
Crystal Structure 12
Having introduced a number of important ideas in one dimension, we
must now deal with the fact that our world is actually spatially three-
dimensional. While this adds a bit of complication, really the important
concepts are no harder in three dimensions than they were in one di-
mension. Some of the most important ideas we have already met in one
dimension, but we will reintroduce them more generally here.
There are two things that might be difficult here. First, we do need to

wrestle with a bit of geometry. Hopefully most will not find this too hard.
Secondly we will also need to establish a language in order to describe
structures in two and three dimensions intelligently. As such, much of
this chapter is just a list of definitions to be learned, but unfortunately
this is necessary in order to be able to continue further at this point.

12.1 Lattices and Unit Cells

Definition 12.1 A lattice1 is an infinite set of points defined by integer

1Warning: Some books (Ashcroft and
Mermin in particular) refer to this as a
Bravais lattice. This enables them to
use the term lattice to describe other
things that we would not call a lattice
(e.g., the honeycomb). However, the
definition we use here is more common
among crystallographers, and more cor-
rect mathematically as well.

sums of a set of linearly independent primitive lattice2 vectors.

2Very frequently “primitive lattice vec-
tors” are called “primitive basis vec-
tors” (not the same use of the word
“basis” as in Section 10.1) or “primi-
tive translation vectors”.
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[1, 2] = a1 + 2a2

Fig. 12.1 A lattice is defined as integer
sums of of primitive lattice vectors.

For example, in two dimensions, as shown in Fig. 12.1 the lattice
points are described as

R[n1 n2] = n1a1 + n2a2 n1, n2 ∈ Z (2d)

with a1 and a2 being the primitive lattice vectors and n1 and n2 being
integers. In three dimensions points of a lattice are analogously indexed
by three integers:

R[n1 n2 n3] = n1a1 + n2a2 + n3a3 n1, n2, n3 ∈ Z (3 d).
(12.1)

Note that in one dimension this definition of a lattice fits with our pre-
vious description of a lattice as being the points R = na with n an
integer.
It is important to point out that in two and three dimensions, the

choice of primitive lattice vectors is not unique,3 as shown in Fig. 12.2.
(In one dimension, the single primitive lattice vector is unique up to the
sign, or direction, of a.) Fig. 12.2 The choice of primitive lat-

tice vectors for a lattice is not unique.
(Four possible sets of primitive lattice
vectors are shown, but there are an in-
finite number of possibilities!)

3Given a set of primitive lattice vectors ai a new set of primitive lattice vectors may
be constructed as bi =

∑
j mijaj so long as mij is an invertible matrix with integer

entries and the inverse matrix [m−1]ij also has integer entries.
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It turns out that there are several definitions that are entirely equiv-
alent to the one we have just given:

Equivalent Definition 12.1.1 A lattice is an infinite set of vectors
where addition of any two vectors in the set gives a third vector in the
set.

It is easy to see that our first definition 12.1 implies the second one 12.1.1.
Here is a less crisply defined, but sometimes more useful definition.

Equivalent Definition 12.1.2 A lattice is a set of points where the
environment of any given point is equivalent to the environment of any
other given point.

Fig. 12.3 Any periodic structure can
be represented as a lattice of repeating
motifs.

P

R

Q

Fig. 12.4 The honeycomb is not a lat-
tice. Points P and R are inequivalent
(points P and Q are equivalent).

It turns out that any periodic structure can be expressed as a lattice of
repeating motifs. A cartoon of this statement is shown in Fig. 12.3. One
should be cautious however, that not all periodic arrangements of points
are lattices. The honeycomb4 shown in Fig. 12.4 is not a lattice. This

4One should be very careful not to
call the honeycomb a hexagonal lattice.
First of all, by our definition it is not
a lattice at all since all points do not
have the same environment. Secondly,
some people (perhaps confusingly) use
the term “hexagonal” to mean what
the rest of us call a triangular lattice:
a lattice of triangles where each point
has six nearest neighbor points (see
Fig. 12.6).

is obvious from the third definition 12.1.2: The environment of point
P and point R are actually different—point P has a neighbor directly
above it (the point R), whereas point R has no neighbor directly above.
In order to describe a honeycomb (or other more complicated arrange-

ments of points) we have the idea of a unit cell, which we have met before
in Section 10.1. Generally we have

Definition 12.2 A unit cell is a region of space such that when many
identical units are stacked together it tiles (completely fills) all of space
and reconstructs the full structure.

An equivalent (but less rigorous) definition is

Equivalent Definition 12.2.1 A unit cell is the repeated motif which
is the elementary building block of the periodic structure.

To be more specific we frequently want to work with the smallest possible
unit cell:

Definition 12.3 A primitive unit cell for a periodic crystal is a unit
cell containing exactly one lattice point.

As mentioned in Section 10.1 the definition of the unit cell is never
unique. This is shown, for example, in Fig. 12.5.
Sometimes it is useful to define a unit cell which is not primitive in

order to make it simpler to work with. This is known as a conventional
unit cell. Almost always these conventional unit cells are chosen so as
to have orthogonal axes.
Some examples of possible unit cells are shown for the triangular lat-

tice in Fig. 12.6. In this figure the conventional unit cell (upper left) is
chosen to have orthogonal axes—which is often easier to work with than
axes which are non-orthogonal.
A note about counting the number of lattice points in the unit cell. It

is frequently the case that we will work with unit cells where the lattice
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Q:	How	can	we	describe	these	lattice	vectors	(there	are	an	infinite	number	of	them)?
A:	Using	primitive	lattice	vectors	(there	are	only	d	of	them	in	a	d-dimensional	space).

