
PHYS 502 2018 - Home Work 2 Solutions 

Problem 1. 

1.1 
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That is,

a(2)f =
i

!

∑

m

HfmHmi

Em − Ei

∫ t

0

(

eiωfit
′

− eiωfmt′
)

dt′

=
∑

m

HfmHmi

Em − Ei

[

eiωfit − 1

Ef − Ei
−

eiωfmt − 1

Ef − Em

]

.

14.2 A harmonic oscillator potential is subjected to the perturbation λbx2 in
the time between 0 to T . Obtain the selection rules for the transition
from the initial state φi to φf in time T and the transition probabilities
for the possible transitions.

The selection rule for allowed transitions is H(1)
fi ≠ 0. For H(1) = bx2

we obtain

H(1)
fi =

〈

φf

∣

∣

∣
H(1)

∣

∣

∣
φi

〉

= b
〈

f
∣

∣x2
∣

∣ i
〉

=
b!

2mω

〈

f
∣

∣(a+ a†)2
∣

∣ i
〉

=
b!

2mω

〈

f
∣

∣a2 + aa† + a†a+ a†2
∣

∣ i
〉

=
b!

2mω

[〈

f
∣

∣

∣

√

i(i− 1)
∣

∣

∣
i− 2

〉

+ ⟨f |i+ 1|i⟩+ ⟨f |i|i⟩

+
〈

f
∣

∣

∣

√

(i+ 1)(i+ 2)
∣

∣

∣
i + 2

〉]

=
b!

2mω

[

√

i(i− 1) δf,i−2 + (2i+ 1)δfi

+
√

(i+ 1)(i+ 2) δf,i+2

]

.

For allowed transitions H(1)
fi ≠ 0. Therefore, we have f = i− 2 or i+ 2.

The selection rule is f = i± 2. Then

H(1)
i−2,i =

b!

2mω

√

i(i− 1) , H(1)
i+2,i =

b!

2mω

√

(i + 1)(i+ 2) .

Substituting f = i − 2 and i + 2 in the expression for the transition
probability given by

Pfi =
4
∣

∣

∣
H(1)

fi

∣

∣

∣

2

!2ω2
fi

sin2(ωfiT/2)

we can obtain the transition probabilities for the transitions from i to
i− 2 and i to i+ 2 respectively.
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1.2 

A direct inspection of the solutions in 1.1 and 1.2 shows that  of the potential with xn 

the selection rules are f=i+(n-2) or i-(n-2) or i+n or i-n. 
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14.3 If the perturbation added to a harmonic oscillator potential is λbx3

find the selection rules and the transition probabilities for the allowed
transitions.

We calculate H(1)
fi :

H(1)
fi = b

(

!

2mω

)3/2
[〈

f
∣

∣(a+ a†)3
∣

∣ i
〉]

= b

(

!

2mω

)3/2
[〈

f
∣

∣a3 + a2a† + aa†a+ aa†2 + a†a2

+a†aa† + a†2a+ a†3
∣

∣ i
〉]

= b

(

!

2mω

)3/2
[

√

i(i− 1)(i− 2) δf,i−3

+
√

(i + 1)(i+ 2)(i+ 3) δf,i+3

+3i3/2δf,i−1 + 3(i+ 1)3/2 δf,i+1

]

.

H(1)
fi is nonzero for f = i − 1 or i − 3 or i + 1 or i + 3. Therefore, the

selection rules are f = i± 1, i± 3.

The transition probabilities for the allowed transitions are obtained as

Pi+1,i =
36(i+ 1)3 b2!

8m3ω5
sin2 (ωi+1,iT/2) ,

Pi−1,i =
36i3b2!

8m3ω5
sin2 (ωi−1,iT/2) ,

Pi+3 ,i =
(i+ 1)(i+ 2)(i+ 3)b2!

18m3ω5
sin2 (ωi+3 ,iT/2) ,

Pi−3 ,i =
i(i− 1)(i− 2)b2!

18m3ω5
sin2 (ωi−3 ,iT/2) .

