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Modern electron theory of metals abounds in geometric terminology and, by using geometric ideas,
provides clear descriptions of many complicated phenomena. Some problems in the theory of normal
metals that can be interpreted geometrically are examined in this paper in a language accessible to many
physicists. Particular attention is devoted to those phenomena and properties that are connected with
qualitative (topological) changes in geometric figures such as Fermi surfaces, plane sections though such
surfaces, "belts" on the Fermi surface, and so on. Graphical illustrations of these ideas are provided.

PACS numbers: 71.10. +  x, 71.25.Pi

The last two to three decades are generally acknow 
ledged as being a period of great progress in the quan 
tum physics of the solid state and, in particular, the
quantum theory of metals. There is no doubt about this
even if we ignore the development of the microscopic
theory of super conductivity (which is outside the
framework of this review).

Considerable experimental evidence has been avail 
able for a relatively long time that there are substantial
differences between different metals. Thus, it has be 
come clear that the resistance of some metals at low
temperatures increases with increasing magnetic field
by a considerable factor, whereas that of other metals
varies relatively little. It has also been found that the
periods of magnetic oscillations in, say, bismuth and
gold differ by many orders of magnitude. Such exam 
ples could be continued indefinitely. Only twenty years
ago, the theory was dealing with a "faceless" metal,
whose general properties were described in terms of
the degenerate Fermi gas. Most attention was devoted
at the time (at any rate, in accounts of the electron the 
ory of metals such as those given in the well known
books by Peierls, Bethe and Sommerfeld, and Wilson)
to those topics that the theory was capable of treating,
namely, the temperature dependence of resistance,
thermal conductivity, specific heat, and so on.

On the other hand, one of the achievements of the
modern electron theory of metals was the removal of
this conflict between theory and experiment. Metals
were given their "individuality." It became clear that
electrons in some metals differed from those in other
metals, and that the "face" of a metal, or its "visiting
card", is the Fermi surface, i.e., the equal energy
surface separating occupied states in quasimomentum
space from empty states (at absolute zero). Fermi
surfaces have been found to be so different and so tor 
tuous that they seem to originate in the imagination of
a modern artist instead of being a convenient device for
the quantitative description of the properties of conduc 
tion electrons.

The development of the electron theory of metals in

its present form, which resulted in the specification of
the properties of electrons in different metals, became
possible because of the introduction into the theory of
metals of geometric pictures and the use of geometric
terminology. Contemporary papers on the physics of
metals bristle with terms such as "Gaussian curva 
ture", "extremal section", "reference plane", and so
on.

The aim of this review is to give a large number of
examples demonstrating the usefulness of the geomet 
ric interpretation. It has become clear in the course of
development of the electron theory of metals that a
special role is played by those properties and phenom 
ena which, firstly, are determined by particular groups
of electrons lying on certain surfaces and lines, and at
certain points and, secondly, are connected with quali 
tative changes, under external disturbances, in the
geometric figures that play an important part in deter 
mining the electron properties of metals (surfaces,
sections, and "belts"). This will, of course, be con 
sidered in some detail below.

1. THE FERMI SURFACE. THE ENERGY
SPECTRUM OF METALS

Although there is no rigorous proof of the following
proposition, we are, nevertheless, confident that near
the ground state, the energy spectrum of any crystal
can be described in terms of quasiparticles, where the
state of a particular quasiparticle is determined by its
quasimomentum ρ in the periodic p space whose struc 
ture is determined by the geometry of the crystal. All
quasiparticles are divided into two groups, bosons and
fermions, where the former can, in turn, be divided
into many types (phonons, magnons, excitons, and so
on), whereas the only fermions are the electrons.

Quasiparticles in the form of bosons form an almost
ideal gas in which the interaction between particles de 
creases with decreasing temperature Τ simply because
there are fewer boson quasiparticles at low tempera 
tures (the number of phonons is proportional to Γ3, the
number of magnons in ferromagnets is proportional to
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Τ312). The t em p er a t u r e dependence of th e n um bers of
boson s, and hence the t em p era t u re dependence of many
of the physical p a r a m e t e r s of c ryst a ls, depend on the
d ispersion re la t ion obeyed by the qu asipa r t ic les, i.e. ,
on the re la t ion between the quasipar t ic le energy ε and
its quasim om en tum p :

ε =  ε (ρ). (1)

Th is m ean s that , a t least in pr in c ip le, one can use the
t em p era t u re dependence of experim en tally determ in ed
p a r a m e t e r s of a solid to deduce the Bose bran ch es of
it s spec t ru m (or , m o re p rec ise ly, the density of
st a t es) . Although th is method has been justified m at h  
em at ically, 1 it h as been found that m ethods based on the
in terac t ion between pen et rat in g rad iat ion and boson s
a r e the m ost product ive. Since bosons can be created
one at a t im e , and the probability of creat in g one boson
(if it is not forbidden by the select ion ru les) is gr ea t e r
than the probability of creat in g m o re than one boson ,
in elast ic sca t t er in g (of n eu t ron s o r photons) o r r e so  
nance absorp t ion 1 ' (of phonons or photons) can be used
to de t erm in e the d ispersion re la t ion s obeyed by the bo  
son s.

The n um ber of conduction e lec t ron s in a m eta l is
con stan t . I t follows that a reduct ion in t em p era t u r e
does not reduce the in terac t ion between e lec t ro n s,
which r em a in s of the sam e o r d e r a s th e in t erac t ion with
the la t t ice ions. The conduction e lec t ron s in a m eta l
form a kind of e lec t ron liquid, and the developmen t of
a syst em at ic theory is possible because th is liquid is
close to it s ground st a t e in prac t ically a ll cases that
a r e of in t e rest (since Τ « ε Ε , wh ere ε Ρ is the F e r m i
en ergy) . According to the Landau theory of F e r m i liq  
u ids, the basic c h a r a c t e r i st ic s of the e lec t ron subsys 
t em of a m eta l a r e the following:

(a) the dependence of th e qusipar t ic le energy on the
quasim om en tum , ε= ε(ρ) , which is given by the va r ia  
t ional der ivat ive of the elec t ron energy Ε with r esp ec t
to the d ist r ibu t ion function «(p):

ε (ρ) (2)

(b) the co r re la t io n function (Landau function) / ( p , p ' ) ,
which d e t e rm in es the change in the quasipar t ic le energy
ε(ρ) due to a change in the d ist r ibu t ion of e lec t ron s in
p  sp ace :

ε (ρ) =  eF . (4)

6ε(ρ) _
δη (ρ')

δ'Ε (3)

In the ground state (at Γ= 0), the electrons occupy all
states with energy less than the F ermi energy tF. The
normalization condition (number of quasiparticles equal
to the number of electrons in partially filled bands3) de 
termines the volume occupied by electrons in ρ space.
The degeneracy of the electron liquid leads to the sin 
gling out of F ermi electrons because, when the excita 
tion is weak, the only electrons that are redistributed
are those lying near the F ermi surface

1 *In quasiparticle terminology, resonance absorption is me
transformation of one quasiparticle into another (for example,
a photon into an optical phonon).

A small change in the electron energy is determined by
its velocity

de (p) =  vFdp,

where v> is the electron velocity on the F ermi surface.
The determination of the electron energy spectrum
within the framework of the Landau theory of the F ermi
liquid is thus reduced to the determination of the F ermi
surface (4) and electron velocity vF on this surface. A
complete description of conduction electrons must, in
addition, include the specification of the Landau func 
tion (or, more presicely, matrix) / (p,p ') ·

The problem of determining the electron energy spec 
trum of metals from experimental data (mainly proper 
ties in relatively high magnetic fields) was formulated
prior to the development of the theory of the F ermi liq 
quid. N aturally, this was done in terms of the "gas"
language. It is important to emphasize that most of the
methods that could be used (and, in principle, make it
possible to determine the different geometrical charac 
terist ics of the F ermi surface (see below) have turned
out to be unchanged when we "t ranslate" from the "gas"
to the "liquid" terminology. This means that:

(a) the characteristics that are determined are indeed
those of the surface (4), where ε(ρ) is the dispersion
relation for the ^Masiparticle [see (2)] and not for the
electron, which does not interact with other electrons

(b) the formulas relating the measured quantities to
the characteristics of the dispersion relation for elec 
trons frequently do not contain the Landau function
/ (P , P ') .

Of course, the Landau function cannot be totally elim 
inated from the electron theory of metals (i.e., the the 
ory cannot be totally rewritten in the gas language) be 
cause / (p,p ') enters explicitly in the high frequency,
nonlinear, and other characteristics of metals. D eter 
minations of the Landau function belong to a separate,
complicated problem and have been much less success 
ful than reconstructions of the F ermi surface.

The determination of the energy spectrum of macro 
scopic bodies is part of the determination of the char 
acterist ics of these bodies. Ideally, the program for
achieving a theoretical understanding of the properties
of solids would involve, first, the interpretation of the
necessary characteristics of the quasiparticles of the
given body, followed by the evaluation on this basis of
any of its macroscopic characterist ics. The scattering
cross sections or the mean free paths of the quasipar 
ticles must be known before the transport coefficients
can be calculated. If we confine our attention to linear
properties of metals, the range of problems for which
the gas kinetic description is sufficient is very large.
It includes, firstly, all quasistatic problems [ωτ« 1,
where ω is the frequency of the external disturbance
and τ is the relaxation time (see Ref. 4, Sec. 2)] and,
secondly, problems such as the anomalous skin effect,5

in which the electron distribution function has a peak in
a small region of ρ space. Since the Fermi liquid ef 
fects require the addition to the energy of a term con 
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a) b)

FIG. 1. Closed and open F ermi surfaces: a—closed F ermi
surface of an alkali metal; b—open F ermi surface of copper.

taining an integration  with respect to the quasimomen 
tum, such effects play a minor role in these problems.

Finally, one should emphasize one other important
point which  will facilitate the solution of many prob 
lems. An electron in a metal is, of course, an ex 
tremely quantum mechanical entity. The band st ruc 
ture of the energy spectrum and concepts such as
quasimomentum, quasiparticle, degeneracy, F erm i en 
ergy, and so on, arise from the application of the laws
of quantum mechanics to electrons. However, the mo 
tion of a quasiparticle with quasimomentum ρ and en 
ergy ε(ρ) in external fields is, in most cases, quasi 
classical. This is so because the external fields are
relatively weak in comparison with interatomic fields,
and vary over distances that are large in comparison
with atomic distances. This, in turn, means that the
quasiclassical character of the motion in external fields
can be seen, above all, in the fact that the quasimo 
mentum can be regarded as the same as ordinary mo 
mentum and ε(ρ) can be taken to be the Hamiltonian for
the "free" quasiparticle, so that a detailed analysis can
be made of the motion of the quasiparticles in external
fields, 6 and the results can be used to calculate the pa 
rameters of the metal. The F ermi surface—its shape,
symmetry elements, and dimensions—provides the
same kind of characterization of the solid as its crystal
lattice. The periodicity of the p space enables us to
confine our attention to one cell which, of course, com 
pletely determines the F ermi surface. However, it is
often more convenient to use the infinite p space rather
than a single cell. This enables us to distinguish be 
tween closed F ermi surfaces, i.e., those that contain
periodically repeating cavities (F ig. la) , and open sur 
faces, i.e., those running continuously throughout an
p space (F ig. lb). Simply connected surfaces on the
F ermi surface can be divided into electron (Fig. 2a) and
hole (F ig. 2b) regions, if we separate out the special
class of compensated metals with equal numbers of

FIG . 3. Elliptic, hyperbolic, and parabolic points on the
F ermi surface (the sign of the G auss curvature Κ is indicated).
Broken lines are lines of parabolic points on which K= 0.

electrons (wt) and holes (n 2) . 2)

The local geometry of the F ermi surface (the geom 
etry at a point on the surface) plays an important role
in the evaluation of many of the electron characteris 
t ics. Apart from the electron velocity v(v=  ν^ε is per 
pendicular to the F ermi surface), it is characterized,
as is any surface, by the G aussian curvature K. All
points on the F ermi surface can be divided into

elliptic

hyperbolic (or saddle)

parabolic.3'

They are shown in F ig. 3. It will become clear later
that parabolic points may be different, depending on the
structure of the F ermi surface.

The F ermi surface is the stage on which the "drama
of the life of the electron" is played out. And, in the
same way in which the life of mountain people is essen 
tially different from people living in the valleys, the
properties of electrons in lead, which has an exceed 
ingly complicated F ermi surface (F ig. 4), do not re  
semble the properties of electrons in sodium, whose
F ermi surface is a sphere that is much smoother than
a billiard ball. However, on the other hand, both have
something in common with the electrons in the degen 
erate F ermi gas.