For	a	3D	lattice,	we	can	find	three primitive	lattice	vectors	(primitive	translation	vectors),	
such	that	any	translation	vector	can	be	written	as

!⃗ = &()⃗( + &+)⃗+ + &,)⃗,
where	&(, &+ and	&, are	three	integers.

For	a	2D	lattice,	we	can	find	two primitive	lattice	vectors	(primitive	translation	vectors),	such	
that	any	translation	vector	can	be	written	as

!⃗ = &()⃗( + &+)⃗+
where	&( and	&+ are	two	integers.

For	a	1D	lattice,	we	can	find	one	primitive	lattice	vector	(primitive	translation	vector),	such	
that	any	translation	vector	can	be	written	as

!⃗ = &()⃗(
where	&( is	an	integer.



1D	example

1D	crystal
3	atoms/periodicity

Choice	I:

Choice	II:

Choice	III:

1D	example

1D	crystal
3	atoms/periodicity

Choice	I:

Choice	II:

Choice	III:



114 Crystal Structure

It turns out that there are several definitions that are entirely equiv-
alent to the one we have just given:

Equivalent Definition 12.1.1 A lattice is an infinite set of vectors
where addition of any two vectors in the set gives a third vector in the
set.

It is easy to see that our first definition 12.1 implies the second one 12.1.1.
Here is a less crisply defined, but sometimes more useful definition.

Equivalent Definition 12.1.2 A lattice is a set of points where the
environment of any given point is equivalent to the environment of any
other given point.

Fig. 12.3 Any periodic structure can
be represented as a lattice of repeating
motifs.

P

R

Q

Fig. 12.4 The honeycomb is not a lat-
tice. Points P and R are inequivalent
(points P and Q are equivalent).

It turns out that any periodic structure can be expressed as a lattice of
repeating motifs. A cartoon of this statement is shown in Fig. 12.3. One
should be cautious however, that not all periodic arrangements of points
are lattices. The honeycomb4 shown in Fig. 12.4 is not a lattice. This

4One should be very careful not to
call the honeycomb a hexagonal lattice.
First of all, by our definition it is not
a lattice at all since all points do not
have the same environment. Secondly,
some people (perhaps confusingly) use
the term “hexagonal” to mean what
the rest of us call a triangular lattice:
a lattice of triangles where each point
has six nearest neighbor points (see
Fig. 12.6).

is obvious from the third definition 12.1.2: The environment of point
P and point R are actually different—point P has a neighbor directly
above it (the point R), whereas point R has no neighbor directly above.
In order to describe a honeycomb (or other more complicated arrange-

ments of points) we have the idea of a unit cell, which we have met before
in Section 10.1. Generally we have

Definition 12.2 A unit cell is a region of space such that when many
identical units are stacked together it tiles (completely fills) all of space
and reconstructs the full structure.

An equivalent (but less rigorous) definition is

Equivalent Definition 12.2.1 A unit cell is the repeated motif which
is the elementary building block of the periodic structure.

To be more specific we frequently want to work with the smallest possible
unit cell:

Definition 12.3 A primitive unit cell for a periodic crystal is a unit
cell containing exactly one lattice point.

As mentioned in Section 10.1 the definition of the unit cell is never
unique. This is shown, for example, in Fig. 12.5.
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order to make it simpler to work with. This is known as a conventional
unit cell. Almost always these conventional unit cells are chosen so as
to have orthogonal axes.
Some examples of possible unit cells are shown for the triangular lat-

tice in Fig. 12.6. In this figure the conventional unit cell (upper left) is
chosen to have orthogonal axes—which is often easier to work with than
axes which are non-orthogonal.
A note about counting the number of lattice points in the unit cell. It

is frequently the case that we will work with unit cells where the lattice
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points live at the corners (or edges) of the cells. When a lattice point is
on the boundary of the unit cell, it should only be counted fractionally
depending on what fraction of the point is actually in the cell. So for
example in the conventional unit cell shown in Fig. 12.6, there are two
lattice points within this cell. There is one point in the center, then four
points at the corners—each of which is one quarter inside the cell, so we
obtain 2 = 1+4(14 ) points in the cell. (Since there are two lattice points
in this cell, it is by definition not primitive.) Similarly for the primitive
cell shown in Fig. 12.6 (upper right), the two lattice points at the far
left and the far right have a 60o degree slice (which is 1/6 of a circle)
inside the cell. The other two lattice points each have 1/3 of the lattice
point inside the unit cell. Thus this unit cell contains 2(13 ) + 2(16 ) = 1
point, and is thus primitive. Note however, that we can just imagine
shifting the unit cell a tiny amount in almost any direction such that a
single lattice point is completely inside the unit cell and the others are
completely outside the unit cell. This sometimes makes counting much
easier.

Fig. 12.5 The choice of a unit cell is
not unique. All of these unit cells can
be used as “tiles” to perfectly recon-
struct the full crystal.

