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Abstract

The main goal of this project was to write a review about different quantum
Hall effects. This review focuses on the integer and relativistic quantum Hall
effect in graphene. The quantum Hall effect is a newly discovered phenomena
that was experimentally observed in 1980 and relativistic quantum Hall effect
in graphene was observed in 2005. This project takes a theoretical approach
to describe the quantum Hall effects and graphene itself. Experiments has
shown that for very strong magnetic fields applied to 2D systems, the Hall
resistance becomes quantized, RH = h/ne2 and only depends on the charge
of the electron and Planck’s constant, two fundamental constants of nature.
This sets a new standard on how to define resistance, and gives a good tool
for precise measurements of fine structure constant.

Sammanfattning

Målet med det här projektet är att göra en litteraturstudie om olika kvant-
Halleffekter. Den här litteraturstudien fokuserar p̊a heltals och relativistiska
Halleffekten i grafen. Kvant-Halleffekten är ett nyupptäckt fenomen som ob-
serverades experimentellt 1980 och den relativistiska Halleffekten observera-
des 2005. Den här litteraturstudien tar en teoretisk inriktning p̊a att beskriva
kvant-Halleffekten och grafen. Experiment har visat att vid väldigt starka
magnetfält i tv̊adimensionella system, s̊a blir det elektriska motst̊andet kvan-
tiserat, RH = h/ne2 och beror endast p̊a elektronens laddning och Plancks
konstant, tv̊a fundamentala naturkonstanter. Detta sätter en helt ny standard
som definierar det elektriska motst̊andet.

För att beskriva kvant-Halleffekten s̊a m̊aste man först g̊a igenom Lan-
daukvantisering, det vill säga att när man applicerar ett starkt magnetfält
vinkelrätt mot det tv̊adimensionella planet åker elektronerna runt i slutna
banor, p̊a grund av Lorentzkraften. Dessa banor blir d̊a kvantiserade vilket
kallas Landauniv̊aer.
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1 Introduction

This project is a review about different descriptions of the integer and relativistic
quantum Hall effect in graphene. First some introduction to the classical Hall effect
will be presented. Then some aspects about Landau quantization will be covered
before discussing quantum Hall effects. There are many different quantum Hall
effects that has been discovered during the years. For example, quantum integer or
fractional, charge or spin or relativistic and non relativistic Hall effects. This project
mainly focuses on integer and relativistic Hall effects in graphene.

Edwin Hall discovered an interesting phenomena when one applies an electric
field to a metal and at the same time apply a magnetic field in the perpendic-
ular direction. Then Hall showed that the transverse resistance RH is equal to
RH = B/qnel, which is a very interesting result. A result that has some very useful
applications in many fields. Quantum Hall effect is a quantum mechanical general-
ization of the classical Hall effect, which is observed for two-dimensional systems at
very low temperatures. Quantum Hall effect is a relativity new discovered phenom-
ena and one of the most interesting phenomena within condensed matter physics.

In 1980 a quantized version of the Hall effect was discovered by Klitzing, Dorda
and Pepper, which later gave them the Nobel prize [1, p. 13]. When one create low
temperatures and a strong magnetic field in a 2D system (see figure 2), the Hall
resistance becomes quantized,

RH =
h

ne2

where n is an integer.

Instead for being linearly proportional to the magnetic field, the Hall resistance
shows some plateaus (see figure 1). One also notice that the Hall resistance is in-
dependent of the properties of the material and is only depended on the Planck’s
constant, h and the charge of the electron, e, two fundamental constants of nature.
This has resulted in a new standardization of resistance which has been used since
1990, RK−90 = h/e2 = 25812.807Ω [1, p. 14]. It also provides a good tool for mea-
suring the fine structure constant [8].

In graphene, electrons start to behave as massless relativistic particles and obey
Dirac equation of motion in two-dimensions. Landau quantization of electron orbits
then results in the resistance taking values of n = ±2(2m+1), where m is an integer.
The different signs corresponds to electron and hole conductivity. All of this will be
discussed in greater detail in this review.

2 Background

Before introducing Quantum Hall effect, one may take a look at the classical Hall
effect.
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Figure 1: Here is a measurement made by J. Smet, MPI-Stuttgart of quantum Hall
effects, both Integer and fractional Hall effect. Here one can see the plateau pattern
and at these plateaus the longitudinal resistance goes to zero [1].

2.1 Classical Hall effect

The classical Hall effect was discovered back in 1879 by Edwin Hall. What he found
was that the transverse resistance RH is linearly proportional to a perpendicular
magnetic field applied [1, p. 8],

RH =
B

qnel
, (1)

where q is the charge carrier and nel is the 2D carrier density.
Classical Hall effect is basically a phenomena that occurs when one have a metal and
apply an electric field such that a current flows along the sample. If one then applies
a magnetic field perpendicular to the electric field, the electrons will be effected in
such a way that they accumulate at one side of the sample, while opposite charges
accumulate on the other side. Then they will create a potential across the sample,
called Hall voltage.
To understand this in more detail and come up with equation (1), one has to make
some certain assumptions and look at the Hall effect in the framework of the Drude
model. The Drude model assumes the electrons to behave as a classical gas within
a solid [3, p. 4] and it also assumes that electrons do not interact with each other.
Electrons can collide with an ion, which then will result in velocity change of the
electron. But meanwhile the electron is traveling, there are no other interactions
taking place, due to the free electron approximation [3, p. 5]. Through the collisions,
the electrons reach thermal equilibrium with the lattice. Final important approxi-
mation is the relaxation time τ . With τ , one can for example define the mean free
path of an electron: λ = τvD [3, p.6 ].