FIG . 4. Part of the F ermi surface of lead (band 3). An exam 
ple of a "m onster" complex open F ermi surface.

a) b)

FIG. 2. Electron (a) and hole (b) F ermi surface. States in p  
space, occupied by electrons, are shown black.

2>>H is the number of occupied electron states with positive ef 
fective mass (m* > 0) and n^ is the number of empty states
with m*<0 [see (9)].

3'The existence of a parabolic point is a consequence of a
change of sign of one of the principal curvatures of the F ermi
surface.
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2. PLANE SECTIONS THROUGH THE FERM I
SURFACE

A. de Haas van Alphen effect

Shoenberg's celebrated paper7 on the oscillatory de 
pendence of the magnetic moment of bismuth on the
magnetic field (de Haas van Alphen effect) had a stim 
ulating effect on reconstructions of the electron energy
spectrum of a metal from experimental data. It demon 
strated the seemingly unlimited possibilities of quan 
tum magnetic oscillations as sources of information on
the parameters of the electron gas in a metal. Shoen 
berg used expressions resulting from an analysis of the
oscillatory properties of the gas of electrons with a
quadratic dispersion relation (the Jones model of bis 
muth8) to in terpret the experimental data. G eneral
formulas relating the dependence of the magnetic mo 
ment Μ on magnetic field Η with the parameters of the
electron energy spectrum of the metal were not avail 
able. Nor was it clear which particular features of the
de Haas van Alphen effect were most important for
spectroscopic problems. Nowadays, it is difficult to
imagine how much effort had to be expended, for ex 
ample, to describe the envelope function M =  M(H) and
how much terminology had to be introduced in order to
bring some order into the rapidly accumulating data on
the de Haas van Alphen effect. In the end, Cambridge
and Kharkov physicists showed (we are speaking here of
the 1950's) that the de Haas van Alphen effect was a
general property of metals.

The phrase "electron with an arbitrary dispersion r e  
lation," i.e., nonspecific dependence of energy on mo 
mentum, appeared in the theory at about the same time.
It turned out that the dispersion relation did not have to
be specified in many of the calculations. F or example,
the magnetic field dependence of the magnetic moment
of electrons with an arbitrary dispersion relation, was
used to construct the theory of the de Haas van Alphen
effect.9 The development of the physics of metals in
the 195O's 196O's was characterized by a definite style
of theoretical papers whose structure can be described
as follows:

(A) Investigation of the classical motion of an electron
with an arbitrary dispersion relation in a magnetic
field, using the equations

(B) Quasiclassical quantization (whenever necessary)
of the classical motion investigated in (A).

(C) Evaluation of the observed param eters, using the
results of (A) and (B) and taking into account the degen 
eracy of the electron gas.

(D) Elucidation and emphasis of spectroscopic possi 
bilities of the phenomenon, i.e., identification of the
particular characterist ics of the F erm i electron that
can be determined from the particular phenomenon
under investigation.

The ultimate (although not achievable in practice) aim
of papers of this kind was seen by their authors as be 
ing a detailed determination of the F ermi surface and of

FIG. 5. Plane sections of the Fermi surface with extremal
areas.

the velocities of the F erm i electrons. Many of the
F ermi surfaces were referred to as "m on sters" and the
velocities (at right angles to the F erm i surface) as
their "stubble". The ultimate "unshaven monster" was
particularly frightful when the surface had internal cav 
ities (with inward "stubble").

Let us now return to Ref. 9:

(1) According to (5), the trajectory of an electron in
p space is the intersection of its equal energy surface
with the plane p,= coast(Hx=Hy=0; Ht = H):

ε (Px, Py, p! 0 ) =  e0, pz =  p2 0 . ( 6)

(2) If the trajectory is closed, the motion in the plane
perpendicular to the magnetic field is quantized, and
the dependence of energy on pt in the « th Landau sub 
band is given by the quasiclassical quantization condi 
t ion 1 0·1 1

where η are integers and S(c,p£) is the area enclosed
by the trajectory (6).

(3) The presence of singularities on the boundaries of
the subbands (with given n) identifies the extremal (in
p,) sections Se xt r(c) , while degeneracy fixes the energy
ε=  εΓ. The Poisson formula then enables us to write
down the thermodynamic potential Ω and hence the mag 
netic moment Μ in the form of a sum of oscillating
term s, each of which is connected with an extremal (in
pt) section of the F ermi surface (Fig. 5), where the
period of the oscillations ∆ ( ΐ/ # ) is inversely propor 
tional to the area of the extremal cross section4'

Λ 1 2jtefi {o\
ΛΤΓ  *5 Μ , Γ<Μ · w

and the function describing the temperature dependence
of the amplitude contains the effective mass

, pextr

(4) By varying the direction of the magnetic field, by
measuring the periods and amplitudes, and by compar 

4'The oscillatory character of Ω and Μ with period given by (8)
is a consequence of the periodic dependence of the density of
electron states on 1/ff. This is why practically all the pa 
rameters of the metal have an oscillatory dependence on 1/ff
under conditions favorable for the observation of the
de Haas van Alphen effect (Kwc, Τ«εΡ ; u =  eH/ m*c is the
cyclotron frequency).
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ing the experimental results with the above formulas,
one can establish both the shape of the Fermi surface
and the velocity of Fermi electrons.

The "ideal" program came to a conclusion with the
geometric investigation by Lifshits and Pogorelov,12

who showed that, if a surface has a center of symme 
try,4*' there exists an analytical procedure for deter 
mining its shape from the periods and the velocities,
from, the effective masses [see formulas (17.7) and
(17.8) in Ref. 4], In spite of all the difficulties, this
program was actually used to interpret the Fermi sur 
faces of aluminum and lead.13

B. Size effects

The oscillations can be calculated without knowing the
motion of the electron with arbitrary dispersion rela 
tion in r space. However, this is necessary in most
transport problems and, here, a geometric theorem,
which is a consequence of (5), comes to our aid. This
states that the projection of the r trajectory onto a
plane perpendicular to the magnetic field can be ob 
tained from the p trajectory by rotation through ττ/2
and by changing the scale: the conversion factor is
c/ \e\H. Motion along the ζ axis, i.e., along the mag 
netic field, is described by the function

V, (<) =  V, {px (t), P , (<), P, =  P,o)·

The quantization condition is particularly apparent,
in terms of the r trajectory; in electron trajectory
encloses a magnetic field flux Φ=  (n + 1/ 2) Φ 0 where Φο
=  2vKe/ e and r is an integer.

The one to one correspondence between the trajec 
tories in p  and r spaces has given rise to studies of
the shape of the Fermi surface based on various size
effects.

Size effects are founded on a relatively simple point.
The formulation of the problem identifies electron tra 
jectories of a particular size d, which is known (thick 
ness of plate,14 wavelength of sound wave,15 and so on).
The equation

where DF a selected diameter of the Fermi surface (for
example, an extremal diameter, as in Fig. 6), shows
that, whenH=Hi=cD¥/ ed, something should be ob 
served. Theory then predicts what will be observed

a) b) c)

FIG. 6. N ature of size effects based on the correspondence
between electron paths in p   and r spaces: a—orbit in plate of
thickness d, b—its projection onto z=  const plane, c—orbit in
p spaoe.

4a)M oreover, the vector ρ drawn from the center of the surface
must not cut the F ermi surface more than once.

FIG . 7. a—Electron moving in a magnetic field is reflected
from the plate surfaces at A and B; b—change in electron vel 
ocity on reflection corresponds to hops in p space (shown by
arrows). According to the quantization condition, the magne 
tic flux through St is dqual to a half integral number of flux
quanta.

(see Ref. 16). It also establishes the reason for singling
out the particular diameter DF. Measurement of Hd in
the size effect is thus a way of determining directly the
diameter of the Fermi surface. Anisotropy of the ef 
fect (dependence of Ht on the direction of the magnetic
field) is a measure of the anisotropy of the electron
spectrum, and studies of the anisotropy are a way of
probing directly the shape of the Fermi surface.

The size effect and the de Haas van Alphen oscilla 
tions are jointly responsible for particular phenomena
that also have a simple geometric interpretation. Fig 
ure 7 shows that the electron hops over from one point
on the Fermi surface to another as a result of mirror
reflection from the surface of the plate. The area Sd

(see Fig. 7) appears in the quantization condition (7),
which ensures that the period (8) depends on the plate
thickness. This phenomenon, predicted as far back as
1953 (see Ref. 17), was found relatively recently in
antimony "whiskers."18

C. Galvanomagnetic phenomena

Galvanomagnetic phenomena (dependence of resis 
tance on magnetic field, Hall effect) are very depen 
dent on the nature of the electron motion in the mag 
netic field. This is particularly clear in high magnetic
fields (cDr/ eH«l, where I is the electron mean free
path) when the electron, between collisions, manages
to "feel" the shape of the path on which it is moving. In
the opposite limiting case (cD¥/ eH»l), the segment of
the path of the electron between collisions is practically
a straight line.

The paths of electrons in a magnetic field (6) admit of

b)

FIG. 8. a—Figure borrowed from Ref. 20, showing the origin
of open orbits in metals such as copper, gold, and silver (mon 
ster F ermi surface); b—open path separates regions occupied
by hole and electron orbits (schematic).
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TABLE I. Connection between the asymptotic behavior of
transverse resistivity and the structure of the energy spectrum.

FIG. 9. Self intersecting trajectory can occur when a Fermi
surface in the form of a corrugated cylinder is cut by a plane.

a simple topological classification based on the symme 
try properties of the dispersion relation. Two cases
are possible: for a given direction of the magnetic field
H, the trajectory (6) can either split into closed trajec 
tories or, in the case of an open Fermi surface, go off
to infinity in the direction in which the surface is open
(Fig. 8). For chosen directions of Η and fixed values
of pt, the paths can cross themselves (Fig. 9), or two 
dimensional grids of open self crossing paths may ap 
pear (Fig. 10). We shall not, for the present, pause to
consider these relatively rare and not well studied
cases.

Analyses have shown19"21 that galvanomagnetic phe 
nomena, i.e., the dependence of the transverse resis 
tivity on the magnetic field, pL = pJ.H), and the Hall ef 
fect, enable us to "see" the overall shape of the F ermi
surface—its topology. It turns out that the asymptotic
behavior of the resistivity tensor pae(H) in high fields
(strictly speaking, as H~°°) is very sensitive to the
geometry of the F ermi surface.

G eometric characteristics are compared with strong 
field behavior in Table I, which can be used as a recipe
for determining the topology of the F ermi surface. The
entire picture would be more readily interpretable if it
were not complicated by the different roles of electrons
and holes (Fig. 2). The point is that the quantities paB

are determined not only by the components of the sym 
metric part of the conductivity tensor σαΒ but also by its
antisymmetric part. The former describe dissipative
processes and the latter the Hall effect. In a strong
magnetic field

( (10)

where nl{2) is the number of electrons (holes) per unit
volume [w1(2)=  2&U2)/ (2irK)3, where ∆ 1 ( 2 ) is the volume
of occupied (empty) states with positive (negative) ef 
fective mass]. The dots in (10) indicate omission of
higher order terms in the reciprocal of the magnetic
field. It is clear that, whenw^n., , the expansion begins
with terms proportional to l/ i/ 2. This is why pL~ H* for
a compensated metal (i.e., when the numbers of elec 

Closed Fermi surfaces

«1 Φ «2

Η

A

A

Open Fermi surfaces

1
1

s,
\
1

82

y
Η

/ / =const

9

θ—direction of magnetic field relative to crystallographic axes;
for θ = elt the layer of open trajectories has its maximum thick 
ness; for θ = 92, there are no open trajectories.

trons and holes are equal).

To elucidate the significance of an open Fermi sur 
face, we must consider calculations based on the trans 
port equation. It is sufficient to use a generalization of
the Einstein relation

where σ is the conductivity and 3> is the diffusion coef 
ficient, to the case of degenerate statistics, and to use
qualitative descriptions taken from kinetic theory to
calculate the diffusion coefficient.

When an electron moves in a magnetic field over a
closed trajectory, diffusion in the plane perpendicular
to the field takes place in jumps by an amount approxi 
mately equal to r^cD^/ eH (Fig. 11) with frequency
= ΐ / τ, where τ is the relaxation time. We then
 rij/ τ, and

where σ0 is the conductivity at H= 0.