A conventional
unit cell

A primitive
unit cell

Wigner–Seitz
unit cell

Fig. 12.6 Some unit cells for the trian-
gular lattice.

Also shown in Fig. 12.6 is a so-called Wigner–Seitz unit cell

Definition 12.4 Given a lattice point, the set of all points in space
which are closer to that given lattice point than to any other lattice point
constitute the Wigner–Seitz cell of the given lattice point.5

5A construction analogous to Wigner–
Seitz can be performed on an irregular
collection of points as well as on a peri-
odic lattice. For such an irregular set of
point the region closer to one particular
point than to any other of the points is
known as a Voronoi cell.

There is a rather simple scheme for constructing such a Wigner–Seitz
cell: choose a lattice point and draw lines to all of its possible near
neighbors (not just its nearest neighbors). Then draw perpendicular
bisectors of all of these lines. The perpendicular bisectors bound the
Wigner–Seitz cell. It is always true that the Wigner–Seitz construction
for a lattice gives a primitive unit cell. In Fig. 12.7 we show another
example of the Wigner–Seitz construction for a two-dimensional lattice.

Fig. 12.7 The Wigner–Seitz construction for a lattice in two dimensions. On the left
perpendicular bisectors are added between the darker point and each of its neighbors.
The area bounded defines the Wigner–Seitz cell. On the right it is shown that the
Wigner–Seitz cell is a primitive unit cell. (The cells on the right are exactly the same
shape as the bounded area on the left!)
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Wigner	Seitz	construction
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(triangular) lattice, where we can write the primitive lattice vectors as

a1 = a x̂

a2 = (a/2) x̂+ (a
√
3/2) ŷ. (12.3)

In terms of the reference points of the lattice, the basis for the primitive
unit cell, i.e., the coordinates of the two larger circles with respect to
the reference point, are given by 1

3 (a1 + a2) and
2
3 (a1 + a2).

a2

a1

1
3 (a1 + a2)

2
3 (a1 + a2)

Fig. 12.9 Left: The honeycomb from
Fig. 12.4 is shown with the two inequiv-
alent points of the unit cell given dif-
ferent shades. The unit cell is out-
lined dotted and the corners of the
unit cell are marked with small black
dots (which form a triangular lattice).
Right: The unit cell is expanded and
coordinates are given with respect to
the reference point at the lower left cor-
ner.

12.2 Lattices in Three Dimensions

Fig. 12.10 A cubic lattice, otherwise
known as cubic “P” or cubic primitive.

The simplest lattice in three dimensions is the simple cubic lattice shown
in Fig. 12.10 (sometimes known as cubic “P” or cubic-primitive lattice).
The primitive unit cell in this case can most conveniently be taken to
be a single cube—which includes 1/8 of each of its eight corners (see
Fig. 12.11).

Fig. 12.11 Unit cells for cubic, tetrag-
onal, and orthorhombic lattices.

Only slightly more complicated than the simple cubic lattice are the
tetragonal and orthorhombic lattices where the axes remain perpendicu-
lar, but the primitive lattice vectors may be of different lengths (shown
in Fig. 12.11). The orthorhombic unit cell has three different lengths of
its perpendicular primitive lattice vectors, whereas the tetragonal unit
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a
a

a

Cubic
unit cell

a
a

c

c ̸= a

Tetragonal
unit cell

a
b

c

a, b, c
all different

Orthorhombic
unit cell

116 Crystal Structure

A similar construction can be performed in three dimensions in which
case one must construct perpendicular-bisecting planes to bound the
Wigner–Seitz cell.6 See for example, Figs. 12.13 and 12.16.

6Eugene Wigner was yet another Nobel
laureate who was one of the truly great
minds of the last century of physics.
Perhaps as important to physics was
the fact that his sister, Margit, mar-
ried Dirac. It was often said that Dirac
could be a physicist only because Mar-
git handled everything else. Fredrick
Seitz was far less famous, but gained
notoriety in his later years by being
a consultant for the tobacco industry,
a strong proponent of the Regan-era
Star Wars missile defense system, and
a prominent sceptic of global warming.
He passed away in 2007.

Definition 12.5 The description of objects in the unit cell with respect
to the reference lattice point in the unit cell is known as a basis.

This is the same definition of “basis” that we used in Section 10.1. In
other words, we think of reconstructing the entire crystal by associating
with each lattice point a basis of atoms.

a

a

[0, 0]

[ a4 ,
a
4 ]

[ a4 ,
3a
4 ]

[ 3a4 , a
4 ]

[ 3a4 , 3a
4 ]

[ a2 ,
a
2 ]

Fig. 12.8 Top: A periodic structure in
two dimensions. A unit cell is marked
with the dotted lines. Bottom: A
blow-up of the unit cell with the coor-
dinates of the objects in the unit cell
with respect to the reference point in
the lower left-hand corner. The basis is
the description of the atoms along with
these positions.