14.4 Assume that the Hamiltonian of a harmonic oscillator is perturbed by
the anharmonic term λbx4 during the time interval 0 to T only. Obtain
the selection rules and probabilities for allowed transitions.

The allowed transitions are determined by H(1)
fi . We obtain

H(1)
fi = b

(

!

2mω

)2
〈

f
∣

∣(a+ a†)4
∣

∣ i
〉

= b

(

!

2mω

)2
[

√

i(i− 1)(i− 2)(i− 3) δf,i−4

+
√

(i+ 1)(i+ 2)(i+ 3)(i+ 4) δf,i+4

+(4i− 1)
√

i(i− 1) δf,i+2 + 3(i+ 1)2 δf,i
]

.
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14.6 A one-dimensional linear harmonic oscillator is acted upon by the force

F (t) =
F0τ/ω

τ 2 + t2
, −∞ < t < ∞. At t = −∞, the oscillator is in the

ground state. Using the time-dependent perturbation theory to first-
order, calculate the probability that the oscillator is found to be in the
excited state at t = ∞.

The transition coefficient a(1)1 (t) for the given problem is

a(1)1 (t) = −
i

!

∫ ∞

−∞
eiωt′

〈

1
∣

∣

∣
H(1)

∣

∣

∣
0
〉

dt′

=
i

!

∫ ∞

−∞
eiωt′

〈

1|x|0
〉 F0τ/ω

τ 2 + t′2
dt′

=
i

!

(

!

2mω

) 1/2

(F0τ/ω)

∫ ∞

−∞

eiωt′

τ 2 + t′2
dt′ .

The integral in the above equation can be evaluated using contour inte-
gration. Its value is (π/τ)e−ωτ . Then

a(1)1 (t) =
i

!

(

!

2mω

) 1/2 F0π

ω
e−ωτ .

and hence

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

F 2
0 π

2

2m!ω3
e−2ωτ .

The time τ → ∞ corresponds to turning the perturbation slowly,
that is, ωτ ≫ 1. Hence, the transition probability vanishes. The other
limit ωτ → 0 corresponds to the application of an impulsive pertur-

bation with lim
τ → 0

τ

π(t2 + τ 2 )
= δ(t). Therefore, for τ → 0,

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

(F 2
0 π

2 )/(2m!ω3 ).

14.7 At time t = 0the infinite height potential V (x) = 0for 0< x < L and
∞ otherwise is perturbed by the additional term of the form Vp(x) = V0

for L/4< x < 3L/4and 0otherwise. The perturbation is switched-off
at t = T . The system is initially in the ground state φ1. What is the
probability of finding it in the state φ3 after the time t = T ?

The energy eigenvalues and eigenfunctions of the unperturbed system
are

E(0)
n =

n2π2!2

2mL2
, φ(0)

n =
√

2/L sin(nπx/L) .
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From the time-dependent perturbation theory the probability of finding
the system in φf at time T if the system is at φi at t = 0 is given by

Pfi = a∗faf =
4
∣

∣

∣
H(1)

fi

∣

∣

∣

2

!2ω2
fi

sin2 (ωfiT/2) , H(1)
fi =

∫ L

0
φ(0)∗
f H(1)φ(0)

i dx ,

where ωfi = (E(0)
f − E(0)

i )/!. For the given problem

P31 =
4
∣

∣

∣
H(1)

31

∣

∣

∣

2

!2ω2
31

sin2 (ω31T/2) , ω31 =
E(0)

3 − E(0)
1

!
=

4π2!

mL2
.

H(1)
31 is obtained as

H(1)
31 =

2V0

L

∫ 3L/4

L/4
sin(3πx/L) sin(πx/L) dx

=
V0

L

∫ 3L/4

L/4
[cos(2πx/L)− cos(4πx/L)] dx

= −
V0

π
.

Therefore,

P31 =
V 2
0 L

4m2

4π6!4
sin2 (ω31T/2) .

14.8 A particle in a box potential of width L is perturbed by the term
V0 sin(πx/L) during the time 0 to T . Compute the probability for the
transition from the ground state φ1 to the excited state φ3 in time T .