If the path in p space along the px axis is open, then
motion along the y axis in r space resembles free mo 
tion, so that <Dyy= ν%τ, whereas motion along the AT axis is
practically indistinguishable from a closed orbit, so

Hence,

On^a,,. (13)(<0 0T)«

The substantial difference between the asymptotic be 
havior of σχχ( ) and σν)1(Η) is responsible for the anist 

FIG. 10. Two dimensional net of open self intersecting tra 
jectories.

FIG. 11. Diffusion of an electron in the plane perpendicular to
the magnetic field. Thick line shows the random diffusion
path.
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ropy of the galvanomagnetic properties of metals with
an open F ermi surface (see Refs. 19 21 and Ref. 4,
Sees. 27 and 28).

An understanding (through geometric analysis) of the
motion of electrons in a magnetic field frequently leads
to predictions of very unusual phenomena. These un 
doubtedly include the static skin effect22 in which sur  
face conductivity in a strong magnetic field turns out to
be appreciably greater than the bulk conductivity.

Suppose that the magnetic field is parallel to the sur 
face of the specimen. Specular reflection of electrons
from the surface ensures that their motion within the
surface layer (»rH) in the direction perpendicular to the
magnetic field resembles motion over an open path (F ig.
12a), so that one of the components of the surface con 
ductivity (σ,,) is greater by a factor (O>CT)2 than the bulk
conductivity (to be specific, we assume that the F ermi
surface is closed). Diffuse scattering does not remove
this effect. As a result of collisions, whose frequency
is ~ooc, the mean transport of electrons directly on the
boundary of the specimen is approximately equal to r H ,
and ayy(z =  d) turns out to be approximately equal to σ0/
ωοτ. At a distance of approximately r H from the boun 
dary, the situation is substantially modified because
the magnetic field "makes" all the electrons that have
been reflected from the boundary travel to one side, so
that ayy r ises to σ0 (F ig. 12b). It is clear, even from
the foregoing, that the static skin effect is not such a
simple phenomenon as would appear from a "handwav 
ing" account. The derivation of the formulas must be
based on the solution of the transport equation in the
inhomogeneous case and a careful analysis of the par 
ticular situation, i.e., the relationship between the
plate thickness d, the mean free path I, and the elec 
tron orbit radius r H . Moreover, the spectrum of the
electrons is important: is the F ermi surface closed or
open is the metal compensated or not. Not all the pre 
dictions of the theory23 relating to the static skin effect
have been experimentally confirmed, but there is no
doubt that, in a strong magnetic field, the conductivity
near the sample surface may well be higher than within
the body of the metal.

The qualitative change in the motion of a conduction
electron in a magnetic field, due to the inhomogeneity
in the Lorentz force acting on the electron, can readily
be understood by considering the interaction of an elec 
tron with a domain wall24 (180 degree boundary between
domains, F ig. 13). The conductivity along the domain
wall should be higher by a factor (WCT)2 than in the per 

Vacuum Vacuum

1ΧΓ
Metal Metal

a) b)

FIG. 12. An open orbit can arise as a result of reflection of
the electron from the boundary of the metal specimen: a—
specular reflection; b—diffuse reflection. In both cases, the
electrons are driven by the magnetic field in one direction and
the holes in the other.

FIG. 13. Open orbits can arise near the domain walls because
the Lorentz force changes sign between domains.

pendicular direction.

This cursory examination of the theory of galvano 
magnetic phenomena must, in our view, be concluded
with a work of caution: the theory19·2 0 claims to derive
the asymptotic behavior of ptjj3) by analyzing the clas 
sical motion of electrons with an arbitrary dispersion
relation in a sufficiently strong magnetic field, i.e.,
when the collision frequency l / τ is much less than the
frequency wc of the Larmor precession (U > CT» 1 or
cDF/ eH«l, see above).

Quantization of the motion of the electron in the plane
perpendicular to the magnetic field makes the classical
approach definitely inexact. Quantization leads to os 
cillations in ptk as a function of the reciprocal magnetic
field (this is the Shubnikov de Haas effect25). The
Shubnikov de Haas and de Haas van Alphen26 effects
are of the same kind in particular both have the
same periods and are both observed when the motion of
the electrons in the magnetic field is quasiclassical
(/ ro>c«eF). As a rule, the oscillating quantum part of
the resistivity tensor p°Jc is appreciably less than the
monotonic classical part of piA(H ): the oscillations are
superposed on the monotonic classical function ptk

=  Ρ?Γ(Η) υ» the form of a "ripple". Essentially, this is
what enables us to use the classical theory.

The quasiclassical condition ( £ wc «e F ) introduces a
further simplification: the collision operator W  in the
Boltzmann transport equation, used to evaluate the gal 
vanomagnetic characterist ics, 1 9·2 0 is independent of the
magnetic field in zeroth order in KwJzT. This is a con 
sequence of the fact that the electron collision length in
a crystal containing impurities, which play a dominant
role at low temperatures, is of the order of the in ter 
atomic distance a, and the condition a«rH

acDT/ eH r e  
duces to £b> c« ερ . The almost total absence of a depen 
dence of W  on Η for scattering by phonqns is due to the
relatively weak condition KUC/ T«VF/ S, where s is the
velocity of sound which, in turn , means that the wave 
length λ of a phonon of energy Ks/λ  Τ is small in com 
parison with rH . s> The fact that W  is independent of Η

5'This condition presents no great problems. Indeed, compar 
ison with the necessary condition COCT »1 leads to a very
• weak condition on the mean free path, Τ (deg) I  (cm) »10"6 .
The condition that pfff be small in comparison with p™" also
contains the temperature: Hwc« VTEF . At very low temp 
eratures, it may fail, but, as shown above, not too drast i 
cally: f (cm) Τ (deg) »1 0 "".
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essentially enables us to establish the asymptotic be 
havior of pjS(H) on the basis of an analysis of classical
electron dynamics.

This relatively simple theory does not fully cover the
entire situation. For example, it cannot be used for
intermediate fields. Arbitrary fields require numeri 
cal calculations, previously quite inaccessible but now
gradually replacing analytic methods (authors view this
with sadness). There are, however, situations where
an analytic treatment is possible in intermediate fields.
This means that the various characterist ics of a metal
include an additional small parameter (or parameters).
The simplest case is that where the difference ∆Μ =  Μ1

 n 2 is small. For such metals (for example, bismuth
containing impurities), the resistivity saturates only
when WC T »η / ∆η» 1, whereas, for n/ ^n» <*>CT» 1, it
is a quadratic function of the field, i.e., the metal be 
haves as if it were compensated.27·28 A similar phe 
nomenon should also occur when the F ermi surface
contains a narrow layer of open paths.29

These two parameters are essentially simple. The
magnetic field does not "in terfere" in either the spec 
trum of the electrons or their collisions. High fields
are necessary to isolate electrons responsible for the
asymptotic behavior because the number of such elec 
trons is small. On the other hand, the magnetic field
can not only single them out but can also produce them.
This will be discussed in the section on magnetic
break through.

One further point: detailed description of collision
processes can be used to establish "in termediate"
asymptotic behavior, which is undoubtedly of consid 
erable in terest. F or example, consider the following
crude treatment which merely throws some light on the
essence of the situation (a more detailed account will be
given in the next Section). Suppose there are two
groups of electrons with very different mean free times
Τι>:> τ2 and roughly equal masses m^  and m2. In in ter 
mediate fields,

the second group "feels" the magnetic field as strong,
whereas the first "feels" it as weak, and this is, of
course, reflected in the dependence of pik on H.

3. ELECTRONS "HOP" OVER THE FERMI SURFACE

In its stationary state, the electron has a definite
quasimomentum ρ and rests at its "own" particular
point in p space. Regular external fields force the
electron into phase paths that are particularly simple
if the motive force is a constant and uniform Lorentz
force (5). As already noted, an electron with energy
equal to the F ermi energy then moves over the F ermi
surface. However, displacement of electrons in p 
space is not restricted to motion under the influence of
regular fields. Scattering plays an important role in
the life of electrons, including scattering by impurities,
phonons, and each other. In the case of collisions with
impurities, dislocations, and other static defects of the
crystal, a F ermi electron hops from one point on the

F ermi surface to another because energy is conserved
in such collisions.

The scattering of particles with a complicated dis 
persion relation is characterized by certain specific
features.30 They will be discussed below. If the F ermi
surface has no dents, each quasimomentum ρ corre 
sponds to a particular direction of motion of the elec 
tron u = v/ v (the quasimomentum is described as the
point at which the plane perpendicular to ν is tangent to
the F erm i surface; F ig. 14). If the F ermi surface has
a more complicated shape, there are directions in
which the direction of motion does not uniquely define
the quasimomentum ρ (F ig. 14). This is responsible for
the difference between the scattering of particles with
a complicated dispersion relation and the scattering in
free space with e =  p2/ 2rw. F lattened areas on the F er  
mi surface play a particular role. If the direction of
scattering is parallel to the normal at a parabolic point
v= vc (F ig. 14), there are two equal momenta of the
scattered particles, and the wave function for the scat 
tered particle decays more slowly for v= vc then for ν
Φ uc. This phenomenon has not been extensively stud 
ied, but it seems to us that it may play an important
role in studies of indirect interactions through conduc 
tion electrons of impurity atoms, localized spins, and
so on. The scattering of quasiparticles with an arbi 
t rary dispersion relation has been investigated in Ref.
30 (see also Ref. 31).

In the case of collisions between electrons and pho 
nons or other bosons (for example, magnons in ferro 
or antiferromagnets), the following points are impor 
tant: the energy of the quasiparticles (bosons) is, as
a rule, small in comparison with the F ermi energy,
and their quasimomentum may reach values of the or 
der the size of a cell in p space. One phonon (one 
boson) processes are the most probable: an electron
will create or absorb a phonon as a result of a "colli 
sion. " It is clear that this is an almost elastic process
and, as in the case of elastic collisions, the electron
"hops" from one point on the F ermi surface to another.

At low temperatures Τ«θ (0 is the Debye tempera 
ture; this region is particularly interesting from the
point of view of the geometric properties of the electron
energy spectrum), the number of phonons (or other bo 
sons) with high quasimomenta is exponentially small,
and collisions with bosons, whose quasimomentum is
much smaller than the average linear dimensions of the

b) c)

FIG. 14. a—Electrons moving in a given direction ν usually
have different quasimomenta p v; b—one quasimomentum cor 
responds to one direction of motion only in the case of a con 
vex F ermi surface; c—me direction parallel to the normal to
the F ermi surface at a parabolic point is limiting direction:
two values of the quasimomentum become equal at this point.
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Fermi surface, play the dominant role. Motion over
the Fermi surface as a result of such collisions can be
regarded as a diffusion process. In particular, the dif 
fusion approach can be adopted to provide a "hand 
waving" interpretation of the nature of the Bloch tem 
perature dependence of the transport mean free time
Ttr of electrons for Τ « θ. The time r t r is essentially
the time taken by an electron to diffuse over a distance
approximately equal to DY, i.e., τtr*>!%/ &,, where^p
is the coefficient of diffusion over the Fermi surface.
However, ^ ν

α(^ρ)2(ί/ τηί), where^ (∆/>)2 is the average
change in the momentum of the electron as a result of
collisions with phonons, i.e., the size of the "hop" over
the Fermi surface, and l/ τ^,, is the frequency of colli 
sions with phonons, which is proportional to the number
of phonons which, in turn, is proportional to T3 for Τ
« θ. Since the average phonon momentum is approxi 
mately  γ{τ/θ), it follows that 3>v and l/ rlT are pro 
portional to Γ5 (this is Bloch's law).

The situation changes when electrons in a small part
of p space, for example, electrons in the "neck" in a
strong magnetic field (see p. 495 and Fig. 15) are re 
sponsible for conductivity. If the linear dimensions of
this region are such that a single hop will suffice to
take the electron away from the region (the probability
that it will reenter the small region of p space is, of
course, slight), then TJ£~ Γ3. The frequency of colli 
sions involving electrons whose orbits are closed and
which ensure that the conductivity associated with them
is inversely proportional to H2 is, again, described by
Bloch's law (see Ref. 29).

It is important to emphasize that collisions in which
the change in electron momentum is small (small angle
scattering) often have considerable probability. Their
role is frequently reduced because the collisions are
ineffective by virtue of the fact that v (∆/>)2« DT. The
example given shows that ineffective collisions can be
avoided, which leads to a reduction in r t r .

Quasimomentum is not conserved in collisions be 
cause electrons with quasimomenta that differ by a
multiple of the period in p space are equivalent. Colli 
sions in which the initial quasiparticle momentum dif 
fers from the final momentum by the period of p space
are referred to as umklapp collisions or t/  processes.32

The stationary state in an ideal (defect free and infin 
ite) conductor through which a current is flowing could
not be established in the absence of Π processes.