In Fig. 12.8 (top) we show a periodic structure in two dimension made
of two types of atoms. On the bottom we show a primitive unit cell
(expanded) with the position of the atoms given with respect to the
reference point of the unit cell which is taken to be the lower left-hand
corner. We can describe the basis of this crystal as follows:

Basis for crystal in Fig. 12.8 =

Large Light Gray Atom Position= [a/2, a/2]

Small Dark Gray Atoms Position= [a/4, a/4]
[a/4, 3a/4]
[3a/4, a/4]
[3a/4, 3a/4]

The reference points (the small black dots in the figure) forming the
square lattice have positions

R[n1 n2] = [a n1, a n2] = a n1x̂+ a n2ŷ (12.2)

with n1, n2 integers so that the large light gray atoms have positions

Rlight−gray
[n1 n2]

= [a n1, a n2] + [a/2, a/2]

whereas the small dark gray atoms have positions

Rdark−gray1
[n1 n2]

= [a n1, a n2] + [a/4, a/4]

Rdark−gray2
[n1 n2]

= [a n1, a n2] + [a/4, 3a/4]

Rdark−gray3
[n1 n2]

= [a n1, a n2] + [3a/4, a/4]

Rdark−gray4
[n1 n2]

= [a n1, a n2] + [3a/4, 3a/4].

In this way you can say that the positions of the atoms in the crystal
are “the lattice plus the basis”.
We can now return to the case of the honeycomb shown in Fig. 12.4.

The same honeycomb is shown in Fig. 12.9 with the lattice and the basis
explicitly shown. Here, the reference points (small black dots) form a

Basis	and	location	of	atoms	in	unit	cell

To		remember:	CRYSTAL	=	LATTICE	+	BASIS
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the spheres than packing the spheres in a simple cubic lattice10 (see also
Exercise 12.4). Correspondingly, bcc and fcc lattices are realized much
more frequently in nature than simple cubic (at least in the case of a
single atom basis). For example, the elements Al, Ca, Au, Pb, Ni, Cu,
Ag (and many others) are fcc whereas the elements Li, Na, K, Fe, Mo,
Cs (and many others) are bcc.

10In fact it is impossible to pack spheres
more densely than you would get by
placing the spheres at the vertices of
an fcc lattice. This result (known em-
pirically to people who have tried to
pack oranges in a crate) was first offi-
cially conjectured by Johannes Kepler
in 1611, but was not mathematically
proven until 1998! Note however that
there is another lattice, the hexago-
nal close packed lattice which achieves
precisely the same packing density for
spheres as the fcc lattice.

12.2.4 Other Lattices in Three Dimensions

Fig. 12.19 Conventional unit cells for
the fourteen Bravais lattice types. Note
that if you tried to construct a “face-
centered tetragonal” lattice, you would
find that by turning the axes at 45 de-
grees it would actually be equivalent
to a body-centered tetragonal lattice.
Hence face-centered tetragonal is not
listed as a Bravais lattice type (nor is
base-centered tetragonal for a similar
reason, etc.).

In addition to the simple cubic, orthorhombic, tetragonal, fcc, and
bcc lattices, there are nine other types of lattices in three dimensions.
These are known as the fourteen Bravais lattice types.11 Although the

11Named after Auguste Bravais who
classified all the three-dimensional lat-
tices in 1848. Actually they should be
named after Moritz Frankenheim who
studied the same thing over ten years
earlier—although he made a minor er-
ror in his studies, and therefore missed
getting his name associated with them.

study of all of these lattice types is beyond the scope of this book, it is
probably a good idea to know that they exist.
Figure 12.19 shows the full variety of Bravais lattice types in three di-
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(triangular) lattice, where we can write the primitive lattice vectors as

a1 = a x̂

a2 = (a/2) x̂+ (a
√
3/2) ŷ. (12.3)

In terms of the reference points of the lattice, the basis for the primitive
unit cell, i.e., the coordinates of the two larger circles with respect to
the reference point, are given by 1

3 (a1 + a2) and
2
3 (a1 + a2).

a2

a1

1
3 (a1 + a2)

2
3 (a1 + a2)

Fig. 12.9 Left: The honeycomb from
Fig. 12.4 is shown with the two inequiv-
alent points of the unit cell given dif-
ferent shades. The unit cell is out-
lined dotted and the corners of the
unit cell are marked with small black
dots (which form a triangular lattice).
Right: The unit cell is expanded and
coordinates are given with respect to
the reference point at the lower left cor-
ner.

12.2 Lattices in Three Dimensions

Fig. 12.10 A cubic lattice, otherwise
known as cubic “P” or cubic primitive.

The simplest lattice in three dimensions is the simple cubic lattice shown
in Fig. 12.10 (sometimes known as cubic “P” or cubic-primitive lattice).
The primitive unit cell in this case can most conveniently be taken to
be a single cube—which includes 1/8 of each of its eight corners (see
Fig. 12.11).

Fig. 12.11 Unit cells for cubic, tetrag-
onal, and orthorhombic lattices.

Only slightly more complicated than the simple cubic lattice are the
tetragonal and orthorhombic lattices where the axes remain perpendicu-
lar, but the primitive lattice vectors may be of different lengths (shown
in Fig. 12.11). The orthorhombic unit cell has three different lengths of
its perpendicular primitive lattice vectors, whereas the tetragonal unit
cell has two lengths the same and one different.
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Conventionally, to represent a given vector amongst the infinite num-
ber of possible lattice vectors in a lattice, one writes

[uvw] = ua1 + va2 + wa3 (12.4)

where u,v, and w are integers. For cases where the lattice vectors are
orthogonal, the basis vectors a1, a2, and a3 are assumed to be in the x̂,
ŷ, and ẑ directions. We have seen this notation before,7 for example, in7This notation is also sometimes

abused, as in Eq. 12.2 or Fig. 12.8,
where the brackets enclose not integers,
but distances. The notation can also
be abused to specify points which are
not members of the lattice, by choos-
ing, u, v, or w to be non-integers. We
will sometimes engage in such abuse.

the subscripts of the equations after definition 12.1.
Lattices in three dimensions also exist where axes are not orthogonal.