If one now go to the case where one has a metal with an electric field applied
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to it, one will then see a current going through the sample. This motion can be
described by the equation of motion for an electron [2, p. 73]

d~v

dt
me = −e ~E, (2)

which has a solution

~v(t) =
−e ~Et
me

. (3)

But due to the collisions with ions that happens after a time τ , the average drift
velocity becomes

~v(t) =
−e ~Eτ
me

. (4)

To find the charge density, one can imagine a cross sectional area in which the
current goes through, then the number of charges going through that area is

I = −en|~v|A (5)

then the current density is

~j = −en~v. (6)

Inserting equation (3) to equation (6) gives,

~j =
ne2τ

me

~E (7)

and as a result the conductivity is [2, p. 74]

σ0 =
ne2τ

me

(8)

from Ohm’s law. This will later be used when deriving equation (1).
Let’s now derive the Hall resistance using the Drude model. The momentum of a
particle at a given time is ~p(t) and the momentum at an infinitesimal time later is
~p(t+ dt) [3, p. 10]. The probability for an electron not to collide during this time is
1 − dt/τ . Assuming that the particle is influenced by a force which also change in

time ~f(t) and as an infinitesimal time later the particle has increased its momentum

and will therefore gain an extra term ~f(t)dt + O(dt2). Now considering only the
fractions of electrons that do not collide during time τ , the momentum can then be
expressed as [3, p. 11]

~p(t+ dt) =
(

1− dt

τ

)[
~p(t) +

dt

τ
~f(t)dt+O(dt2)

]
. (9)

Since the electrons move randomly and only acquire additional momentum from
the last collision in a time dt, higher order terms than ~f(t)dt will not contribute and
hence the momentum change can be written as

~p(t+ dt) = ~p(t)− dt

τ
~p(t) + ~f(t)dt+O(dt2). (10)
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Then dividing by dt and taking the limit as dt goes to zero one will end up with

lim
dt→0

~p(t+ dt)− ~p(t)
dt

=
d~p(t)

dt
= lim

dt→0
−~p(t)

τ
+ ~f(t). (11)

Finally the equation of motion is [3, p. 11]

d~p(t)

dt
= −~p(t)

τ
+ ~f(t). (12)

In this case ~f(t) is already known, it is the Lorentz force, since the electrons
are influenced by a magnetic and electric field. For the Hall effect, the equation of
motion is [1, p. 9]

d~p(t)

dt
= −~p(t)

τ
− e
(
~E +

~p

mb

× ~B
)
. (13)

To find the resistivity one has to find the steady state solution where the system is
in equilibrium, which is done by setting d~p/dt = 0. One should also keep in mind
that the system is only in two dimensions, therefore the momentum has components
~p = (px, py). Setting up the equation of motion in each direction one get [1, p. 9]

eEx = −eB
mb

py −
px
τ

(14)

eEy =
eB

mb

px −
py
τ

(15)

and the first terms of the equations are defined as the cyclotron frequency,

ωc =
eB

mb

. (16)

If one then multiplies equation (14) and (15) with the conductivity derived previously
(equation (8)) one get

σ0Ex = −ωcσ0
e

py −
σ0
τe
px (17)

σ0Ey =
ωcσ0
e

px −
σ0
τe
py (18)

and plugging in equation (8) on the right hand side of equation (17) and (18)

σ0Ex = −enel
τe

px −
ωcneleτ

mb

py (19)

σ0Ey =
ωcneleτ

mb

px −
enel
τe

py. (20)

Then one can rewrite the system of equations in terms of current density, which
is defined as [1, p. 9]

~j = enel~v = −enel~p
mb

, (21)
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Figure 2: (a) shows how the quantum Hall effect system looks like. 2D electron
gas exposed to a magnetic field in the perpendicular direction. The terminals C2,
C3 and C5,C6 can be used to measure the longitudinal resistance, while the Hall
resistance is measured across the sample between C2,C6 and C3, C5. (b) This graph
shows how the Hall resistance is linear to the increasing magnetic field.[1]

then the system of equations becomes

σ0Ex = jx − ωcτjy (22)

σ0Ex = −jx + ωcτjy (23)

Now one can write this in matrix form

σ0E =

[
j ωcτj

−ωcτj j

]
and solving for E one get

E =
j

σ0

[
1 ωcτ
−ωcτ 1

]
where

ρ =
1

σ0

[
1 ωcτ
−ωcτ 1

]
is the resistivity tensor according to the definition ~E = ρ~j. Then one can get

the Hall resistivity ρH from the off diagonal terms in the resistivity tensor [1, p. 9],

