

VESTA is an important tool for this class . Free to download and install

Primitive lattice vectors

For a 3D lattice, we can find three primitive lattice vectors (primitive translation vectors), such that any translation vector can be written as

$$\vec{t} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

where n_1 , n_2 and n_3 are three integers.

Red (shorter) vectors: \vec{a}_1 and \vec{a}_2 Blue (longer) vectors: \vec{b}_1 and \vec{b}_2

 \vec{a}_1 and \vec{a}_2 are primitive lattice vectors \vec{b}_1 and \vec{b}_2 are NOT primitive lattice vectors

$$\vec{a}_1 = \frac{1}{2}\vec{b}_1 + 0\vec{b}_2$$

noninteger coefficients

5 Bravaus lattices in 2D

http://en.wikipedia.org/wiki/Bravais_lattice

Wigner Seitz construction

Basis and location of atoms in unit cell

[•] Lattices in Three Dimensions

Cubic unit cell

 \mathcal{C}

a, b, c all different

Store at the year of the log of the store of the second

a/2

a

Plan view

Body-centered cubic unit cell

Coordinates of the sites: (l, n, m)For the site (0,0,0), 6 nearest neighbors: $(\pm 1,0,0)$, $(0, \pm 1,0)$ and $(0,0, \pm 1)$ 12 nest nearest neighbors: $(\pm 1, \pm 1,0)$, $(0, \pm 1, \pm 1)$ and $(\pm 1,0, \pm 1)$

Packing fraction

Packing fraction: We try to pack N spheres (hard, cannot deform). The total volume of the spheres is $N4 \pi \frac{R^3}{3}$ The volume these spheres occupy V > $N4 \pi \frac{R^3}{3}$ (there are spacing) Packing fraction=total volume of the spheres/total volume these spheres occupy

Packing fraction =
$$\frac{N4\pi\frac{R^3}{3}}{V} = \frac{4\pi\frac{R^3}{3}}{V/N} = \frac{4\pi\frac{R^3}{3}}{Volume \ per \ site}$$

= $\frac{4\pi\frac{R^3}{3}}{Volume \ of \ a \ primitive \ cell}$

High packing fraction means the space is used more efficiently

Packing fraction of simple cubic

Packing fraction =
$$\frac{4 \pi \frac{R^3}{3}}{Volume \ of \ a \ primitive \ cell}$$
$$= \frac{4 \pi \frac{R^3}{3}}{a^3} = \frac{4 \pi}{3} \left(\frac{R}{a}\right)^3 = \frac{4 \pi}{3} \left(\frac{a/2}{a}\right)^3 = \frac{\pi}{6} \approx 0.524$$

Nearest distance= 2 R R= Nearest distance/2=a/2

- > About half (0.524=52.4%) of the space is really used by the sphere.
- \succ The other half (0.476=47.6%) is empty.

Face-centered cubic unit cell

a/2 a/2 a/2 a/2 a/2 a/2 a/2 a/2 a/2 a/2

Plan view

-

Some Real Crystals

Plan view

Plan view unlabeled points at z = 0, 1

We can mark any unit cell by three integers: lmn $\vec{t} = l\vec{a}_1 + m \vec{a}_2 + n \vec{a}_3$

Coordinates of an atom:

We can mark any atom in a unit cell by three real numbers: xyz. The location of this atom: $x \vec{a}_1 + y \vec{a}_2 + z \vec{a}_3$ Notice that $0 \le x < 1$ and $0 \le y < 1$ and $0 \le z < 1$

Q: Why x cannot be 1? A: Due to the periodic structure. 1 is just 0 in the next unit cell

Sodium Chloride

Face-centered cubic lattice Na+ ions form a face-centered cubic lattice Cl- ions are located between each two neighboring Na+ ions

Equivalently, we can say that Cl- ions form a face-centered cubic lattice Na+ ions are located between each two neighboring Na+ ions

Cl:	000;	$\frac{1}{2}\frac{1}{2}0$;	$\frac{1}{2}0^{1}_{2}$;	0^{11}_{22} .
Na:	$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$;	$00\frac{1}{2}$;	$0^{1}_{2}0$;	$\frac{1}{2}00$.

Crystal	a	Crystal	a
Lill	4.08 Å	AgBr	5.77 Å
MgO	4.20	PbS	5.92
MnO	4.43	KCl	6.29
NaCl	5.63	KBr	6.59

Primitive cells

Cesium Chloride

Simple cubic lattice Cs+ ions form a cubic lattice Cl- ions are located at the center of each cube

Equivalently, we can say that CI- ions form a cubic lattice Cs+ ions are located at the center of each cube

Coordinates: Cs: 000 Cl: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

Notice that this is a simple cubic lattice Crystal Lillg

Crystal

LiHg

TlBr

CsCl

TH

NH₄Cl

NH₄C

TlBr

CsCl

3.29 Å

3.87

3.97

4.11

- For a bcc lattice, the center site is the same as the corner sites
- Here, center sites and corner sites are different

Diamond is not a Bravais lattice

Same story as in graphene:

We can distinguish two different type of carbon sites (marked by different color) We need to combine two carbon sites (one black and one white) together as a (primitive) unit cell If we only look at the black (or white) sites, we found the Bravais lattice: fcc