We will not cover all of these more complicated lattices in detail in
this book. (In Section 12.2.4 we will briefly look through these other
cases, but only at a very cursory level.) The principles we learn in the
more simple cases (with orthogonal axes) generalize fairly easily, and just
add further geometric and algebraic complexity without illuminating the
physics much further.
Two particular lattices (with orthogonal axes) which we will cover

in some detail are body-centered cubic (bcc) lattices and face-centered
cubic (fcc) lattices.

12.2.1 The Body-Centered Cubic (bcc) Lattice

Fig. 12.12 Conventional unit cell for
the body-centered cubic (I) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Body-centered cubic

unit cell

a/2

a
Plan view

The body-centered cubic (bcc) lattice is a simple cubic lattice where
there is an additional lattice point in the very center of the cube (this
is sometimes known8 as cubic-I.) The unit cell is shown in the left of8Cubic-I comes from “Innenzentriert”

(inner-centered). This notation was in-
troduced by Bravais in his 1848 trea-
tise (Interestingly, Europe was burning
in 1848, but obviously that didn’t stop
science from progressing.)

Fig. 12.12. Another way to show this unit cell, which does not rely on
showing a three-dimensional picture, is to use a so-called plan view of the
unit cell, shown in the right of Fig. 12.12. A plan view (a term used in
engineering and architecture) is a two-dimensional projection from the
top of an object where heights are labeled to show the third dimension.
In the picture of the bcc unit cell, there are eight lattice points on the

corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of the cell. Thus the conventional unit
cell contains exactly two (= 8× 1/8 + 1) lattice points.
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Packing together these unit cells to fill space, we see that the lattice
points of a full bcc lattice can be described as being points having co-
ordinates [x, y, z] where either all three coordinates are integers [uvw]
times the lattice constant a, or all three are half-odd-integers times the
lattice constant a.
It is often convenient to think of the bcc lattice as a simple cubic lattice

with a basis of two atoms per conventional cell. The simple cubic lattice
contains points [x, y, z] where all three coordinates are integers in units
of the lattice constant. Within the conventional simple-cubic unit cell
we put one point at position [0, 0, 0] and another point at the position
[ 12 ,

1
2 ,

1
2 ] in units of the lattice constant. Thus the points of the bcc

lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3]

Rcenter = [n1, n2, n3] + [ 12 ,
1
2 ,

1
2 ]

as if the two different types of points were two different types of atoms,
although all points in this lattice should be considered equivalent (they
only look inequivalent because we have chosen a conventional unit cell
with two lattice points in it). From this representation we see that we can
also think of the bcc lattice as being two interpenetrating simple cubic
lattices displaced from each other by [12 ,

1
2 ,

1
2 ]. (See also Fig. 12.14.)

We may ask why it is that this set of points forms a lattice. In terms of
our first definition of a lattice (definition 12.1) we can write the primitive
lattice vectors of the bcc lattice as

a1 = [1, 0, 0]

a2 = [0, 1, 0]

a3 = [ 12 ,
1
2 ,

1
2 ]

in units of the lattice constant. It is easy to check that any combination

R = n1a1 + n2a2 + n3a3 (12.5)

with n1, n2, and n3 integers gives a point within our definition of the bcc
lattice (that the three coordinates are either all integers or all half-odd
integers times the lattice constant). Further, one can check that any
point satisfying the conditions for the bcc lattice can be written in the
form of Eq. 12.5.

Fig. 12.13 The Wigner–Seitz cell of
the bcc lattice (this shape is a “trun-
cated octahedron”). The hexago-
nal face is the perpendicular bisecting
plane between the lattice point (shown
as a sphere) in the center and the lattice
point (also a sphere) on the corner. The
square face is the perpendicular bisect-
ing plane between the lattice point in
the center of the unit cell and a lattice
point in the center of the neighboring
unit cell.

Fig. 12.14 The Wigner–Seitz cells of
the bcc lattice pack together to tile all
of space. Note that the structure of the
bcc lattice is that of two interpenetrat-
ing simple cubic lattices.