It is much more convenient to use the periodic p 
space than a single cell in this space, especially in the
case of dynamic problems requiring an analysis of the
motion of electrons in p space. It is, however, impor 

2nhb

FIG. 16. A hop process (shown by the broken arrow) can occur
with an arbitrarily small change in the electron quasimomen 
tum.

tant to recall that all nonequivalent states are contained
in a single cell of the p space, which must be chosen in
a particular way. If a collision takes an electron out of
the chosen cell, it must be "flipped over", i.e., non 
conservation of quasimomentum must be taken into ac 
count. The choice of the particular cell in p space is
arbitrary but, in the case of metals, it is convenient to
choose the p space cell in the light of the shape and
position of the Fermi surface. For example, in the
case of a closed Fermi surface, it is convenient to take
the cell so that it contains the entire Fermi surface.
The first Brillouin zone is frequently used, but it is not
always convenient, for example, in the case of bismuth
in which three electron ellipsoids intersect the bound 
ary of the first Brillouin zone. Analysis of possible U 
processes is essentially a geometric problem that must
be solved directly for each metal. Since the linear di 
mensions of the Fermi surface are relatively large, U 
processes in electron electron collisions occur with
relatively high probability, whereas, in metals with
open Fermi surfaces, they can occur with an infinites 
imal change in the electron momentum (Fig. 16).

An interesting situation occurs in strong (but not lim 
iting) magnetic fields when the Fermi surface comes
close to its analog in a neighboring cell of p space.
Figure 17a illustrates this situation. If the separation
between the points of closest approach is much less
than the size of the unit cell of the reciprocal lattice,
small angle scattering (by phonons or dislocations) will
ensure that (/  processes will have considerable prob 
ability.33 These points of closest approach are called
hot spots of the Fermi surface. The role of the mag 
netic field reduces to complete or partial replacement
by motion over a diffusive trajectory from one hot spot
to another (Fig. 17b). This, of course, emphasizes the

a) b)

FIG. 15. Electrons whose paths pass through the narrow neck
of thickness ∆ connecting the 'Almost closed" cavities of the
Fermi surface are responsible for the y conductivity in a
strong magnetic field.

FIG. 17. a—Hot spots on the Fermi surface (motion in a mag 
netic field accelerates Hie transfer from one hot spot to an 
other); b—scattering with umklapp may lead to the appearance
of an open orbit If the flip over probability is high enough be 
cause of the approach of relatively large segments of Fermi
surface: the probability of hopping across to the neighboring
cell is greater than the probability of traversing a hot region
(shown in figure).
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role of umklapp processes. This example demonstrates
the fact that the magnetic field "interferes" with colli 
sion processes, although the collision itself (its prob 
ability) is independent of H. This "interference" of the
magnetic field in scattering processes is particularly
curious when, owing to the flip over processes in re  
gions where the Fermi surface approaches its analog in
a neighboring cell, the motion of the electron takes
place effectively over an open path35 (Fig. 17b). When
the magnetic field is strong enough, an open path cannot
be formed since the electron traverses the F ermi sur 
face near a hot spot so rapidly that it does not succeed
in hopping over onto the neighboring surface.6'

The last example takes us outside the framework of
the internal geometry of the Fermi surface. In the
phenomena and properties described so far, the rela 
tive disposition of separate parts of the Fermi surface
in p space is quite unimportant. The increased inter 
est in the relative disposition of such cavities, has
arisen relatively recently in connection with studies of
magnetic breakthrough (see below), size effects due to
intervalley scattering,36 and other effects that have so
far been studied very little.

4. ELECTRONS WITH AN ARBITRARY DISPERSION
RELATION AND THE HARRISON M ODEL

Work on the synthesis of Fermi surface profiles from
experimental data has been accompanied, and some 
times even preceded, by calculations of the band spec 
trum of conduction electrons on the basis of various
models of a metal. It seems to us that the Harrison
model,37 in which complicated Fermi surfaces can be
obtained by cutting through a periodically repeating
sphere and combining the spherical segments in a dif 
ferent order, has played an important role in the popu 
larization of computational methods.

If the periodic potential energy F (r) , in which the
electrons move, is small in comparison with the kin 
etic energy of the electrons, it can be taken into account
in accordance with perturbation theory (this is the Bril 
louin approximation of nearby free electrons).38 The
Harrison scheme for constructing the Fermi surface is
as follows:

(1) Plane waves (zero order approximation) are used
to construct the electron wave function Φρ satisfying the
Bloch condition

Ψ, (r +  a) =  e'i»'» Ψρ (Γ) , (14)

where a is the period of the crystal lattice. This step is
equivalent to the transformation of momentum into the
quasimomentum (4r, is automatically a periodic function
of ρ: φρ+  27rKb=  ψρ, where b is a reciprocal lattice vec 

6>A more detailed account of the temperature field dependence
of the transport coefficients of pure metals, as determined
by the diffusion of electrons over the Fermi surface and hops
between hot spots, can be found in the paper by Gurki and
Kopeliovich.35 This appears to be the first paper in which
the geometry of the Fermi surface (its structure) is taken into
account in detail in a discussion of the qualitative properties
of the temperature dependence of transport coefficients.

tor).

(2) Spheres having the radius of the Fermi sphere for
free electrons £ F =  (3π 2ητ)

1/ 3#  (η, is the number of va 
lence electrons per unit volume) are drawn at all points
equivalent to p= 0 in the quasimomentum space for the
given crystal. If these spheres do not interesect, i.e.,
each sphere lies inside its own cell, the construction is
complete, i.e., the Fermi surface is a sphere. If, on
the other hand, the spheres intersect, then

(3) degeneracy must be removed by introducing a cor 
rection to the energy which takes Vtr) into account in
the necessary order or perturbation theory. This local
and relatively small change in the energy of the electron
produces a radical change in the shape of the Fermi
surface.

(4) The concluding stage is the redistribution of elec 
trons from the original sphere over the new pieces of
the Fermi surface (Fig. 18).

It is clear from the foregoing that the Harrison con 
struction is a purely geometric problem, more crys 
tallographic than physical.

It is important to note that the Harrison model has al 
ways presented difficulties to those who are used to
thinking in terms of an arbitrary dispersion relation.
The model has been distinguished more by its successes
than by its justification39: it gives Fermi surfaces that
are similar to those obtained from comparison between
experimental data and theory without using any assump 
tions about the form of ε(ρ).

The development of several effective methods for nu 
merical evaluation of the electron energy spectrum
(the pseudopotential method, OPW, APW, KKR, and so
on) has modified our approach to the solution of spec 
troscopic problems. A particular model and a method
of calculating the electron energy spectrum are used to
determine the main outline or the possible variants of
the Fermi surface and to elucidate the possible limits
on changes in the Fermi surface. Experimental data
are used simply to improve the model parameters.
This gives rise to the ideal scheme:

Model  comparison with experiment  improved model
and "global" calculation . . .

H /

j

7 \* \  /

b)

FIG. 18. The Harrison construction in the two dimensional
case: a—orginal circles (zero order approximation); b—dis 
tribution of electrons over the zones (Fermi surface cavities)
as a function of the number of circles covering the p space re 
gion: the number of covers determines the number of the zone
(filled states are shown shaded); c—Fermi surface in third
zone, combined into a single closed surface (with this zone, it
is convenient to use the cells shown by the broken lines).
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The Fermi surfaces of most simple metals and many
intermetallic compounds are now known as a result of
the application of this scheme.

All modern models used to construct the electron en 
ergy spectrum are essentially developments of the
method of nearly free electrons.38 The problem then
naturally arises as to what is a conduction electron.
Is it an almost free electron whose motion is slightly
perturbed by the periodic field of the lattice and by ex 
ternal fields, or is it an electron with a complicated
dispersion relation moving under the influence of the
external fields? Such questions are often encountered,
both explicitly and implicitly. The answer is not a
matter of taste but is determined firstly by the formu 
lation of the problem and secondly by the ratio of the
lattice field to the external field. Of course, the dis 
persion relation cannot be determined without some
more or less acceptable model. This cannot be avoided,
so that if we try to evaluate some particular parameter
of a metal—its response to an external field—we have
to decide whether we start with a gas of free electrons,
which has well known responses to an external field, or
whether we "doctor" the result by taking the lattice field
into account. Conversely, we can start with a gas or
Fermi liquid of electrons with a complicated dispersion
relation, and investigate the motion of particles with
a complicated dispersion relation in an external field.
The answer is, in fact, decided by comparing the char 
acteristic energy ε , ^ of electrons with the energy that
is a measure of the interaction between the electron and
the external field (we shall denote it by ∆ε). If we are
dealing with a constant magnetic field, then ∆ε =  £ω, is
the separation between the Landau magnetic levels,
whereas, if we are dealing with the electric field, then
∆ε=  eEl is the energy acquired by an electron in one
mean free path I. Finally, if we are dealing with a
high frequency field, we have ∆ε =  £ω, where ω is the
field frequency. If

• W» ∆ ε· (15)
we must, of course, consider the reaction of electrons
with an arbitrary dispersion relation.

It is important to note that the triumphant progress of
the Harrison model and of model calculations generally
should lead us to a degree of caution in estimating
cchar* Some decades ago, it was always assumed in nu 
merical estimates that zcb3I

a eF and that the scale of
the Fermi energy εΓ was determined by the electron
density η =  «/α3, i.e., εκ«» V/ 3/ a 2m «l( r 1 2 erg
»10* 405oK, where ζ is the number of valence elec 
trons per atom and a is the lattice parameter. In other
words, it seemed that, so long as the external fields
were weak in comparison with atomic fields, there was
no problem. It was generally believed that the energy
structure of a metal was reasonably permanent and not
subject to external modification. The only exception
was the fifth group in the periodic table (Bi,Sb,P), but
these were virtually semiconductors, i.e., semimetals.
It has been gradually recognized, however, that the en 
ergy structure of a metal is a relatively delicate entity
(model calculations and experimental studies, especial 
ly of oscillatory effects, played an important role in

this process). This structure is relatively readily af 
fected by external changes such as pressure, the addi 
tion of electrons through the introduction of impurities,
and so on. A small change in the model parameters, or
a shift in the Fermi energy, can produce an appreciable
change in the Fermi surface. Even the appearance of a
periodic average magnetization accompanying the tran 
sition from the paramagnetic to helicoidal state may
lead to a local but sensitive change in the shape of the
Fermi surface.40 A change in the structure of the elec 
tron spectrum is accompanied by a change in the con 
nectivity of the Fermi surface and is described (at X
=  0) as a peculiar phase transition which in the Ehren 
fest nomenclature41 should be treated as a phase transi 
tion of order 2| (see below).

The recognition of the complexity of the structure of
the electron spectrum has led to a considerable mod 
ification of estimates of the characteristic energy
Echar· T n i s energy must be interpreted as | c¥   ck \ ,
where ck is the energy at which there is a change in the
topology of the equal energy surfaces.42 The fact that
Echar i s small in comparison with eF indicates that sin 
gular points in ρ space are close to the Fermi surface.

More precise formulation of the inequality given by
(15) may have very substantial consequences. We shall
consider them later (in Sec. 11). For the moment, we
return to the concept of an electron with an "arbitrary
dispersion relation." Model calculations have removed
its mystical halo. It turns out that the great variety of
Fermi surfaces is not as difficult to understand as it
seemed twenty years ago. For example, the existence
of small groups of conduction electrons in most metals,
which was discovered through the study of oscillation
effects and which was for long a puzzle, has now been
simply explained by the fact that, in polyvalent metals,
the initial Fermi spheres used in the Harrison model
are found to cross repeatedly. This explanation is sup 
ported by the fact that metals in the first group of the
periodic table have simple Fermi surfaces.

However, we must emphasize that the description of
many of the electronic properties of a metal (thermal,
magnetic, galvanic, thermoelectric, radiofrequency,
optical, and so on) must start with the idea of the con 
duction electron as a Fermi particle with a complicated
dispersion relation: even when c c h l r is more precisely
defined, the inequality given by (15) is easily satisfied
in the great majority of cases.

Thus, the elementary charge carrier in a metal is an
electron with a complicated dispersion relation, and
its state is determined by specifying the quasimomen 
tum p. The fact that this ρ is a ^tMStmomentum, and
not simply the momentum, is used in calculating the
probability of any particular event, and one must not
forget umklapp processes. In all other cases, it is
"demoted" to momentum, and the energy ε(ρ) is in 
terpreted as the kinetic energy of the "free" electron.