ρH =
ωcτ

σ0
=

eBτ

mbσ0
=

B

nele
. (24)

Finally the Hall resistivity is

ρH =
B

nele
. (25)

The goal was to derive the Hall resistance (equation (1)), and the resistivity
relates to resistance as follows

ρ = R
A

l
, (26)
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where A is the cross sectional area and l the length of the sample. However the
system is only in two dimensions and the scaling relation between ρ and R is R ∼
ρL2−d where d is the dimension. In this 2D case, the resistance and resistivity is the
same from a dimensional point of view and hence the transverse resistance or as it
is also called the Hall resistance is [1, p. 10]

RH =
B

nele
.

This is an interesting result which shows that the Hall resistance does not depend
on the particular properties of the material like it’s size or geometry, but rather on
the charge carrier and the concentration of charges given at an applied magnetic
field(see figure 2). This discovery have many applications in a wide range of fields,
for example, to measure an external magnetic field one could use a devise based on
the Hall effect. One could also use it to determine the sign on the charge carriers.
However, this result was derived from the Drude model, which has its restrictions.
When one have a 2D system and apply a very strong magnetic field, one get some
results which the classical Hall effect does not predict. At a critical magnetic field
the longitudinal resistance starts to oscillate as a function of the magnetic field, while
the Hall resistance stays linear. This is a phenomena that only can be explained by
quantum theories.

2.2 Shubnikov-de Haas effect

In the classical theory it was predicted that the longitudinal resistivity should be
independent of the magnetic field. But in 1930 Shubnikov-de Hass effect was dis-
covered, which showed that the longitudinal resistivity or longitudinal resistance
did not remain independent, but oscillated as a function of the magnetic field (see
figure 3(a)) [1, p. 11]. This is because of something called Landau quantization and
is simply the quantization of energy of a 2D electron in a strong magnetic field.
If the magnetic field is so strong that the electron goes around a complete orbit
without colliding, then the kinetic energy of the electron will be quantized to energy
levels called Landau levels, En = ~ωc(n+ 1/2), where n is an integer. The radius of
the circular path that the electrons travel are called cyclotron radius and it is also
quantized [1, p. 12].

To find the critical magnetic field, one has to put the constrains mentioned above.
One should assume that the electron has to make an complete orbit without colli-
sion, ωcτ > 1. Then the critical magnetic field has to be Bc ' mb/eτ = µ−1, where
µ is the mobility [1, p. 12]. To get a better understanding of this, one may use
Boltzmann transport equation instead of the Drude model.

From Einsteins relation one can connect the conductivity to the density of states
at the Fermi energy [1, p. 12]

σL = e2Dρ(EF ). (27)

Because of the Landau quantization the density of states become delta peaks
(shown in figure 3(b)) given by the Landau levels
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Figure 3: (a) shows how the magnetic field is oscillating as a function of the magnetic
field. Bc denotes the critical magnetic field in which the Hall resistance starts to
oscillate while the longitudinal resistance stays linear. (b) show the density of states
with EF denoting the Fermi energy. The broadening of the peaks results from the
impurities. The horizontal line represents the sum of the overlapping peaks. [1]

ρ(E) =
∑
n

gnδ(E − En) (28)

where gn is the degeneracy of the energy levels [1, p. 12].
The samples are never completely clean in reality and thus have some impurities.

These impurities causes the peaks to broaden and may even overlap. In such case
the density of states oscillate with maximal value at the Fermi energy. As one vary
the magnetic field, the distance between the Landau levels changes and the density
of states becomes maximal at the Fermi energy and minimal in between two Landau
levels. As a result the density of states oscillates as a function of the magnetic field
and as a consequence of equation (27), the longitudinal conductivity or resistivity
will also oscillate as a function of the magnetic field and explains the Shubnikov-de
Hass effect [1, p. 12].

3 Landau Quantization

Before mentioning the integer quantum Hall effect, one has to deal with Landau
quantization. As mentioned earlier, Landau quantization is simply the quantization
of the kinetic energy of the electron in a 2D system at low temperatures and at
high magnetic fields. In this chapter the details of the Landau quantization will be
discussed.

3.1 Non relativistic Hamiltonian for a 2D free particle in a
zero B-field

In this system one have a two dimensional particle which is translation invariant
when there is no magnetic field. The non relativistic Hamiltonian for a free particle
then becomes

H =
~p2

2m
, (29)
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where m is the electron mass [1, p. 21]. Since it is translation invariant, the
momentum operator commutes with the Hamiltonian. In our case, the electrons are
moving around in a metal and one has therefore to consider that the electrons are
moving around in a crystal structure, or a lattice where ions are located at every
lattice point. In such case one have an electrostatic potential that contributes to
the Hamiltonian [1, p.22],

H =
~p2

2m
+

N∑
i

V (~r − ~ri), (30)

where the electrostatic potential from an ion at a lattice site ~ri. Now the Hamil-
tonian no longer commutes with the momentum operator, hence it is not longer a
constant of motion. One can solve this problem by using Bloch’s theorem. Bloch’s
theorem simply states that eigenstates of an electron can be written in terms of a
plane wave, Ψnk(~r) (which can only translate in the direction of the lattice vectors),
multiplied by a function, unk, which has a periodicity of the Bravais lattice.