We can also check that our description of a bcc lattice satisfies our
second description of a lattice (definition 12.1.1) that addition of any
two points of the lattice (given by Eq. 12.5) gives another point of the
lattice.
More qualitatively we can consider definition 12.1.2 of the lattice—

that the local environment of every point in the lattice should be the
same. Examining the point in the center of the unit cell, we see that
it has precisely eight nearest neighbors in each of the possible diagonal
directions. Similarly, any of the points in the corners of the unit cells will
have eight nearest neighbors corresponding to the points in the center
of the eight adjacent unit cells.
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Lattice	sites:	)(?	@A + B	CA+	n	D̂)
Lattice	point	per	conventional	cell:	1 = 8× (

G
Volume	(conventional	cell):	),
Volume	(primitive	cell)	:	),
Number	of	nearest	neighbors:	6
Nearest	neighbor	distance:	)
Number	of	second	neighbors:	12
Second	neighbor	distance:	 2� )

Packing	fraction:		I	J ≈ 0.524

Coordinates	of	the	sites:	(?, &,B)
For	the	site	 0,0,0 ,
6	nearest	neighbors:	 ±1,0,0 , 0, ±1,0 and	 0,0, ±1
12	nest	nearest	neighbors:	 ±1,±1,0 , 0, ±1, ±1 and		(±1,0, ±1)
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Packing	fraction Packing	fraction
Packing	fraction:
We	try	to	pack	N	spheres	(hard,	cannot	deform).	
The	total	volume	of	the	spheres	is	N4	9 OP

,
The	volume	these	spheres	occupy	V > N4	9 OP

, (there	are	spacing)
Packing	fraction=total	volume	of	the	spheres/total	volume	these	spheres	occupy
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High	packing	fraction	means	the	space	is	used	more	efficiently



Packing	fraction	of	simple	cubic
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Ø About	half	(0.524=52.4%)	of	the	space	is	really	used	by	the	sphere.
Ø The	other	half	(0.476=47.6%)	is	empty.
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The coordination number of a lattice (frequently called Z or z) is the
number of nearest neighbors any point of the lattice has. For the bcc
lattice the coordination number is Z = 8.
As in two dimensions, a Wigner–Seitz cell can be constructed around

each lattice point which encloses all points in space that are closer to that
lattice point than to any other point in the lattice. This Wigner–Seitz
unit cell for the bcc lattice is shown in Fig. 12.13. Note that this cell is
bounded by the perpendicular bisecting planes between lattice points.
These Wigner–Seitz cells, being primitive, can be stacked together to fill
all of space as shown in Fig. 12.14.

12.2.2 The Face-Centered Cubic (fcc) Lattice

Fig. 12.15 Conventional unit cell for
the face-centered cubic (F) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Face-centered cubic

unit cell

a/2a/2

a/2

a/2

a
Plan view

The face-centered (fcc) lattice is a simple cubic lattice where there
is an additional lattice point in the center of every face of every cube
(this is sometimes known as cubic-F, for “face-centered”). The unit
cell is shown in the left of Fig. 12.15. A plan view of the unit cell is
shown on the right of Fig. 12.15 with heights labeled to indicate the
third dimension.

Fig. 12.16 The Wigner–Seitz cell of
the fcc lattice (this shape is a “rhombic
dodecahedron”). Each face is the per-
pendicular bisector between the central
point and one of its 12 nearest neigh-
bors.

In the picture of the fcc unit cell, there are eight lattice points on the
corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of each of the six faces (each of which
is 1/2 inside the cell). Thus the conventional unit cell contains exactly
four (= 8 × 1/8 + 6 × 1/2) lattice points. Packing together these unit
cells to fill space, we see that the lattice points of a full fcc lattice can
be described as being points having coordinates (x, y, z) where either all
three coordinates are integers times the lattice constant a, or two of the
three coordinates are half-odd integers times the lattice constant a and
the remaining one coordinate is an integer times the lattice constant
a. Analogous to the bcc case, it is sometimes convenient to think of
the fcc lattice as a simple cubic lattice with a basis of four atoms per
conventional unit cell. The simple cubic lattice contains points [x, y, z]
where all three coordinates are integers in units of the lattice constant
a. Within the conventional simple-cubic unit cell we put one point at
position [0, 0, 0] and another point at the position [ 12 ,

1
2 , 0] another point

120 Crystal Structure

The coordination number of a lattice (frequently called Z or z) is the
number of nearest neighbors any point of the lattice has. For the bcc
lattice the coordination number is Z = 8.
As in two dimensions, a Wigner–Seitz cell can be constructed around

each lattice point which encloses all points in space that are closer to that
lattice point than to any other point in the lattice. This Wigner–Seitz
unit cell for the bcc lattice is shown in Fig. 12.13. Note that this cell is
bounded by the perpendicular bisecting planes between lattice points.
These Wigner–Seitz cells, being primitive, can be stacked together to fill
all of space as shown in Fig. 12.14.

12.2.2 The Face-Centered Cubic (fcc) Lattice

Fig. 12.15 Conventional unit cell for
the face-centered cubic (F) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Face-centered cubic

unit cell

a/2a/2

a/2

a/2

a
Plan view

The face-centered (fcc) lattice is a simple cubic lattice where there
is an additional lattice point in the center of every face of every cube
(this is sometimes known as cubic-F, for “face-centered”). The unit
cell is shown in the left of Fig. 12.15. A plan view of the unit cell is
shown on the right of Fig. 12.15 with heights labeled to indicate the
third dimension.

Fig. 12.16 The Wigner–Seitz cell of
the fcc lattice (this shape is a “rhombic
dodecahedron”). Each face is the per-
pendicular bisector between the central
point and one of its 12 nearest neigh-
bors.