5. "BELT" ON THE FERM I SURFACE
The degeneracy of the electron gas in a metal (Γ

<<ερ) ensures that only Fermi electrons participate in
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the electrical conductivity of a metal and all the accom 
panying phenomena. Electrons in the Fermi "cellar"
drop out of the picture, and simply maintain the num 
ber of electrons with ε=  εΓ. This is why the Fermi
surface is so important. The cross sectional area S
of the F ermi surface and even the volume ∆ ι ( 2 ) of the
disconnected parts of the Fermi surface are encoun 
tered in the formulas given above [the latter in Eq.
(10)]. The appearance of geometric figures connected
with the internal structure of the Fermi surface has a
formal mathematical origin: the contour integral
fidpf/ vj, evaluated over an orbit on the Fermi surface,
which determines the period of revolution of the elec 
tron, is numerically equal to [βδ(ε,/>,)/8ε ],..,. , where
dp, is the displacement along the path (6) and vL

The "discrimination" among electrons is not re  
stricted to the exclusion of electrons in the Fermi
"cellar." Since I »r H , electrons with closed paths con 
tribute practically nothing to the conductivity of a metal
in a strong magnetic field if the Fermi surface contains
a layer of open paths. The de Haas van Alphen and
other effects are due to electrons confined to the path
whose area is extremal in pt.

It is particularly striking that most of the conduction
electrons contribute very little to the high frequency
properties of metals.

A. Attenuation of ultrasonic waves by electrons

Electrons whose velocity ν satisfies the Cerenkov
condition (see Ref. 43)

k v=o>, (16)
are responsible for the collisionless interaction be 
tween a metal and sound waves (k and ω are respec 
tively, the wave vector and frequency of the wave).
Since the electron fluid is degenerate, absorption in 
volves the participation only of electrons with energies
equal to the Fermi energy

ε (ρ) =  eF. (17)

Equations (16) and (17) together define a line on the
Fermi surface. It is customary to refer to it as a
"belt." Since ω/ k = s~ 105 cm/ sec « vF~ 108 cm/ sec,
we can frequently assume that s=  0, i.e., neglect the
propagation of the sound wave. This means that the
condition for collisionless interaction selects electrons
moving at right angles to the wave vector k^ k) . The
other electrons turn out to be ineffective (the term "in 
effective" as applied to electrons was introduced by
Pippard44).

The "belt" can be satisfactorily represented as the
boundary between light and shadow if we "translate"
the Fermi surface into ordinary space and direct a
parallel beam of light along the wave vector k (Fig. 19).
For a quadratic dispersion relation ε(ρ)
= (\ / 2)m~x)ikpipk, v^im'^^p,,, where (m'l)a is the re 
ciprocal mass tensor and (16) is the equation of a plane,
the "belt" is an ellipse whose axes and orientation de 
pend on the velocity of sound and the direction n=  k/fc
of this velocity. If we suppose that s =  0, the plane de 

FIG . 19. Belts on the F ermi surface can be simulated by the
boundary between light and shadow: the direction of the inci 
dent light is that of the wave vector k of the sound waves (the
number of belts and their structure depend on the shape of the
F ermi surface and direction of k): a—vector k lying along the
axis of the dumbbell (three belts); b—vector k perpendicular to
the dumbbell axis (one belt); c—the belt is not, in general, a
plane curve; d—the belt can intersect itself: k= k,·, k,.! νΛ,
νΛ<, the points A and A' lie on the locus of parabolic points.

fined by (16) passes through the center of the ellipsoid
(the Fermi surface is then a sphere and the belt corre 
sponding to s =  0 coincides with a great circle). Even
a slight complication in the shape of the Fermi surface
leads to a very considerable complication in the shape
and structure of the belt. F igure 19 shows belts on a
surface in the form of a dumbbell for different direc 
tions of the wave vector k.

The expression for the coefficient, for absorption of
sound by electrons in the metal when kl»l, is (see
Refs. 45,46)

f ) .  v = T  (18)

where ρ is the density of the metal, Λ is a component
of the deformation potential modified by screening and
determined by the polarization of the sound,46 and the
5 function is the limit of the solution of the transport
equation when kl»1. It is clear that the condition for
collisionless absorption, namely, kl»l, discriminates
against all electrons, other than those in the "belt",
which move in the phase plane of the sound wave.

B. Anomalous skin effect
The concept of the "belt" first appeared in the phys 

ics of metals in the theory of the anomalous skin effect9

describing the reflection of an electromagnetic wave by
a metal when the skin layer depth δ was less or even
very much less than the electron mean free path I.
When δ «I, most of the electrons spend only a very
small fraction of their mean free time within the skin
layer (under the influence of the electric field of the
wave). Electrons moving parallel to the surface of the
metal are the only exception to th is44·47 (Fig. 20). It is
precisely these electrons that participate in the reflec 
tion of the electromagnetic wave. This is expressed
mathematically by the fact that the surface impedance
of the metal is given by a formula in which [as in (18)]
the integration over the Fermi surface reduces to inte 
gration over the belt defined by (16) and (17).

By displacing the belt over the Fermi surface and
measuring the surface impedance of the metal, we can
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FIG. 20. In the anomalous skin effect (Ζ»δ), electrons moving
along the boundary of the metal (t>,=  0) play the dominant role
because they interact with the electromagnetic wave throughout
their mean free time.

investigate the structure of the Fermi surface and, as
is clear from the formula for the impedance, we can
directly determine the Gaussian curvature of the Fermi
surface averaged over the belt.44'47 It is difficult to
displace only the belt The electromagnetic wave al 
ways propagates at right angles to the surface because
of the large optical density of the metal. All this means
that the only remaining possibility is the investigation
of the impedance of different faces of a single crystal.
This was, in fact, done by Pippard,48 who used single
crystals of copper.

The spectroscopic possibilities of studies of electro 
magnetic properties of metals are governed by the fact
that the charge of a conduction electron is equal to the
charge of a free electron (the formula for the imped 
ance involves only the geometric characteristics of the
Fermi surface). The situation is worse in the case of
ultrasonic waves. As we have seen, the coupling be 
tween these waves and electrons is described by the
deformation potential,49·50 and the determination of the
components of this potential is a problem in itself. It
is, therefore, tempting to try to determine the compo 
nents of the deformation potential (averaged over the
belt) for those metals for which the dispersion relation
is known, and then use the measured electron part of
the sound absorption coefficient Γβ [Eq. (18)]. For rea 
sons which we cannot understand, this method of de 
termining the deformation potential averaged over the
belt has not been very popular (see Ref. 51).

C. Cyclotron resonance
Thus, both the wave and the skin effect isolate the

belt electrons. A magnetic field forces the electrons
to mover over the Fermi surface on paths described
by (6) which, in general, cut the belt at arbitrary an 
gles (Fig. 21). The high frequency properties of met 
als in a magnetic field are an inexhaustible source of
information about conduction electrons. Cyclotron res 
nance52 is undoubtedly the most popular effect, whose
origin will be clear from an inspection of Fig. 22. If
the time interval TH between successive reentry of the
belt by the electrons in a magnetic field parallel to the
boundary is a multiple of the field period Γω=  2ττ/ω,

2η,

FIG. 22. When the constant magnetic field is parallel to the
surface of the metal, so that the electrons are returned to the
skin layer (δ < < rH«Z), cyclotron resonance can be observed.

then resonance between electrons and the wave will en 
sure that the conductivity will become infinite for τ —°o
and the impedance will vanish. On the other hand, the
period TH=27r/wc [u>c=eH/ m*c, m* = (l/ 2ir)dS(c,p,)/ dc]
is different for different electrons. Because of degen 
eracy, the effect is determined by Fermi electrons,
i.e., electrons with ε=  tT undergo resonance. The se 
lection of electrons in accordance with pt is connected
with the presence of extrema in the dependence of m*
= ηι*(ετ,ρ,) on pM. The dependence on the longitudinal
momentum component near the extrema is less impor 
tant than for other values of pt. In fact, the extremal
values of the effective mass m* = w*(eF,/»™Jr) determine
the resonance conditions:

ell 2, 3, (19)

FIG. 21. Electron paths (broken lines) intersecting a belt
(thick line).

Thus, cyclotron resonance is a direct method for the
experimental determination of the extremal effective
mass of conduction electrons. Cyclotron resonance was
first discovered experimentally by Fawcett53 in the case
of tin and copper. It eventually evolved into a standard
method for measuring the effective masses of conduc 
tion electrons,54 which is a necessary stage in the in 
terpretation of the electron energy spectrum.

The importance of cyclotron resonance lies not only
in the particular results that it yields, but also in that
it has drawn attention to the electrodynamics of metals
in magnetic fields. Thus, it has always been consid 
ered that the main optical property of a metal is its
ability to reflect electromagnetic waves and that, as
soon as it begins to transmit such waves (for Η =  0), it
is not very different from a dielectric. At frequencies
greater than the plasma frequency of the electrons in a
metal, the dielectric permittivity of the metal is posi 
tive and absorption is a consequence of the interband
internal photoelectric effect.

The discovery of cyclotron resonance has led to a
radical change in our picture of the interaction between
conduction electrons and the electromagnetic field. It
turns out that a strong enough magnetic field can sub 
stantially modify the propagation of electromagnetic
waves in metals and, to some extent, "eliminate" the
skin effect, transforming oscillations whose amplitude
falls by a factor of e2* over one wavelength into weakly
attenuated waves with Imfe« Refe. Weakly attenuated
waves in metals are not merely a fanciful idea: many
of them have in fact been verified experimentally (see,
for example, Ref. 55).

Many waves have no direct connection with cyclotron
resonance. Neither their properties nor even an enum 
eration of them form part of our task here. We shall
confine our attention to some simple examples demon 
strating the role of the magnetic field.
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D. Low frequency elliptically polarized wave—the helicon

The helicon56 can propagate through metals with dif 
ferent numbers of electrons and holes (nx * w2) along a
sufficiently strong magnetic field H.

The dispersion relation for helical waves is
ck*H COS 6 ~ . /2Q\

where θ is the angle between the wave vector k and the
magnetic field H. The wave is not attenuated because
the Hall components of conductivity are much greater
than dissipative components (which, of course, are
transverse) in the case of metals with ni*n2 in a strong
magnetic field. The attenuation length for a helical
wave is determined either by collisional mechanisms
(i.e., σ%χ and σ,,) or by collisionless mechanisms (here
again, we have the belt).

E. High frequency magnetic plasma wave
When ωχ » 1 and krn « 1 , a weakly attenuated mag 

netic plasma wave57 can propagate in a compensated
metal (nx = n2) in a strong magnetic field (t*>c » ω » l / τ ) .
In the simplest case, the dispersion relation for the
magnetic plasma wave is the same as for the celebrated
Alfven wave:

V imirn»

where νΛ is the Alfven velocity (m* is a combination of
the effective masses of the electrons and holes).

The dispersion relation for the magnetic plasma wave
can readily be derived by a simple hand waving argu 
ment if we note that the frequency ω always appears to  
bether with τ in the form τ/ (1  ίωτ) , and the transition
from ω =  0 to ωτ » 1 means that τ is replaced by i/ω.
The effective permittivity of the metal electrons is ε
=  4τΓίσ/ω, and the dispersion relation for the wave is
oo2=c2k2/ t. Wh en # = 0, a=ne2r/ m*, and the replace 
ment τ — i/ω leads to negative permittivity, i.e., the
wave cannot propagate (ε=   ω 2 / ω 2 < 0; where u>L

=  V47rne2/ W* is the plasma frequency). When ωοτ »1,
the dissipative t ransverse conductivity is σ
~(ne2T/ w*)(wcT)"2 and the replacement τ — ι/ω leads to
positive permittivity, ensuring propagation of the
wave.7' The Hall components of the conductivity tensor
play a secondary role because the number of electrons
and holes is the same.

F.  Dopplerons,  cyclotron waves, and anisotrons

The spatial and temporal dispersion of conductivity
(the dependence of σ on the wave vector k and frequency
o>) play a minor role for the two waves considered
above. However, as the mean free path increases with

7>Of course, this Is not accidental: when H =  0, the field fre 
quency ω is higher than the resonance frequency ωκ (which,
in this case, is zero!) and, when Η * 0, the field frequency ω
is lower than the resonance frequency ωκ, which is then equal
to coc (see above). Having outlined the resonance function ε
= ε(ω), we can readily see the reason for the difference be 
tween these two limiting cases.

decreasing temperature, and the magnetic field is r e  
duced (i.e., with increase in ωτ , kl and/ or krn) the
spatial and temporal dispersion of conductivity assume
a dominant role in establishing the function ω= ω(&) for
the weakly attenuated waves in metals.55 Thus, helicons
and magnetic plasma waves transform into dopplerons,58

cyclotron waves,55 an isotrons, 59 and so on, as the wave
number increases. In many cases, they transform into
the extensively studied boson quasiparticles. In the
terminology of the electrodynamics of media with spa 
tial dispersion, 60 they are all additional macroscopic
waves because their wavelength is much greater than
the interatomic distance (ka «1) .