Ψnk(~r) = ei
~k·~runk(~r). (31)

The Hamiltonian can be written in terms of momentum, H(px, py), where ~p is the
lattice momentum restricted to the first Brillouin zone. The mass of the Hamiltonian
is not the electron mass, but a band mass, which may depend on the direction of
motion, since one now describes a quasi-particle [1, p. 23],

H =
p2x

2mx

+
p2y

2my

. (32)

3.2 Hamiltonian for a non zero B-field

The Hamiltonian for a free electron in a magnetic field is different from the case
where there is no magnetic field. To find the Hamiltonian, one has to make a gauge
transformation. A gauge transformation is simply a transformation that changes the
vector potential without changing the electromagnetic field. In this case the field is
the magnetic field and the momentum can be rewritten in its gauge-invariant form
in terms of a vector potential,

~p→ ~Π = ~p+ e ~A(~r), (33)

where the vector potential ~A is related to the magnetic field as ~B = ~∇ × ~A [1,

p. 26]. To keep ~Π gauge-invariant, one can add a gradient term to the momentum
and the vector potential. This does not change the magnetic field, since taking
the curl of that function will give same result. The transformation of the vector
potential can be written as an additional vector field ~α [5, p. 419]

~A(~r) = ~A(~r) + ~α. (34)

Then the magnetic field in terms of the new vector potential becomes

~B = ∇× ~A = ∇× ( ~A+ ~α). (35)

Expanding the bracket one get
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~B = ~B +∇× ~α (36)

and simplifying the expression one end up with

∇× ~α = 0. (37)

This means that one can define a potential associated with ~α

~α = ∇λ, (38)

which one can put in the transformation formula equation (34) and one finally
get [5, p. 420]

~A(~r)→ ~A(~r) +∇λ(~r) (39)

and a similar approach gives the result for the momentum

~p→ ~p− e∇λ(~r). (40)

But the interest lays in describing the electrons in a lattice, which can be prob-
lematic. However as long as the lattice constant keep the relation a � lB, where
lB =

√
~/eB is the magnetic length, one can write the gauge in a particular form

[1, p. 26], so that the vector potential is,

~AL(~r) = B(−y, 0, 0). (41)

This gauge is called the Landau gauge, which will be discussed more later on.
So the Hamiltonian transforms as

H(~p)→ H(~Π) = H(~p+ e ~A) = HB(~p, ~r), (42)

and the Hamiltonian in the presence of a magnetic field becomes

HB
S =

[~p+ e ~A(~r)]2

2mb

, (43)

and for the relativistic case that will be discussed later the Hamiltonian is

HB
D = v[~p+ e ~A(~r)]~σ. (44)

3.3 Quantum mechanical interpretation

Now when the Hamiltonians for the particles with and without a magnetic field
are known, its time to continue analyzing the system with quantum mechanics.
This chapter approaches the system with canonical quantization. One simply wants
to describe the theory in a quantum mechanical way. From quantum mechanics
one knowns that physical quantities are treated as operators. In classical theory,
the momentum is expressed as ~p = m~v, however in quantum mechanics one have
the momentum operator instead, ~p = −i~ ∂

∂x
. One may take the commutator with

gauge-invariant momentum

[Πx,Πy] = [px + eAx(r), py + eAy(r)] = e([px, Ay(x, y)]− [py, Ax(x, y)]) =

11



= e
(∂Ax
∂x

[px, y] +
∂Ay
∂x

[px, x]− ∂Ax
∂x

[py, x]− ∂Ax
∂y

[py, y]
)
. (45)

The position and momentum operator does not commute and one have the fol-
lowing commutation relations:

[x, Px] = i~, [y, py] = i~, while [x, y] = [px, py] = [x, py] = [y, px] = [y, px] = 0,
(46)

so then the momentum commutator (equation (45)) becomes [1, p. 28],

[Πx,Πy] = −i~e
(∂Ay
∂x
− ∂Ax

∂y

)
= −i~e(∇× A)z = −ie~B, (47)

which means that the gauge-invariant momentum does not commute, unlike the
momentum as seen above, [px, py] = 0.

The conclusion of this is that one wants to rewrite the Hamiltonian and introduce
some ladder operators, which all will be discussed in more detail in the following
chapter.