In the picture of the fcc unit cell, there are eight lattice points on the
corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of each of the six faces (each of which
is 1/2 inside the cell). Thus the conventional unit cell contains exactly
four (= 8 × 1/8 + 6 × 1/2) lattice points. Packing together these unit
cells to fill space, we see that the lattice points of a full fcc lattice can
be described as being points having coordinates (x, y, z) where either all
three coordinates are integers times the lattice constant a, or two of the
three coordinates are half-odd integers times the lattice constant a and
the remaining one coordinate is an integer times the lattice constant
a. Analogous to the bcc case, it is sometimes convenient to think of
the fcc lattice as a simple cubic lattice with a basis of four atoms per
conventional unit cell. The simple cubic lattice contains points [x, y, z]
where all three coordinates are integers in units of the lattice constant
a. Within the conventional simple-cubic unit cell we put one point at
position [0, 0, 0] and another point at the position [ 12 ,

1
2 , 0] another point

120 Crystal Structure

The coordination number of a lattice (frequently called Z or z) is the
number of nearest neighbors any point of the lattice has. For the bcc
lattice the coordination number is Z = 8.
As in two dimensions, a Wigner–Seitz cell can be constructed around

each lattice point which encloses all points in space that are closer to that
lattice point than to any other point in the lattice. This Wigner–Seitz
unit cell for the bcc lattice is shown in Fig. 12.13. Note that this cell is
bounded by the perpendicular bisecting planes between lattice points.
These Wigner–Seitz cells, being primitive, can be stacked together to fill
all of space as shown in Fig. 12.14.

12.2.2 The Face-Centered Cubic (fcc) Lattice

Fig. 12.15 Conventional unit cell for
the face-centered cubic (F) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Face-centered cubic

unit cell

a/2a/2

a/2

a/2

a
Plan view

The face-centered (fcc) lattice is a simple cubic lattice where there
is an additional lattice point in the center of every face of every cube
(this is sometimes known as cubic-F, for “face-centered”). The unit
cell is shown in the left of Fig. 12.15. A plan view of the unit cell is
shown on the right of Fig. 12.15 with heights labeled to indicate the
third dimension.

Fig. 12.16 The Wigner–Seitz cell of
the fcc lattice (this shape is a “rhombic
dodecahedron”). Each face is the per-
pendicular bisector between the central
point and one of its 12 nearest neigh-
bors.

In the picture of the fcc unit cell, there are eight lattice points on the
corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of each of the six faces (each of which
is 1/2 inside the cell). Thus the conventional unit cell contains exactly
four (= 8 × 1/8 + 6 × 1/2) lattice points. Packing together these unit
cells to fill space, we see that the lattice points of a full fcc lattice can
be described as being points having coordinates (x, y, z) where either all
three coordinates are integers times the lattice constant a, or two of the
three coordinates are half-odd integers times the lattice constant a and
the remaining one coordinate is an integer times the lattice constant
a. Analogous to the bcc case, it is sometimes convenient to think of
the fcc lattice as a simple cubic lattice with a basis of four atoms per
conventional unit cell. The simple cubic lattice contains points [x, y, z]
where all three coordinates are integers in units of the lattice constant
a. Within the conventional simple-cubic unit cell we put one point at
position [0, 0, 0] and another point at the position [ 12 ,

1
2 , 0] another point

12.2 Lattices in Three Dimensions 121

at [ 12 , 0,
1
2 ] and another point at [0, 1

2 ,
1
2 ]. Thus the lattice points of the

fcc lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3] (12.6)

Rface−xy = [n1, n2, n3] + [ 12 ,
1
2 , 0]

Rface−xz = [n1, n2, n3] + [ 12 , 0,
1
2 ]

Rface−yz = [n1, n2, n3] + [0, 1
2 ,

1
2 ].

Again, this expresses the points of the lattice as if they were four dif-
ferent types of points but they only look inequivalent because we have
chosen a conventional unit cell with four lattice points in it. Since the
conventional unit cell has four lattice points in it, we can think of the
fcc lattice as being four interpenetrating simple cubic lattices.
Again we can check that this set of points forms a lattice. In terms

of our first definition of a lattice (definition 12.1) we write the primitive
lattice vectors of the fcc lattice as

a1 = [ 12 ,
1
2 , 0]

a2 = [ 12 , 0,
1
2 ]

a3 = [0, 1
2 ,

1
2 ]

in units of the lattice constant. Again it is easy to check that any
combination

R = n1a1 + n2a2 + n3a3

with n1, n2, and n3 integers gives a point within our definition of the
fcc lattice (that the three coordinates are either all integers, or two of
three are half-odd integers and the remaining is an integer in units of
the lattice constant a).

Fig. 12.17 The Wigner–Seitz cells of
the fcc lattice pack together to tile all
of space. Also shown in the picture are
two conventional (cubic) unit cells.

We can also similarly check that our description of a fcc lattice satisfies
our other two definitions of (definition 12.1.1 and 12.1.2) of a lattice.
The Wigner–Seitz unit cell for the fcc lattice is shown in Fig. 12.16. In
Fig. 12.17 it is shown how these Wigner–Seitz cells pack together to fill
all of space.

12.2.3 Sphere Packing
Fig. 12.18 Top: Simple cubic, Mid-
dle: bcc, Bottom: fcc. The left shows
packing of spheres into these lattices.
The right shows a cutaway of the con-
ventional unit cell exposing how the fcc
and bcc lattices leave much less empty
space than the simple cubic.

