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Photoelectric effect

Shining light on a metal expulses photoelectrons;
Can measure their kinetic energy. Does not depend on light
intensity I
Rather, depends on frequency ν

Ekin ∝ ~ν − const
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Einstein comes in: quantization of light
The constant is actually the work function φ: energy to
delocalize electron from surface.

Ekin = ~ν − φ
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ARPES: theory

Angular Resolved Photo-Emission Spectroscopy
The gist of it:

Want to measure energy of released electrons Ek and
their momentum k
Use conservation laws and photoelectric effect to extract
info

Ekin = ~ν − φ− |EB| (1)
p‖ = ~k‖ =

√
2mEkin sin θ (2)
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Ekin = ~ν − φ− |EB|
p‖ = ~k‖ =

√
2mEkin sin θ

Ekin measured kinetic energy of outgoing electron
θ measured is the angle of emission with the surface
ν and φ are known
EB wanted binding energy of electron in metal
k‖ wanted crystal momentum

If one has that, we can construct the dispersion of the electrons
E (k)!
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From Many-Body interpretation

Using ARPES, we measure the actual dispersion relation.
Interactions (e-e, e-ph, etc) change band dispersions and
lifetimes (spread)
Measure the spectral intensity: I(k, ω)

Spectral intensity I(k, ω) ∝ f (ω)A(k, ω)

1p spectral func. A(k, ω) = − 1
π

Σ′′(k, ω)
[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2

bare band εk

Self-energy Σ(k, ω) = Σ′(k, ω) + i Σ′′(k, ω)
= Band position + Linewidth/lifetime of QP
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Free electron v.s. Fermi Liquid

ARPES can see difference between a non-interacting
electron system and a Fermi Liquid system.
In NI A(k, ω) = δ(ω − εk)
Extremely sharp → Infinite lifetime of QP
In FL A(k, ω) = Zk

Γk/π
(ω−εk )2+Γ2

k
+ Aincoherent

QP peak has a width: finite lifetime τk = 1/Γk

8 / 24



Introduction to ARPES Seeing the superconducting gap Conclusion

(Left) Theoretical band for Electron Phonon coupling, see the
quasiparticle peak, which has a Lorentzian lifetime. (Right)
Example of observed Arpes intensity for Bi2201
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Experimental Considerations

Need a very clean surface (atomically flat). Hence
surface-sensitive probe, not good on bulk! (probe
∼ 2− 20Å in depth)
Need ultra-high vacuum (avoid surface deterioration)
Does not work under pressure or magnetic field.

However, very good at:
Comparison to theory
High resolution in energy AND momentum
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Bad surface

Figure: Experiments on optimally doped Bi2212 (a) Dispersion right after
cleaving. (b) After 1h in pure nitrogen. (c) After 1h in air.
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A clean example: Cu

We see the εk = k2

2m∗ the free dispersion of Copper. The splitting
of the bands can even be observed, due to Rashba coupling
(spin-momentum locking, small but non-zero in Cu[111]).
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Superconductivity Essentials

◦ Cooper instability: small attractive interaction binds electrons
together |k ↑,−k ↓>
◦ In BCS theory, superconductivity is result of condensation of
the Cooper pairs.
◦ Conventional SC: attraction is due to retarded
electron-phonon interaction. Isotropic interaction.

H =
∑

k
ξkc†k↑ck↑ + ξkc†k↓ck↓ + ∆c†k↑c

†
−k↓ + ∆c−k↓ck↑ (3)

ξk = ~2k2

2m − µ (4)
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What is the gap

◦ Because of the pairing state, there is an energy gap for single
particle excitation.
◦ In a superconductor, there is a one-particle gap but no
two-particle gap.
◦ The two-particle excitations (Cooper pairs) are coherent and
transport current without resistance.

15 / 24



Introduction to ARPES Seeing the superconducting gap Conclusion

Example: Niobium

We can probe the DOS
close to the Fermi Surface
for Niobium (Tc = 9.26K )
For T > Tc , no peak below
EF , normal Fermi
distribution.
For T < Tc , gap opens,
superconductivity sets in.

16 / 24



Introduction to ARPES Seeing the superconducting gap Conclusion

S-Wave vs D-Wave

◦ In conventional SC,
attractive interaction due to
e-ph coupling: isotropic.
Leads to s-wave pairing
(gap positive all around FS).
◦ In Cuprates, a d-wave
pairing was advanced to
explain how they could have
SC behavior.
◦ D-wave → has nodes where

∆(k) = 0 on the Fermi
Surface
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Bi-2212: Fermi Surface

◦ Bi2212: Bi2SR2CaCu2O8+δ,
T max

c = 96K .
◦ Planes of CuO with “stuff”
in between. Fermi surface is
similar to YBCO (as in
homework)
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Bi-2212: Gap across FS

◦ Using ARPES, the
excitations near the
Fermi-Surface can be probed
very accurately.
◦ Doing different cuts in

k-space, we can probe
different parts of the
Fermi-Surface.
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A clear node

EF from polycrystalline metal. Gap is hard to read, but is there! 20 / 24
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What to take from this

Exceptional resolution of the electronic structure (Bands &
Fermi Surface);
Can explicitly probe the gap;
Answered many questions about the nature of the electronic
excitations in Cuprates (ex: gap symmetry + deviations);
In Cuprates, has been very important to ascertain the
presence of the pseudogap phase (gap but no SC);
To be used even more: Need materials with better surface
cleaving (currently being applied to pnictides Fe-based SC)
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Thanks for listening!

Questions?
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