It is important to emphasize (and this is part of our
theme in this review) that the limiting values of the
components of a(k for fe—°° are very dependent on the
geometry of the F ermi surface. This is very clear,
for example, from the expression for the transverse
components of ajft in zero magnetic field when kl»1

 7 . =  1,
(21)

a,  p =
The structure of the last equation is very similar to
that of (18) which gives the absorption coefficient for
short wave sound.

It is clear from the above formula that, when there
is no magnetic field and kl»l, conduction is deter 
mined by electrons responsible for the collisionless
Landau damping (vn= 0). The situation changes radi 
cally in a magnetic field: weakly attenuated waves can
exist only when they fall into the "transparency win 
dows" within which there is no collisionless damping.
In the great majority of cases, the weakly attenuated
waves exist near the damping boundary on which σ has
a singularity, and it is this proximity to the boundary
that makes the contribution of electrons to the disper 
sion relation of the wave particularly important.61

G. Sound in a magnetic field

The influence of the magnetic field on conduction
electrons can, of course, also be seen in the electronic
part of the sound absorption coefficient. Sound pene 
t rates metals relatively readily, so that studies of the
propagation of sound in metals are important for the
interpretation of the electron energy spectrum.

The analog of (18), which will describe the absroption
of sound in a magnetic field, can be written in the form
given below, where the magnetic field is perpendicular
to the wave vector of the sound wave and 1 « u>cr « kl.
The "geometry" of the of the interaction between the
electron and sound wave is clearly seen from F ig. 21:
as the number of times the electron crosses the belt
increases, the sound absorption coefficient increases.
The leading term in 1% has a particularly simple form 62

Γ.(Η) (22)

where v= l/ p , and ν is the relaxation frequency (i>=  1/
τ) , averaged over the period of revolution in the mag 
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FIG. 23. Origin of Pippard osculations In the sound absorp 
tion coefficient. The amplitude of the oscillations depends
on electrons lying near the ends of the extremal diameters
where the electron velocity lies in a plane of equal phase of
the sound wave: a)—In r space; b)—In p space.

netic field.

However, the term in Γ#(Η) is of much greater inter 
est but is, unfortunately, smaller than this by a factor
of VferH and contains a periodic dependence on the mag 
netic field:

(23)

The sum in the above expression is evaluated over all
the extremal diameters of the Fermi surface (Figs. 23
and 26). It is clear that Γ, is a periodic function of the
reciprocal of the magnetic field, and the periods ∆( ΐ/ #)
are determined by the extremal projections of the di 
ameters onto the direction perpendicular to both k and
Η (we recall that k± H; see Fig. 23):

. 1 2ne

The origin of the periodic dependence is quite clear:
the situation repeats itself whenever the number of
waves that can be fitted into the orbit diameter changes
by one [see (23)] . The periodic form of Γ.(Η) is often
referred to as the Pippard or geometric resonance.
The amplitude of the Pippard resonance is determined
by electrons lying near the points at which the path of
the electron with the extremal projection of the refer 
ence diameter crosses the "belt"; the remaining elec 
trons are found to be ineffective (see Fig. 23). By ro 
tating the magnetic field Η and the wave vector k, these
points can be made to move over the Fermi surface, so
that its geometry can be investigated in detail. The
interaction between electrons and a sound wave in a
magnetic field is the source of many other resonance
phenomena. They are, in fact, referred to as magneto 
acoustic phenomena. They depend essentially on the
geometry of the experiment and on the geometric prop 
erties of the Fermi surface. Here, we shall consider
one of the magnetoacoustic resonances that arises in

FIG. 24. Quantization of chords segregates electrons lying
on lines on the Fermt surface. The two lines are shown,
corresponding to a quantized value of the chord length Ap,
= nirK/ d, where d is the plate thickness and η Is an Integer.

• HA

FIG. 25. If Dmzxc/ eH > d, a plate of thickness d can contain
orbits smaller than a given orbit (the latter Is defined by
Dumc/ eHad and is shown by the thick line); orbits between the
limiting positions do not fit Into the plate at all.

metals with open Fermi surfaces.63

If the period of the motion along an open path is equal
to the wavelength of the sound wave, we observe a res 
onance interaction between electrons and the sound
wave. This leads to a periodic dependence of the sound
absorption coefficient on the reciprocal of the magnetic
field. The resonance condition can easily be derived
from the connection between paths in p  and r spaces.
If the wave propagates at right angles to the magnetic
field E(Hx= Hy=  0; H,=  H) and in the direction in which
px is open, the period of the absorption coefficient is

where bx is the smallest period of the receiprocal lat 
tice along the px axis.

6. ELECTRONS COLLIDING WITH BOUNDARIES
The impact of electrons on the specimen surface has

long been attracting the attention of workers concerned
with the electronic properties of metals. As far back as
1938, Fuchs63 reported a theoretical study of the resis 
tance of a thin plate as a function of its thickness and
formulated a phenomenological boundary condition de 
scribing partially specular reflection of electrons by
the boundary. It seemed for a long time that any bound 
ary within a metal was rough, i.e., it resembled a dif 
fuse reflector for Fermi electrons with wavelengths of
the order of the interatomic separation. An electron
should be reflected diffusely at a surface of this kind
(that was the belief).

In the case of diffuse reflection of electrons by the
surfaces of the specimen, the conductivity of the plate
(if, of course, its thickness d is much less than the
mean free path I) is governed exclusively by electrons
moving parallel to the plate surface. They lie on the
belt vF n=  0, where η is the normal to the plate sur 
face.64 It is interesting to note that the specific conduc 
tivity o(d) of the plate for d«l increases logarithmi 
cally with increasing bulk mean free path [a(d)

FIG. 26. Electron returns to the skin layer after reflection
from the back surface of the plate.
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~ ln(l/ d)]. This distinguishes the static conductivity of
a thin plate from the limiting anomalous skin effect (σ
«I) in which the impedance is determined by the colli 
sionless limit of the specific conductivity tensor (21).
The exceptional role of the "belt" electrons (or, more
precisely, the ineffectiveness of all other electrons)
ensures that the conductivity of thin films is a phenom 
enon that is very sensitive to the geometry of the Fermi
surface.

Now that we have considered theoretical studies of
the conductivity of thin films and wires, we must note
that it is not always as easy as it might appear from the
above examples to identify the effective electrons, i.e.,
the electrons responsible for a particular effect. For
example, the conductivity of thin cylindrical wires,
whose radius is much smaller than the mean free path
and whose boundary reflects diffusely, is not exclusive 
ly determined by electrons moving along the axis of the
wire. In fact, the conductivity includes contributions
due to all the Fermi electrons.65

The pressure of experimental evidence has led,
eventually, to the realization that electrons are very
often reflected specularly from the metal surface.66

For an electron with an anisotropic dispersion relation,
this means that not only the energy but also the quasi 
momentum component parallel to the surface are con 
served [pM =  p (ρ·η)η, where η is the normal to the
surface], whereas the normal component of the velocity
vn changes sign.

The interaction between an electron with a compli 
cated dispersion relation and the surface of the speci 
men leads to a peculiar complication in a number of
commonplace properties. For example, it is well
known that the components of momentum are quantized
in an infinitely deep potential well, whereas chords are
quantized in the case of an electron with a complicated
dispersion relation67 (Fig. 24), and this means that the
picture of the electronic subbands of metal plates is
very unusual. Once the quantum mechanical size ef 
fect68 was discovered, this phenomenon ceased to be
theoretically exotic.

The most direct demonstration of the specular re 
flection of electrons from the specimen surface was
undoubtedly the discovery of oscillations due to surface
levels occupied by electrons in the magnetic field,
which was made by Khalkin.69 The motion of an elec 
tron which has been reflected specularly from the sur 
face of a metal in a magnetic field, (Fig. 12) is the sum
of two motions, namely, infinite motion along the sur 
face and finite (periodic) motion along the normal to
the surface. The latter motion is quantized, so that
discrete surface levels appear and give rise to oscilla 
tions in the surface impedance as a function of the ap 
plied magnetic field. The complete theoretical explana 
tion of this phenomenon is due to Nee and Prange.70

A single surface is sufficient for the Khalkin oscilla 
tions to appear. When the electrons interact with the
two surfaces of a plate of thickness d (d and rH must
then, of course, be much smaller than the mean free
path I), peculiar resonance size effects become possible

and can easily be described in terms of the geometric
language.

Out of all the possible orbits, the plate isolates the
one that fits into it (Fig. 25). Resonance should be ob 
served for this orbit71 and, has, in fact, been found in
bismuth.72 It was used to investigate nonextremal sec 
tions through the Fermi surface, which deserve par 
ticular attention.

The mechanisms responsible for returning the elec 
trons to the skin layer may, in addition to the magnetic
field, include a contribution due to reflection from the
other surface of the specimen (Fig. 26). If G«d and
*  <<:'> cyclotron resonance can also be observed for
such orbits.

7. CROSSING OF THE FERM I SURFACE BY ITS
SHIFTED ANALOG, AND M IGDAL KOHN
SINGULARITIES

The singularity in the dependence of phonon energy on
quasimomentum (Migdal Kohn singularity74), which
arises from the interaction between phonons and elec 
trons in metals, is due to the nonuniform filling of p 
space with electrons and has a clear geometric mean 
ing. Since, by virtue of the Kramers Kronig relation 
ships, singularities in Rew(q) produce singularities in
Imci)(q) =  r, l and vice versa, and since integrals contain 
ing δ functions are easier to handle than integrals de 
fined as principal values, the geometry of singularities
in phonon q space can be established by using the ex 
pression for the reciprocal phonon lifetime Γ̂  (q is the
quasimomentum) due to electron phonon collisions:

Γ, =  \  Ι Μ \ '{η,, (ερ)   nP (ε, +  Αω,)} δ (ε, + (24)

where ητ(ε) is the Fermi function and the transition
matrix element Μ includes all factors. At absolute
zero, the difference between the Fermi functions se 
lects the region in p space bounded by the surfaces ερ
=  εΓ and ερ=  εΓ  Κω^  (Fig. 27a). The singularities in
Γ, are connected with a change in the structure of the
region of integration which is defined by the intersec 
tion of the surface ερ +  ̂ ω4=  ερ+, with the surfaces ερ
=  εΓ and ερ=  εΓ  Κω^. Since £ci>q« ερ, we can expand the
expression in (24) in powers of Ηω, so that

Γ, « Λω, | | Μ |a δ (ε,   ε,) δ (β*. ,   ε,) ά'ρ. ( 25)

We have omitted Ku)q from the δ function describing
conservation of energy and replaced ερ with tr. The
region of integration in (25) is the line of intersection
of the Fermi surface with its analog shifted by  q. A
change in the topology of this line (in particular, its
vanishing) produces a singularity in Γ4. The Migdal 
Kohn singularity74 is due to the vanishing of the line of
intersection at q=DF (Fig. 27b), and the nature of the
singularity depends on how the surfaces touch at q= DY
(see Refs. 75 and 76; the last paper predicts an en 
hancement of the Migdal Kohn singularities for Fermi
surfaces containing finite cylindrical and flat segments).

If the Fermi surface splits into several parts, the
singularity should still be observed at the value of the
phonon quasimomentum q at which one part of the Fer 

919 Sov. Phys. Usp.  2 2 (1 1 ) , Nov.  1979 M . I.  Kaganov and I.  M.  Lifshits 919



ο
ο

C) <0

FIG. 27. a—Phonon absorption is due to electrons on a seg 
ment of the surface Εν*Ηω^=  ερ+ ), (1) lying between the sur 
faces ε ρ= ε ρ (2) and ερ= εΓ  Κω   (3); the shape of the segment
of p space on which electrons interacting with photons are lo 
cated depends on the magnitude of q (for simplicity, we show a
spherical Fermi surface). Approximate analysis: b—electrons
absorb phonons if the Fermi surface and its analog shifted by
 q intersect (the line of intersection is shown by the thick line

. in the figure); c—when the phonon momentum q is large
enough, the Fermi surface cavity will cut another when it is
shifted; d—the Fermi surface intersects its analog in a neigh 
boring cell.

mi surface shifted by  q touches another part on the
unshifted surface (Fig. 27c). Further increase in q
produces a sudden increase in the absorption coefficient
and Re ω should have a singularity with opposite sign as
compared with the Migdal Kohn singularity.74 Observa 
tion of such singularities could be a means of measur 
ing the separation between individual pieces of the F er 
mi surface.