Although the simple cubic lattice (see Fig. 12.10) is conceptually the
simplest of all lattices, in fact, real crystals of atoms are rarely simple
cubic.9 To understand why this is so, think of atoms as small spheres

9Of all of the chemical elements, polo-
nium is the only one which can form a
simple cubic lattice with a single atom
basis. (It can also form another crystal
structure depending on how it is pre-
pared.)

that weakly attract each other and therefore try to pack close together.
When you assemble spheres into a simple cubic lattice you find that it
is a very inefficient way to pack the spheres together—you are left with
a lot of empty space in the center of the unit cells, and this turns out
to be energetically unfavorable in most cases. Packings of spheres into
simple cubic, bcc, and fcc lattices are shown in Fig. 12.18. It is easy
to see that the bcc and fcc lattices leave much less open space between

fcc
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mensions. While it is an extremely deep fact that there are only fourteen
lattice types in three dimensions, the precise statement of this theorem,
as well of the proof of it, are beyond the scope of this book. The key re-
sult is that any crystal, no matter how complicated, has a lattice which
is one of these fourteen types.12

12There is a real subtlety here in clas-
sifying a crystal as having a particu-
lar lattice type. There are only these
fourteen lattice types, but in principle a
crystal could have one lattice, but have
the symmetry of another lattice. An ex-
ample of this would be if the a lattice
were cubic, but the unit cell did not
look the same from all six sides. Crys-
tallographers would not classify this as
being a cubic material even if the lat-
tice happened to be cubic. The reason
for this is that if the unit cell did not
look the same from all six sides, there
would be no particular reason that the
three primitive lattice vectors should
have the same length—it would be an
insane coincidence were this to happen,
and almost certainly in any real mate-
rial the primitive lattice vector lengths
would actually have slightly different
values if measured more closely.

12.2.5 Some Real Crystals

Once we have discussed lattices we can combine a lattice with a basis to
describe any periodic structure—and in particular, we can describe any
crystalline structure. Several examples of real (and reasonably simple)
crystal structures are shown in Figs. 12.20 and 12.21.

Fig. 12.20 Top: Sodium forms a bcc
lattice. Bottom: Caesium chloride
forms a cubic lattice with a two atom
basis. Note carefully: CsCl is not bcc!
In a bcc lattice all of the points (includ-
ing the body center) must be identical.
For CsCl, the point in the center is Cl
whereas the points in the corner are Cs.

Sodium (Na)
Lattice = Cubic-I (bcc)

Basis = Na at [000] Plan view
unlabeled points at z = 0, 1

1/2

Caesium chloride (CsCl)
Lattice = Cubic-P

Basis = Cs at [000]

and Cl at [ 12
1
2
1
2 ] Plan view

unlabeled points at z = 0, 1

1/2
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Atoms	inside	a	unit	cell

Ø We	choose	three	lattice	vectors
Ø Three	lattice	vectors	form	a	primitive	or	a	conventional	unit	cell
Ø Length	of	these	vectors	are	called:	the	lattice	constants

We	can	mark	any	unit	cell	by	three	integers:	?B&
!⃗ = ?)⃗( + B	)⃗+ + &	)⃗,

Coordinates	of	an	atom:
We	can	mark	any	atom	in	a	unit	cell	by	three	real	numbers:	@CD.
The	location	of	this	atom:	@	)⃗( + C	)⃗+ + D	)⃗,
Notice	that	0 ≤ @ < 1 and	0 ≤ C < 1 and	0 ≤ D < 1

Q:	Why	x	cannot	be	1?
A:	Due	to	the	periodic	structure.	1	is	just	0	in	the	next	unit	cell



Sodium	Chloride	structure
Face-centered	cubic	lattice
Na+	ions	form	a	face-centered	cubic	lattice
Cl- ions	are	located	between	each	two	
neighboring	Na+	ions

Equivalently,	we	can	say	that
Cl- ions	form	a	face-centered	cubic	lattice
Na+	ions	are	located	between	each	two	
neighboring	Na+	ions

Sodium Chloride 

Sodium	Chloride	structure

Primitive	cells



Cesium	chloride	structure

Simple	cubic	lattice
Cs+	ions	form	a	cubic	lattice
Cl- ions	are	located	at	the	center	of	each	cube

Equivalently,	we	can	say	that
Cl- ions	form	a	cubic	lattice
Cs+ ions	are	located	at	the	center	of	each	cube

Coordinates:
Cs:	000
Cl:		(+

(
+
(
+

Notice	that	this	is	a	simple	cubic	lattice
NOT	a	body	centered	cubic	lattice
Ø For	a	bcc	lattice,	the	center	site	is	the	

same	as	the	corner	sites
Ø Here,	center	sites	and	corner	sites	are	

different
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Cesium	Chloride



Diamond	lattice	is	NOT	a	Bravais	Lattice	either

Same	story	as	in	graphene:
We	can	distinguish	two	different	type	of	carbon	sites	(marked	by	different	color)
We	need	to	combine	two	carbon	sites	(one	black	and	one	white)	together	as	a	(primitive)	unit	cell
If	we	only	look	at	the	black	(or	white)	sites,	we	found	the	Bravais	lattice:	fcc

Diamond	is	not	a	Bravais lattice