3.4 Non relativistic Landau Levels

In the last chapter it was mentioned that the components of the gauge-invariant
operator do not commute. Now one wants to show how the Hamiltonian of the
electron in a magnetic field can be reduced to the harmonic oscillator using these
commutation relations, since the harmonic oscillator is an approach that is solvable.
The Hamiltonian for the harmonic oscillator is [6, p. 42]

H =
1

2m
[p2 + (mωx)2] (48)

What one wants to do now is to factor the Hamiltonian and one should keep in mind
that the position and momentum operator do not commute. Hence one get

a± =
1√

2~mω
(∓ip+mωx) (49)

and the commutation relation between a+ and a− is

[a−, a+] =
1

2~mω
[ip+mωx,−ip+mωx] =

=
1

2~mω
([ip,−ip] + [ip,mωx] + [mωx,−ip] + [mωx,mωx]) =

=
1

2~mω
(imω[p, x]− imω[x, p]) =

1

2~mω
(2~mω) = 1

⇒ [a−, a+] = 1, (50)

where [x, p] = i~. Now multiply a− and a+

a−a+ =
1

2~mω
(ip+mωx)(−ip+mωx) =

1

2~mω
[p2 + (mωx)2]− i

2~
[x, p]. (51)
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The commutation relation between x and p is already known, [x, p] = i~, so the
final expression becomes,

a−a+ =
1

2m
[p2 + (mωx)2] +

1

2
=

1

~ω
H +

1

2
. (52)

Then to solve for the Hamiltonian one have [6, p. 43],

H = ~ω
(
a−a+ −

1

2

)
. (53)

It does not really matter in which order one writes the ladder operators, as long
as one adjust for the sign,

H = ~ω
(
a±a∓ ±

1

2

)
. (54)

If one then look at the Schrödinger equation, HΨ = EΨ, one can see how this
ladder operator acts on the energy. Lets multiply Ψ with a+ and see what it does.

H(a+Ψ) = ~ω
(
a+a− +

1

2

)
(a+Ψ) = ~ω

(
a+a−a+ +

1

2
a+

)
Ψ =

= ~ωa+
(
a−a+ +

1

2

)
Ψ = a+

(
~ω
(
a+a− + 1 +

1

2

)
Ψ
)

=

= ~ωa+(H + ~ω)Ψ = a+(E + ~ω)Ψ = (E + ~ω)(a+Ψ). (55)

So by acting with a+ increases the energy to a next energy level and the same
would be true if one would make the same calculation for a−, but it would lower
one step instead [6, p. 42]. The conclusion is that one have discrete energy levels.
To find the energy level one can just use the Schrödinger equation again. However
first one must set up boundaries to the ladder operators. It is not realistic to just
lower the energy states forever, so if a− acts on the lowest state, it annihilates it by
definition.
The key is to find the lowest state, then one can just act with a+ to find all the
other states. The lowest state can be found with the help of Schrödinger equation

~ω
(
a+a− +

1

2

)
Ψ0 = E0Ψ0 (56)

and by definition a−Ψ0 = 0, so then one gets

E0 =
1

2
~ω (57)

as the lowest energy level. Then one can just apply a+ operator n number of
times to get the nth energy level. So the energy levels for the harmonic oscillator is

En = ~ω
(
n+

1

2

)
. (58)

If one now go back to the Hamiltonian for a 2D electron in a magnetic field
where one wants to express the Hamiltonian in terms of the ladder operators. The
non relativistic Hamiltonian can be written as equation (43),

HB
S =

1

2mb

(Π2
x + Π2

y). (59)
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The ladder operators in this case is defined, in terms of the gauge-invariant
operators as

a =
lB√
2~

(Πx − iΠy), a
† =

lB√
2~

(Πx + iΠy). (60)

If one would commute a and a† one would get,

[a, a†] =
l2B
2~2
[
Πx − iΠy,Πx + iΠy

]
=

=
l2B
2~2
([

Πx,Πx

]
+
[
Πx, iΠy

]
+
[
− iΠy,Πx

]
+
[
− iΠy, iΠy

])
=

=
l2B
2~2
(2~2

l2B

)
= 1

⇒ [a, a†] = 1 (61)

and one can see that this is exactly the same result as in the case of the harmonic
oscillator. Expressing the Hamiltonian in terms of these ladder operators one get

HB
S =

~2

4ml2B
[a†2 + a†a+ aa† + a2 − (a†2 − a†a− aa† + a2)] =

=
~2

2ml2B
(a†a+ aa†) =

~2

ml2B

(
a†a+

1

2

)
=

= ~ωc
(
a†a+

1

2

)
, (62)

⇒ H = ~ωc
(
a†a+

1

2

)
. (63)

Now the Hamiltonian in terms of the ladder operators are known. Just like the
way done previously, one wants to find the energy levels. This is done as before, by
first finding the lowest state and then one apply a† to the lowest state n number of
times.
From the Schrödinger equation the lowest energy state is

~ωc
(
a†a+

1

2

)
Ψ0 = E0Ψ0, (64)

where the lowest state gets annihilated (aΨ0 = 0),

E0 = ~ωc
1

2
. (65)

Then by applying a† to climb up to the higher energy levels, one get the Landau
levels [1, p.30],