For the free electron gas, the geometric locus of
Migdal Kohn singularities is a sphere of radius 2pT.
However, for real spherical Fermi surfaces such as
those of sodium, potassium, rubidium, and cesium,
the situation must be more complicated: the possibil 
ity of umklapp processes (in other words, the perio 
dicity of Γ( with the period of the reciprocal lattice,
i.e., r Q t 2 r t b =  TQ) ensures that Γ, exhibits singularities
when the shifted sphere touches the spheres in the
neighboring cells (Fig. 27d). This phenomenon should
be observed in metals with Fermi surfaces of any kind
and may be useful in locating the Fermi surface in re 
ciprocal space.

8. CROSS SECTIONS AND BELTS M ODIFY THE
TOPOLOGY

Shoenberg and Templeton77 investigated the de Haas 
van Alphen effect and found that the amplitude of the
oscillations increased substantially for a particular di 
rection of the magnetic field H. This was explained by
them by saying that, for this direction of the magnetic
field, both dS/ dp, and 02s/ »p2, vanish, so that the ex 
pansion of S in powers of ∆/>, begins with the fourth 
order term and it is this that produces the increase in
amplitude. The small factor τ/Κω^/ ε^  is replaced with
the larger factor (ffwc/ eF)

x/ 4. It is clear that, for this
direction of H, there is a change in the character of
the extremum in pM on the section of the Fermi surface.
Figure 28 shows the functions S{cr,p,) for different di 
rections of Η (the dumbbell is taken as an example) and

FIG. 28. Cross sectional area of the Fermi surface as a func 
tion of p, for different directions of the magnetic field: a—
dumbbell with thick neck; b—dumbbell with thin neck.

the variation in the sections (including their number and
position). This variation would not be possible for a
convex Fermi surface.

The structure of the section may also vary in a more
complicated way as compared with Fig. 28a. If there is
a direction in which one of the extremal cross sections
contains a self crossing point, the variation in the
structure of the cross sections and hence in the spec 
trum of the de Haas van Alphen oscillations occurs in
a more complicated way (Fig. 28b), and the amplitude
of the critical oscillation (corresponding to a figure 
eight cross section) is anomalously low. This problem
has not, however, been extensively investigated.8)

The question of singularities in the phonon spectrum
of metals due to topologic changes in the structure was
investigated relatively recently.79"a Let us turn to
Fig. 19. It is clear that the number of belts is different
for different directions of the wave vector. This means
that there is a direction n   nc for which the belt changes
its structure (in Fig. 19, it contains a point of self 
intersection). Figure 29 shows a piece of the Fermi
surface resembling a hill (we have referred to it as a

FIG. 29. Origin of belts at the point Λ on a line of parabolic
points for k= ko LvA (Ferml surface hill). When k= kt ,
there is no belt; the belt corresponding to k= kn is shown by
the thick line.

8>Azbel'78 has investigated oscillations connected with nonex 
tremal cross sections with self intersection and has shown
that their amplitude is lower by a factor of ZT/ Kwc as com 
pared with the amplitude due to the extremal cross section
without self inter section.

920 Sov. Phys. Usp.  2 2 ( 1 1 ) ,  Nov.  1979 M . I.  Kaganov and I.  M.  Lifshits 920



puckered plane19). There is a two dimensional region
of directions for which there is no belt at all but, for
directions outside this region, the belt does exist
When a direction belonging to the region in which there
is a belt approaches the crit ical direction, n  n c , the
belt assumes the shape of a small ellipse which con 
t racts to a point at n=  n c. If we suppose that the veloc 
ity of electrons on the belt is perpendicular to the wave
vector (we neglect the velocity of sound in comparison
with the F ermi velocity), the crit ical points9' lie on the
lines of parabolic points, i.e., on lines of zero G aus 
sian curvature Κ of the F ermi surface which, as we
have noted, is a necessary attribute of surfaces with
dents, necks, and so on.

Analysis of the structure of the belts given by (16) and
(17) shows that hyperbolic points can be of two types,
referred to as O  and AT  points.79 At O points, the
belt just appears whereas, at ΑΓ points, the belt has a
self intersection. The existence of parabolic points
on the F ermi surface, and hence of crit ical directions
for the propagation of sound, should lead to singulari 
t ies in the angular dependence of the sound absorption
coefficient and other transport coefficients (for ex 
ample, the electrical conductivity tensor in the p res 
ence of large spatial dispersion).

The above phenomenon corresponds to a relatively
rare situation in which the geometry of the F ermi sur 
face (geometry at the point) affects (or, more precise 
ly, should affect) macroscopically observable phenom 
ena for H=  0. It is important to emphasize that (18) is
constructed so that the contribution of the neighborhood
of the singular point to Γβ is of the same order as, or
logarithmically greater than (!) , that due to the r e  
mainder of the surface.10' F igure 30 shows the st ruc 
ture of the singularities in r , =  Imm and Rea> for O  and
X points. The existence of pairs of closely spaced
singularities is connected with the presence for each
singular point of the "antipod" point with antiparallel

Typ of point

0

X

local belt
structure

( ® )

κ y
2S

λΚ

Rew

—

2s
"F

—

FIG. 30. Nature of angular Ιπχω and Reu> singularities due
to O— and X— points. The separation between pairs of singu 
larit ies is &2s/ vF.

9)The point of self inter section of the critical belt on the sur 
face of a dumbbell (see F ig. 19); the point to which the ellip 
tical belts contract (see F ig. 29).

10'The formula for the components of the conductivity tensor
(21) for kl»l is, as already noted, similar in structure to
(18) (see Refs. 44 and 47).

Pi*

FIG . 31. The spectrum of Pippard oscillations is different for
different directions of the magnetic field Η and wave vector k:
the frequencies are determined by the quantities ∆ή , , ^ = Ay.
a—when k is fixed, the belt (solid line) does not change, but
the oscillation spectrum does, H\ \pt\  b—the change in the topo 
logy of the belt for fixed Η will also produce a change in the
oscillation spectrum. The extremal trajectories are shown by
thin lines.

velocity (this is a consequence of the symmetry of the
F erm i surface under the replacement of ρ with  p) .
As s/ vT — 0, the crit ical directions associated with the
antipoles are found to coincide. The Rew singulari 
t ies extinguish one another, but the Imw singularities
add.

The absorption of sound in a magnetic field for in ter 
mediate fields 1 « wc «kl and k i H should also exhibit
singularities connected with changes in the topology of

TABLE Π. Dependence of the amplitude and phase of the os 
cillating part Γβ(Η) on the type of points of intersection of a
"belt" with an extremal trajectory, and experimental geometry.

Amplitude

Amplitude

Elliptic
(both)

Both A' typc parabolic

One elliptic, the other parabolic,
* type

@H

Γ° <*/ ·„)'/ »

Both JT type parabolic
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the belt. Comparison of (18) and (22) will show that,
insofar as the leading term is concerned (i.e., the term
that depends monotonically on Η), rj"™ has the same
singularities as Γ. at H=  0. The oscillating part is
more interesting. The oscillation spectrum depends
on the direction of propagation of sound and on the di 
rection of the magnetic field. Both the periods and
their number depend on direction (Fig. 31). As critical
directions are approached, i.e., directions in which
the oscillation spectrum is modified, this should give
rise to similar periods, so that combinations of the
corresponding harmonics produce beats. It is clear
that, from the experimental point of view, it is easiest
to detect an increase in the oscillation amplitude con 
nected with the fact that electrons responsible for the
Pippard amplitudes lie near points at which the Fermi
surface become flat The points in which we are inter 
ested are the points of intersection of the "belt" with
the orbit of the electron that has the extremal projec 
tion of the reference diameter. It is clear that the
point of intersection can be made to coincide with the
point at which the Fermi surface is flat either by vary 
ing the direction of propagation or of the magnetic field.
The geometry of possible experiments (directions of Η
and q) and the theoretical predictions79'80 can be seen
in Table Π.

9. SLOW ELECTRONS
Conduction electrons are the fastest quasiparticles

in metals. Their velocity exceeds the phonon velocity
by a factor of many thousands. This is why the thermal
conductivity of metals is much higher than the thermal
conductivity of dielectrics, and many properties of
metals can be investigated without bringing the motion
of ions into the discussion. Nevertheless, not all the
electrons in the metal, not even those whose energy is
equal to εκ, move with the same velocity. The com 
plicated form of the dispersion relation ε=ε(ρ), in 
cluding its anisotropy, ensures that electrons located
at different points on the Fermi surface have different
velocities.

It is interesting to note that slow electrons play a very
appreciable role in many properties of a metal, i.e.,
the relative contribution of electrons increases with
decreasing velocity. This can be explained as follows.
As we have frequently noted, most of the electronic
characteristics of a metal are described by formulas
containing integrals over the Fermi surface. If these
integrals can be written in the form $m(ds/ va)F, and
the function F at points on the Fermi surface varies
slowly with v, the exponent α is a measure of the rela 
tive participation of slow electrons.82 Indeed, it turns
out that frequently a is greater than zero. In Table III,
formulas describing several effects are arranged in
order of increasing a.

It is important to emphasize that the electron mean
free path I in these formulas is a slowly varying func 
tion of velocity. This is clear from the approximate
expressions for it (see Ref. 83, Chap. 7): in the case
of scattering by screened impurities

I 1 « Ν s a,

TABLE ΠΙ. Contribution of slow electrons to
properties of metals.

Electrical conductivity of metal*

2 < ! C ,

Number of electron states on the Fermi surface
per unit volume (determines the thermodynam 
ics of the electron gas)

2v< e ) s v — ,
(F )

Sound absorption coefficient of electrons (/ /    0)

2ω
(2πΛ)»Ρ*

( F )
•  I '   ̂ f (• • »).  α=2

Montonic part of the sound absorption
coefficient in a magnetic field
( H »U ( , i»l, klH )

rmon *"ω
(2πΛ)>ρί ο = 3

Acoustoelectric current due to current
of coherent phonons

2 ne W( ii £ , . . . .  a ' e d s

(F)

*In the case of electronic thermal conductiv 
ity, κ, the parameter α is also zero.

where Nim, is the number of impurity atoms per unit
volume and, in the case of scattering by phonons,

Ζ" 1 Λί j

θ/τ
Γ \ 4 f 4i«dz

where Ν is the number of metal ions per cm3, Μ is the
ion mass, θ is the Debye temperature, and sa is of the
order of the effective scattering cross section of an
atom (sia a2). Both the last formulas and the formulas
in Table m are valid in the limit of the degenerate
electron gas ( T « |εΛ εΛ|) . Moreover, the adiabatic
approximation demands that the velocity of electrons
participating in these effects be greater than the veloc 
ity of sound, s. However, in comparison with electron
velocities, VT/m and s are so small that, as they are
approached, the effect becomes substantially enhanced
(or suppressed).

The last line of Table ΙΠ gives the expression for the
acoustoelectric current JA excited in a metal by a
beam of coherent phonons of power W  and frequency ω
=  ω(&). The appearance of this current is due to the
same interaction between phonons and metal electrons
that is responsible for the attenuation of sound in ac 
cordance with Eqs. (18), (22), and (23). When electrons
absorb phonons, the latter transfer their momenta to
the electrons and, in the final analysis, this is respon 
sible for the acoustoelectric effect As always, the
condition kl»1 discriminates against all electrons
other than those in the "belts"84 and the factor 82ε/β/>;
=  (mJ)"1 is a consequence of the "transformation" of the
transferred phonon momentum into a change in the
electron velocity:

where m* is the effective mass in the direction of k
= ka. The anomalously large contribution of slow elec 
trons becomes particularly noticeable when we con 
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sider the contribution of electrons in a small piece of
the F ermi surface to the different properties of metals.
For simplicity, we suppose that this piece is a sphere.
We shall assume that the number of electrons in the
piece is n a, so that, in accordance with Table ΙΠ,

σ, ΧΜ Β * , νρα»; ' 1 , roc/ 3const, Γ™»", Η, / Acon  '/ 3.

Of course, we can go to the limit as na— 0 in all the
above formulas. It follows from the condition ε Ρ ι » Τ
and vT> s that

J_/ £ \ 3/ 2 J__ni£*_ fi'

However, since Γ and ws ! are very small in compari 
son with ea, the increase in the acoustoelectric cur 
rent and the sound absorption coefficient in a magnetic
field with decreasing number of electrons in the F er  
mi surface piece should be observable.

