2}\right]}{\left(\omega_{+};-\omega\right)^{2}}$ where F(t, w - wif) =radiation Broad -Band In reality the radiction is rarety mono chromotic. Letis denote the flux within perunit, Ew ± dw] as F(w) dw (Fw) surface the excitation w_j; w linewidth

if D is finite we say we deal with a "WHITE SPECTRUM" radiation is generally, without well - defined The incident in coherent, phase relation. SUM of transitions for each wave Ytotal = Pi⇒f Recall the Pointing vector $\overline{G} = \varepsilon_0 c \frac{\varepsilon}{2} \overline{e_y} = 2 \varepsilon^2 = \frac{2\overline{G} \cdot \overline{e_y}}{\varepsilon_0 c}$ E2 -> bg K -> Jover W $\overline{P}_{i+1}(t) = \frac{p^2}{2\epsilon_0 c} \cdot \frac{1}{h^2} |\langle \varphi_{+}| Z | \varphi_{i} \rangle|^2 \times$ $\times \int d\omega \left(\frac{\omega_{+i}}{\omega}\right)^2 \mathcal{F}(\omega) \mathcal{F}(t, \omega - \omega_{+i})$ How to evaluate the integral? 1) Compared to 41 F(t, w-wyi)

The transition	probality	per unit time	<u> </u>
			• •
· · · · · · · · · · · · · · · · · · ·			· ·
Note: in all t	hose derivet	ions we assum well-defined	< 1 1 × 1
that radiation polarization	tate and	it propa).	1 1 1
along a well	defined di	rection.	
if we avered	re Cit	over all	• •
	· · · · · · · · · · · · · ·	directions and all polar: toti	· ·
		polar: tot	ons .
(Lain B			
We obtain B	is which i	5 exectly	• •
the Einshtein	coeff i coent	s exactly s to describe	••••
the Einshtein the absorption	coefficient and indu	s exactly s to describe iced emission	••••
the Einshtein	coefficient and indu	s exactly s to describe	••••
the Einshtein the absorption And this is a	coefficient and indu guantum	s exactly s to deperibe ced en; ssion mech. version!	• • • • • • • • • • • • • • • • • • • •
the Einshtein the absorption	coefficient and indu guantum	s exactly s to deperibe iced en; ssion mech. version!	• • • • • • • • • • • • • • • • • • • •
the Einshtein the absorption And this is a	coefficient and indu guantum	s exactly s to deperibe iced en; ssion mech. version!	· · · · · · · · · · · · · · · · · · ·
the Einshtein the absorption And this is a	coefficient and indu guantum	s exactly s to deperibe ced en; ssion mech. version!	