E = ~ωc
(
n+

1

2

)
. (66)

which is plotted against the magnetic field in figure 4(a) for different values of n
and ωc = ~2/mlB is the cyclotron frequency.
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3.5 Relativistic Landau levels

In this chapter one treats the Hamiltonian in the relativistic case. As before one
write the Hamiltonian in terms of of ladder operators,

HB
D = v

(
0 Πx − iΠy

Πx + iΠy 0

)
=
√

2
~v
lB

(
0 a
a† 0

)
= ~ω′

(
0 a
a† 0

)
(67)

where the corresponding cyclotron frequency is ω′ =
√

2v/lB in the relativistic
case. The 2x2 Hamiltonian matrix now comes from the Dirac theory. The band mass
is zero in graphene, so one cannot write the frequency in the usual way ω = eB/mb

[1, p. 31].
To find the eigenvalues to the Hamiltonian one just solves Schrödinger’s equation

HB
Dψn = εnψn. Then one will find that the eigenstates are 2-spinor eigenstates

ψn =

(
un
vn

)
. (68)

So one needs to solve two equations for each un and vn,

~ω′a†vn = εnun (69)

~ω′a†un = εnvn (70)

and one will find that

un =
~ω′avn
εn

(71)

un =
εnvn
~ω′a†

(72)

⇒ ~ω′avn
εn

=
εnvn
~ω′a†

(73)

⇒ a†avn =
( εn
~ω′
)2
vn. (74)

One can then relate a†a = n as seen when the energy levels for the non relativistic
case was derived. Then one will find that the energy and this eigenstate is related
as

ε2n = (~ω′)2n (75)

which of course has two solutions,

ελ,n =
λ~v
lB

√
2n, (76)

where λ = ± is a quantum number. ελ,n is plotted in figure 4(b) where one can
see two solutions, one of which show negative energies. This introduces the theory
of holes, where one have to consider both electrons and holes.

The spinors then finally becomes [1, p. 32]
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Figure 4: (a) shows the non relativistic case when energy is a linear function of the
magnetic field, plotted for different values of n. (b) show the relativistic case for the
two solutions. Also plotted for different values of n. [1]

ψn=0 =

(
0

|n = 0〉

)
(77)

for the case n = 0 and

ψn6=0 =

(
|n− 1〉
λ|n〉

)
(78)

for the case when n 6= 0.

3.6 Level degeneracy

The Hamiltonian for non relativistic particles only depends on two pairs of con-
jugate operators (x, px, y, py). But when one express the Hamiltonian in terms of
the gauge-invariant operator or the ladder operators, it only depends on one pair of
conjugate operators. This means that one has to look for a second pair of conjugate
operators that commute with the Hamiltonian such that it gives rise to the level
degeneracy of the Landau levels.

Consider the pseudo-momentum operator [1, p. 34]

Π̃ = ~p− e ~A(~r) (79)

so that one can express the momentum in terms of this pseudo-momentum and
the gauge-invariant momentum defined previously,

~p =
1

2
(Π + Π̃) (80)

and also the vector potential as

~A(~r) =
1

2
(Π− Π̃). (81)

The gauge-invariant operator and the pseudo-momentum operator does not de-
scribe something physical, because they depend on the gauge that you are using.
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But if one try to commute the components of the pseudo-momentum operator, one
get

[
Π̃x, Π̃y

]
=
[
px − eAx(r), py − eAy(r)

]
= −

[
px, eAy(r)

]
+
[
py, eAy(r)

]
=

= e
(
− ∂A

∂x
[px, x]− ∂A

∂y
[px, y] +

∂A

∂x
[py, x] +

∂A

∂y
[py, y]

)
=

e
(
i~
∂A

∂x
− i~∂A

∂y

)
= i~e

(∂A
∂x
− ∂A

∂y

)
=

= −ie~(∇× ~A)z = −i~
2

l2B

=⇒
[
Π̃x, Π̃y

]
= −i~

2

l2B
. (82)

So the commutators are gauge-invariant [1, p. 34]. Other commutation relations
can be found in a similar way, [

Πx, Π̃x

]
= 2ie~

∂Ax
∂x

, (83)

[
Πy, Π̃y

]
= 2ie~

∂Ay
∂y

, (84)

[
Πx, Π̃y

]
= ie~

(∂Ax
∂y

+
∂Ay
∂x

)
= −

[
Π̃x,Πy

]
. (85)

In order to commute with the Hamiltonian one need these terms (83), (84) and
(85) to vanish. This can be done by finding a particular gauge such that they do
vanish. There are two different gauges in this case, the symmetric gauge and the
Landau gauge [1, p. 35].

Symmetric gauge: AS(~r) =
B

2
(−y, x, 0) (86)

Landau gauge: AL(~r) = B(−y, 0, 0). (87)

The use of these different gauges has different advantages. The symmetric gauge
has the advantage that, as will be discussed below, it is easier to use the semi-
classical approach than the Landau gauge. But the Landau gauge is more practical
when it comes to geometries with the translation invariance in the y-direction, since
the Landau gaguge is translation invariant in the x-direction.