10. THE FERM I SURFACE CHANGES ITS GEOM ETRY

Phase transitions of the crystal lattice of metals oc 
cur under external disturbances or as a result of a
change in the temperature. This is accompanied by a
change in the F ermi surface and hence in all the elec 
tronic properties of metals. The many phase t ran si 
tions include those in which the electronic subsystem
of the metal plays the leading role (examples are tran  
sition to the superconducting or ferromagnetic state
and the metal dielectric transition). However, even in
these cases, the F ermi surface necessarily "feels" the
transition: in the case of a transition to the supercon 
ducting state, a small energy gap opens at zazF and
makes the superconducting state stable, whereas, in
the case of a transition to the ferromagnetic state, the
F ermi surface splits into two because of the lifting of
degeneracy in electron spin; the F ermi surface van 
ishes altogether in the course of the metal dielectric
transition.

A phase transition (especially of the second kind) is
a complicated phenomenon accompanied, as a rule, by
a change in symmetry, an increase in fluctuations,
hysteresis, and so on. The change in the geometry of
the F ermi surface and its manifestations is, in most
cases, secondary. Within the framework of the present
review, it will therefore be natural to confine our at  
tention to those changes in the geometry of the F ermi
surface that are not accompanied by phase transitions.

In metals under pressure, the accompanying change
in interatomic separations modifies the entire energy
structure of the metal. However, if there is no change
in the symmetry of the body, or of no isomorphous
phase transition takes place, all the changes are quan 
titative rather than qualitative up to some crit ical pres 
sure pc. A qualitative change without phase transition
can occur by changing the F ermi surface. In p space,
each electron energy band has points p= p» at which the
connectivity of the equal energy surfaces changes:
either a hole is produced (vanishes) on the equal energy
surface or a neck is "broken" (formed) (F ig. 32). At
energies ck at which the connectivity of the equal energy
surfaces undergoes a change, the density of electron
states ν(ε) has a van Hove type singularity42 because

• < > •

IEL

c)
FIG. 32. Change in the connectivity of the F ermi surface un 
der a phase transition of order 2^: appearance of a new cav 
ity (a); breaking of neck accompanied either by the appearance
of a line of Ο—points (b) or the disappearance of X—points
(c) (the lines of parabolic points are shown dashed).

the surface ε(ρ) =  zt contains a point at which the veloc 
ity becomes zero [ν(ρ^) =  0] . Usually (at P = 0) , the
F ermi energy is e F #  sk and the presence of the van Hove
singularities manifests itself only indirectly (for ex 
ample, through the complexity of the F ermi surface of
a number of metals; see above and the next Section).
The application of pressure will "drive" the van Hove
singularity off the F ermi level. As a result, the F ermi
surface will change its connectivity at P=Pk. This is
reflected in the fact that the density of electronic states
is of the form v(eF)~ VP  P S , so that, when T=0, this
can be interpreted in the Ehrenfest nomenclature as a
phase transition of order 2^.41 It is clear from the
foregoing that, when P=Ph, the F ermi surface contains
a point (or points) at which v = 0.

The presence of slow electrons with n =  0on the crit i 
cal F ermi surface (for P=Pk) leads to anomalies in
both thermodynamic and transport properties. The
formulas listed in Table III show that the properties of
a metal that are due to interaction between electrons
and the sound wave are particularly sensitive to a
change in the connectivity of the F ermi surface. Al 
though the change in the F ermi surface occurs at indi 
vidual points in p space, the macroscopic sound ab 
sorption coefficient exhibits a finite jump when a new
cavity is formed, or even a logarithmically diverging
singularity (at T= 0 and kl = <*>) when a neck is broken.85

A change in the connectivity of the F ermi surface
(breaking or formation of a neck) is accompanied by a
change in the local geometry of the surface: breaking
of the neck is accompanied either by the appearance of
a line of O points, or the disappearance of a line of X 
points (Fig. 32). This means that, in the case of phase
transitions of order 2 5 that are due to the breaking of
a neck, one should observe the appearance (or disap 
pearance) of anomalies in the dependence of Γ, on the
direction of propagation of sound (see F ig. 30). It is
shown in 8 6 that, in this case, these anomalies are par 
ticularly sharp because of the proximity of the line of
parabolic points to the conical point in p space (at
which ii= O!) .

A change in the connectivity of the F ermi surface is
not essential for the appearance or disappearance of a
line of parabolic points. It is sufficient to produce a
crater on the F ermi surface (Fig. 33). Depending on
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Α. *

FIG. 33. Formation of a crater (a) and neck (b) on a F ermi
surface is accompanied by the appearance of lines of para 
bolic points (thick lines). The belt corresponding to the direc 
tion of propagation of sound perpendicular to the axis of the
F ermi surface runs around the c ra t er .

the nature of the point at which the Fermi surface be 
comes flat, one obtains either a crater (Fig. 33a) or a
waist (Fig. 33b). These "events" are necessarily ac 
companied by the appearance or disappearance of angu 
lar singularities in Γ, ** and many other anomalies
(change in the spectrum of Pippard frequencies in a
magnetic field,80 change in the spectrum of de Haas 
van Alphen oscillations,87 and so on).

The last paragraph enables us to generalize the idea
of a topologic transition (as of the phase transition of
order 2i is sometimes called) to any change in the ge 
ometry of the Fermi surface that is accompanied by a
qualitative change in some characteristics of the metal.

In conclusion, one final prediction88: according to
(22), the absorption coefficient Vf n(H) in a relatively
strong magnetic field will increase with increasing
electron mean free time τ. As already noted, a rough
estimate of the mean free path I shows that I is weakly
dependent on the number of electrons. This means that
the relaxation time τ = ΐ/ν¥ should increase with de 
creasing size of the cavity in the Fermi surface (prior
to its disappearance at P=Pk; see Fig. 32), leading to
an increase in Γ™"(Η). Of course, this growth ceases
in the immediate neighborhood of the phase transition
of order 2? and Γ^Η ) vanishes: an electron whose
velocity is less than the velocity of sound cannot ab 
sorb a phonon.

1 1 . TRANSFER OF ELECTRONS FROM ONE ORBIT
TO ANOTHER. M AGNETIC BREAKTHROUGH

In all the phenomena described above, the electrons
were either at a definite point in p space on the Fermi
surface or they hopped over from one point to another
as a result of scattering or, finally, they moved over
classical trajectories in the magnetic field. The recog 
nition of the complexity of the Fermi surface of most
metals is connected in particular with the understanding
of the fact that classical electron trajectories in a mag 
netic field (in p space) have points of closest approach,
so that we have the possibility of a tunnel transition
from one trajectory to another. This phenomenon has
been referred to as magnetic breakthrough89 and has
been found to play a fundamental role in many proper 
ties of metals.90

To understand the nature and importance of magnetic
breakthrough, we must distinguish between intra  and
interband transitions. If we confine our attention to the

b)

FIG. 34. Intraband breakthrough involves participation of
electrons from a thin layer near a self Intersecting path (a),
whereas interband breakthrough involves electrons from a
layer of finite thickness ∆ρ, (b). In both cases, we show the
paths in p space.

Fermi surface, intraband transitions are possible in
narrow intervals of values of pt (Fig. 34a), whereas
interband transitions are possible within broad bands
of width of the order of κ/α (Fig. 34b). Magnetic break 
through is defined as the range of phenomena connected
with interband transitions.

We shall not go into details of the properties of met 
als under the conditions of magnetic breakthrough and
will merely note some of the points that enable us to
achieve simple geometrical interpretations.

The region of magnetic breakthrough is the region in
which classical paths approach one another. This
means that an electronic state in the magnetic break 
through configuration is a superposition of quasiclassi 
cal states. This is why one can use geometric ideas in
the study of magnetic breakthrough, whereas physical
quantities characterizing a metal in the course of mag 
netic breakthrough can be expressed in the language of
the dispersion relation and unitary s matrices of rank
two, which describe the two channel scattering in the
magnetic breakthrough regions.11' The fact that the
magnetic breakthrough region is small in comparison
with the size of classical regions of magnetic break 
through configurations enables us to evaluate the s 
matrix for an arbitrary magnetic field without violating
the quasiclassical condition imposed on motion between
breakthrough regions92 (fcwc« zT). When the break 
through probability W  is not zero or unit (0< W< 1), the

FIG. 35. Magnetic breakthrough can change the topology of
electron paths. In a low field in the absence of breakthrough,
there are both open and closed paths; in a high field, only the
closed path is possible (lower part of figure).

11'The square of the modulus of the off diagonal element of the
s matrix is the probability W  of breakthrough, and the square
of the modulus of the diagonal element is the probability
1— W  that breakthrough will not take place.91
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FIG. 36. Magnetic breakthrough trajectories found from
studies of the de Haas van Alphen effect in magnesium.

motion of electrons is quantum mechanical in charac 
ter, but W— 1 as the magnetic field increases and the
motion again becomes quasiclassical. However, elec 
trons then acquire certain new features which they did
not have in weak fields. In view of the spectroscopic
character of studies performed in strong magnetic
fields, we must introduce a work of caution: the
changes can be not merely qualitative but even quanti 
tative. Figure 35 shows that magnetic breakthrough
may lead to a change in the topology of a plane cross
section, transforming it from an open to a closed con 
figuration.

The phenomena due to magnetic breakthrough were
first discovered experimentally by Priestley,93 who ex 
amined the de Haas van Alphen effect in magnesium
and found periods (closed cross sections) due to elec 
tron tunneling through barriers separating classical
paths (Fig. 36).

Magnetic breakthrough can be the source of many un 
usual oscillation effects that cannot be reduced to de
Haas van Alphen oscillations. There are cases where
two or even three large orbits on the Fermi surface
connect with one another because of magnetic break 
through across a small orbit (Fig. 37). It is possible
to introduce the idea of the effective breakthrough prob 
ability Weit that an electron will undergo transition
from one large quasiclassical region to another. This
effective probability is a periodic function of the recip 
rocal magnetic field. The period is given by the same
formula that is used for the de Haas van Alphen effect,
i.e., (9). However, the origin of the periodic depen 
dence is different. It is now due to interference between
waves reflected from the breakthrough points. The
periodicity arises for the same reason as in the case of
the coefficient of transparency of a dielectric plate in
which electromagnetic waves interfere with one another.
Oscillations in Wttt =  Wati{H) are the reason for the giant
oscillations in galvanomagnetic characteristics that in 
volve the main groups of electrons in a metal (Fig. 38).
This can be referred to as the relay effect. The small

a)

FIG. 37. Small orbits couple larger ones as a result of mag 
netic breakthrough. The shaded regions may act as the effec 
tive regions of magnetic breakthrough.
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FIG. 38. Giant oscillations in the magneto resistance of
beryllium due to magnetic breakthrough. The measurements
were carried out by the International Laboratory for Strong
Fields and Low Temperatures. Wrockaw, Poland, In 1972.

region acts as a relay that controls the motion of elec 
trons on a large trajectory because of magnetic break 
through.94

Interference between electron waves arriving at a
g.ven point of the magnetic breakthrough configuration
can also be the reason for oscillation effects. For this
to happen, two paths must be very similar to one
another, as shown in Fig. 39. The oscillation period is,
as before, determined by "area" quantization. The
word area is given in quotes in order to emphasize that
there are no electrons that describe this area. This
type of interference is observed only in transport phe 
nomena,95 whereas the oscillating part of thermody 
namic characteristics is determined by closed loops.

Magnetic breakthrough has been discovered in many
metals and properties. Its manifestations are very
varied and an understanding of magnetic breakthrough
phenomena is important for the interpretation of the
energy spectra of metals because, during the break 
through process, electrons are found in regions of p 
space that are inaccessible to classical motion.

12. CONCLUDING REMARKS

Our constructions are unrelated to modern geometry.
Physicists interested in the theory of metals would not
claim to have discovered anything new in geometry.
Geometry is merely used in the electronic theory of
metals in order to visualize many conclusions and re 
sults. Physicists are attracted by the fact that many
of the properties of metals are due to electrons occupy 
ing a surface, the cross section and certain lines and
points of which have a clear physical meaning. Our
understanding of the nature of metals has now reached
a state where we know how to construct these surfaces,

FIG. 39. Electrons moving on neighboring paths Interfere
and this leads to oscillations In transport characteristics. The
period in the magnetic field Is determined by the shaded re 
gion. Points represent fhe region of magnetic breakthrough.
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how to draw the lines on them, and how to determine
the position of the required points. We also know how
the simple geometric ideas can be used to calculate
different physical parameters.

We should like to take this oppourtunity to thank
L. P. PitaevskH for useful suggestions, and
T. Yu. Lisovskaya and Sh. T. Mevlyut for assistance
in the preparation of this review for publication.
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