The energy eigenvalues and eigenfunctions of the unperturbed system
are

E(0)
n =

n2π2!2

2mL2
, φ(0)

n =
√

2/L sin(nπx/L) .

From the time-dependent perturbation theory the probability of finding
the system in φ3 at time T if the system is at φ1 at t = 0 is given by

P31 =
4
∣

∣

∣
H(1)

31

∣

∣

∣

2

!2ω2
31

sin2 (ω31T/2) ,

where

H(1)
31 = V0

∫ L

0
φ(0)∗
3 sin(πx/L)φ(0)

1 dx .
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14.14 A one-dimensional harmonic oscillator of charge to mass ratio e/m and
spring constant k is in its ground state. An oscillating uniform electric
field E(t) = 2E0cosω0t, ω2

0 = k/m is applied for t seconds parallel to
the motion of the oscillator. What is the probability that the oscillator
is excited to the nth state given that (ωn0− ω0)t ≪ 1?

The transition coefficient is

a(1)n (t) =
1

i!

∫ t

0
ei(En−E0)t

′/!
〈

n
∣

∣

∣
H(1)

∣

∣

∣
0
〉

dt′

= −
eE0

i!
⟨n|x|0⟩

∫ t

0

(

ei(ωn0+ω0)t
′

+ ei(ωn0−ω0)t
′

)

dt′

= −
eE0

i!
⟨n|x|0⟩

[

ei(ωn0+ω0)t − 1

i(ωn0+ ω0)
+

ei(ωn0−ω0)t − 1

i(ωn0− ω0)

]

.

Since ωn0≈ ω as (ωn0− ω0)t ≪ 1, the first term in the right-side of the
above equation can be neglected compared to the second term. Then for
(ωn0− ω0)t ≪ 1 we get

a(1)n (t) ≈
−eE0

i!
⟨n|x|0⟩t .

Since ⟨n|x|0⟩ =
√

!/(2mω0)δn1 we have

a(1)n (t) ≈
ieE0

!

√

!

2mω0
δn1 .

The probability for transition to nth state is

∣

∣

∣
a(1)n (t)

∣

∣

∣

2
≈

e2E2
0

2mω0!
δn1 .

14.15 Assume that an adiabatic perturbation of the form H(1) = W (x)eαt is
turned on slowly from t = −∞. Obtain the expression for second-order
transition amplitude. Also write the time-independent wave function
upto second-order correction.

We have the second-order correction term

a(2)f =
1

(i!)2

∑

n

∫ t

−∞
dt′

∫ t′

−∞
dt′′eiωfnt

′′

Hfn(t
′′) eiωnit

′

Hni(t
′) (14.1)

and

Hfn(t
′′) =

〈

f
∣

∣

∣
W (x)eαt

′′

∣

∣

∣
n
〉

= Hfne
αt′′ , Hni(t

′) = Hnieαt
′

.(14.2)
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Substitution of (14.2) in (14.1) gives

a(2)f =
1

(i!)2

∑

n

∫ ∞

−∞
dt′

[

∫ t′

−∞
dt′′eiωfnt

′′

Hfne
αt′′

]

eiωnit
′

Hnie
αt′

=
1

(i!)2

∑

n

Hfn

i(ωfn − iα)
Hni

∫ t

−∞
ei(ωni+ωfn−2iα)t′ dt′ . (14.3)

Substituting ωni+ωfn = ωfiand integrating the above equation we get

a(2)f =
1

!2

∑

n

HfnHni

(ωfn − iα)(ωfi− 2iα)
ei(ωfi−2iα)t . (14.4)

Then

ψ =
∑

f

af (t)e
−iEf t/!φ(0)f , (14.5)

where af(t) = a(0)f + a(1)f + a(2)f . Next, we obtain

a(1)f =
1

i!

∫ t

−∞
eiωfit

′

Hfi(t
′) dt′ =

Hfi

i!

∫ t

−∞
eiωfit

′

eαt
′

dt′

= −
Hfi

!(ωfi− iα)
ei(ωfi−iα)t . (14.6)

Further, a(0)f (t) = δfi. The wave function is given by Eq. (14.5) with

af ’s given by (14.6) and (14.4) with a(0)f (t) = δfi.