One can introduce ladder operators corresponding to the pseudo-momentum
operator and they are defined as [1, p. 35]

b =
lB√
2~

(Π̃x + iΠ̃y)

b† =
lB√
2~

(Π̃x − iΠ̃y) (88)
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which satisfy

[b, a†] =
[ lB√

2~
(Π̃x + iΠ̃y),

lB√
2~

(Πx + iΠy)
]

=

=
l2B
2~2
([

Π̃x,Πx

]
+
[
Π̃x, iΠy

]
+
[
iΠ̃y,Πx

]
+
[
iΠ̃y, iΠy

])
=⇒ [b, a†] = 0. (89)

The same is true for the Hamiltonian,

=⇒ [b†, HB] = 0. (90)

Then one can set up an eigenvalue equation, which will introduce a new quantum
number, m ≥ 0,

b†b|m〉 = m|m〉. (91)

3.7 Semi-classical interpretation of the level degeneracy

The introduction of the symmetry gauge was done in the previous chapter and it was
concluded that it was a good choice as a gauge for the semi-classical approach. In this
chapter the semi-classical interpretation of the level degeneracy will be introduced
with the help of the symmetric gauge to make a physical representation of the
pseudo-momentum operator. As the name suggests, the semi-classical approach
is partially describing the system in a classical manner and then also introduce a
quantum mechanical treatment.
If one starts with describing an electron as a classical object moving in a magnetic
field, one gets the equation of motion from Newton’s second law [1, p. 37],

mbr̈ = −e(ṙ × ~B), (92)

or written in the two different components x and y (since it is a particle moving
in two dimensions),

ẍ = −ωcẏ (93)

ÿ = ωcẋ, (94)

where ωc = eB/mb is the cyclotron frequency. The solution to these equations

generates a circular orbit with radius ~R (see figure 5),

x(t) = X − rsin(ωct+ φ) (95)

y(t) = Y − rcos(ωct+ φ). (96)

The radius ~R = (X, Y ) is called the guiding center. As the particle is exposed
to a magnetic field, it will go in orbit around a center point, which is the guiding
center. When the particle is in a drift motion, the patten will look like a helix,
orbiting around the axis of the guiding center . So now one needs to connect the
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guiding center to the pseudo-momentum. This can be done using the symmetric
gauge in terms of pseudo-momentum,

eAs(r) =
1

2
(Π− Π̃). (97)

Then one get

y =
Π̃x

eB
− Πx

eB
(98)

x =
Π̃y

eB
− Πy

eB
. (99)

By integrating (92) one also knows that

y = Y − Πx

eB
(100)

x = X +
Πy

eB
(101)

and by this one can relate the guiding center to the pseudo-momentum

X = − Π̃y

eB
(102)

Y =
Π̃x

eB
. (103)

From this one can conclude that the pseudo-momentum are constants of motion
in terms of the guiding center. One can therefore expect the operators to commute
with the Hamiltonian. One interesting aspect is that one know the commutation
relation between the pseudo-momentum components [Π̃x, Π̃y] = i~2/l2B and therefore
also the commutation relation between the guiding center components,

[X, Y ] = il2B. (104)

This results in the Heisenberg’s uncertany relation implying

∆X∆Y = 2πl2B. (105)

The guiding center cannot be determined exactly, but is distributed over a surface
A represented by the grey area in figure 5,

NB =
A

∆X∆Y
=

A

2πl2B
= nB × A (106)

where nB is the flux density,

nB =
1

2πl2B
=

B

h/e
. (107)

The conclusion of this is that ”the number of quantum states in a Landau level
equals the number of flux quanta threading the sample surface A and each Landau
level is macroscopically degenerate” [1, p. 38].
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Figure 5: This figure shows the cyclotron motion of an electron exposed to a perpen-
dicular magnetic field coming out of the page. The grey area represents the guiding
center ”cloud”. The reason for the cloud is that the components of the guiding
center operator do not commute. [1]

Another important thing that needs to be defined is the filling factor. Since
electrons are fermions, they obey the Pauli exclusion principle and therefore cannot
occupy same quantum state. The electrons will at first start to occupy the lowest
Landau levels, but as they are filled up, higher energy levels will be occupied. There-
fore one may define the filling factor as the ratio between the number of electrons
and the flux quanta [1, p. 39],

ν =
Nel

NB

=
nel
nB

=
hnel
eB

. (108)

3.8 Eigenstates and the wave function in the symmetric and
Landau gauge

In this chapter one wants to define some wave functions in the different gauges with
some quantum mechanics starting with the symmetric gauge. The approach here is
that one wants to find the wave function by using the differential equation instead
of ladder operators. As already known, one can determined all quantum states from
the ladder operators, which in this case is [1, p. 39],

|n,m〉 =
(a†)n(b†)m√
n!
√
m!
|n = 0,m = 0〉. (109)

Now equation(109) translates to differential equation with the wave function
φn,m(x, y), but in order to do that, one has to use the following equations which was
discussed previously

a =
lB√
2~

(Πx − iΠy)