14.16 Assume that a harmonic oscillator in the ground state is subjected to the
perturbation Vp(x, t) = −αxe−µt from t = 0. Calculate the transition
probability to a state φn in the limit t → ∞ .

The transition amplitude is

af (t → ∞ ) =
1

i!

∫ ∞

0
Hfie

iωfit dt

= −
α

i!

∫ ∞

0
⟨n|x|0⟩e−µteiωn0t dt

= −
α

i!

(

!

2mω

) 1/2 ∫ ∞

0
⟨n|a+ a†|0⟩e−µt+i(En−E0)t/! dt

= −
α

i
√
2mω!

∫ ∞

0
⟨n|1⟩e(−µ+inω)t dt .

Since ⟨n|1⟩ = δn1, we have the selection rule: Transition from ground
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and

H(0) +H(1) =
p2

2m
+

1

2
mω2x2 +

1

2
mω2 (b2 + 2b)x2

=
p2

2m
+

1

2
m(ω(1 + b))2x2 .

The energy eigenvalues and the eigenfunctions of H(0) + H(1) are ob-
tained from those of H(0) by replacing ω by ω(1 + b). The ground state
eigenfunctions φ<

0 and φ>
0 are given by

φ<
0 =

(

α√
π

)1/2

e−α2x2/2 , α =
√

mω/!

and

φ>
0 =

(

β√
π

)1/2

e−β2x2/2 , β =
√

mω(1 + b)/! .

The transition amplitude a00 is obtained as

a00 =

∫ ∞

−∞
φ> ∗
0 φ<

0 dx

=

√

2αβ

π(α2 + β2 )

∫ ∞

−∞
e−x2

dx

=

√

8αβ

α2 + β2

= 2
√
2

(

1 + b

(2 + b)2

)1/4

.

Then the transition probability is a200 =
8(1 + b)

(2 + b)4
.

14.21 A one-dimensional harmonic oscillator has its spring constant k suddenly
reduced by a factor of 1/2. The oscillator is initially in its ground state.
Find the probability for the oscillator to remain in the ground state after
the perturbation.

The transition coefficient a>f is given by ⟨φ>
f |φ

<
i ⟩. We have

φ<
i =

(

α2
i

π

)1/4

e−α2
ix

2/2 , α2
i =

√
km

!

φ>
f =

(

α2
f

π

)1/4

e−α2
fx

2/2 , α2
f =

√

km/2

!
.
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Now

a>f =

∫ ∞

−∞
φ> ∗
f φ<

i dx

=

√

αiαf

π

∫ ∞

−∞
e−(α2

i+α2
f )x

2/2 dx

=

[

2αiαf

α2
i + α2

f

]1/2

.

The probability for the system to remain in the ground state after chang-
ing the spring constant by the factor of half is

|af |2 =
2αiαf

α2
i + α2

f

=
2
(√

k
√

k/2
)1/2

√
k +

√

k/2
=

2(2)1/4

1 +
√
2
= 0.985.

14.22 A one-dimensional harmonic oscillator has its equilibrium point shifted
suddenly from x = 0to x = a. The oscillator is initially in its ground
state. Find the probability for the oscillator to remain in the ground
state after the perturbation.

The transition coefficient is

a>f =
〈

φ>
f

∣

∣φ<
i

〉

where

φ<
i =

(

α2

π

) 1/4

e−α2x2/2 , φ>
f =

(

α2

π

) 1/4

e−α2(x−a)2/2 .

Then

a>f =

∫ ∞

−∞
φ> ∗
f φ<

i dx

=
α√
π

∫ ∞

−∞
e−α2x2/2 e−α2(x−a)2/2 dx

=
α√
π
e−a2/4

∫ ∞

−∞
e−α2(x−a/2)2 dx

=
e−a2/4

√
π

∫ ∞

−∞
e−y2

dy

= e−a2/4 .

We obtain
∣

∣

∣
a>f

∣

∣

∣

2
= e−a2/2.
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