Π = ~p+ e ~A(~r),

where ~p = −i~∇ and ∇ = (∂x, ∂y). After inserting this into a one get,

a = −i
√

2
[ lB

2
(∂x − i∂y) +

x− iy
4lB

]
. (110)
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In our quest to find the wave function one may introduce complex coordinates
and transfer equation(95) into them. Since it is in two dimensions the complex
coordinates becomes,

z = x− iy , z∗ = x+ iy (111)

∂ =
∂x + i∂y

2
, ∂ =

∂x − i∂y
2

. (112)

Now plug that into equation (109)( z

4lB
+ lB∂

)
φn=0(z, z

∗) = 0, (113)

which is now expressed as a differential equation in the lowest Landau level. The
solution to the wave function yields

φn=0(z, z
∗) = f(z)e−|z|

2/4l2B (114)

where f(z) is an arbitrarily analytic function. As a consequence of that f(z)
brings in extra degrees of freedom and therefor can be related to the second quantum
number m. To deal with m one makes a similar approach as previously discussed
in the case of n. First introduction the ladder operators,

a = −i
√

2
( z

4lB
+ lB∂

)
, a† = i

√
2
( z∗

4lB
− lB∂

)
b = −i

√
2
( z∗

4lB
+ lB∂

)
, b† = i

√
2
( z

4lB
− lB∂

)
(115)

and from this one get the differential equation [1, p. 40]

(z∗ + 4l2B∂)φ′m=0(z, z
∗) = 0 (116)

which yields the solution

φ′m=0(z, z
∗) = g(z∗)e|z|

2/4l2B . (117)

g(z∗) is anti-analytic and therefor ∂g(z∗) = 0. The wave function then becomes
Gaussian with a constant factor to normalize,

φn=0,m=0(z, z
∗) = 〈z, z∗|n = 0,m = 0〉 =

1√
2πl2B

e−|z|
2/4l2B , (118)

since it is both analytic and anti-analytic. To achieve the lowest Landau level,
one can just use equation (94),

φn=0,m(z, z∗) =
im√

2πl2Bm!

( z√
2lB

)m
e−|z|

2/4l2B . (119)

Last thing covered about the symmetric gauge is that one may find an average
value of the guiding center. To do this, one starts with the guiding center in the
state |n = 0,m〉 and then write the guiding center in terms of ladder operators and
work the way from there.
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X =
lB

i
√

2
(b† − b)

Y =
lB√

2
(b† + b). (120)

Then one will find that the average value is,

〈~R〉 = 〈n = 0|~R|n = 0,m〉 = 0 (121)

but if one take the absolute value

〈|~R|〉 = 〈
√
X2 + Y 2〉 =

〈√−l2B
2

(b† − b)2 +
l2B
2

(b† + b)2
〉

=

= lB

〈√−1

2
((b†)2 − b†b− bb† + b2) +

1

2
((b†)2 + b†b+ bb† + b2)

〉
=

= lB〈
√
b†b+ bb†〉 = lB〈

√
2b†b+ 1〉 = lB

√
2m+ 1 (122)

one will find that that the quantum states are located on a circle with radius
〈|~R|〉 = lB

√
2m+ 1. Here the ladder operators are defined as usual,

b†|n,m〉 =
√
m+ 1|n,m+ 1〉, b|n,m〉 =

√
m|n,m− 1〉. (123)

The maximum number of quantum states one can fit within the circle is

M =
A

2πl2B
= nb × A = NB, (124)

where A is the surface contained in the circle with maximum radius Rmax =
πl2B(2M + 1) for maximum value of quantum state m.

This is what is covered about the symmetric gauge, now over to the Landau
gauge. When the sample has a rectangular scape, it is better to use the Landau
gauge, since it is only x-depenant. Then one can make a plane-wave anatz to the
wave function,

ψn,k(x, y) =
eikx√
L
χn,k(y), (125)

where L is the length of the sample. Then the Hamiltonian becomes,

HB
S =

(px − eBy)2

2m
+

p2y
2m

=
p2y
2m

+
1

2
mωc(y − y0)2 (126)

where y0 = kl2B. This Hamilitonian is just the Hamiltonian for an oscillator with
eigenstates,

χn,k(y) = Hn

(y − y0
lB

)
e−(y−y0)

2/4l2B , (127)

and Hn is the Hermite polynomial. y0 which is the point where the oscillating
motion oscillates about, corresponds to Y , the guiding center component. Since the
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guiding center components do not commute, X cannot be determined precisely, but
is located somewhere along the sample length L.

To find the number of quantum states located within the rectangular surface with
dimensions L and W , one may use periodic boundary conditions, k = M × 2π/L
in the x-direction and then use the same approach as in the case of the symmetric
gauge. So the number of states in the rectangular surface turns out to be

M = NB = nB × LW = nB × A (128)

where y varies between ymin = 0 and ymax = W , in the y-direction.

4 Integer Quantum Hall effect

Now when the Landau quantization has been established, one can start to discuss
integer quantum Hall effect. Some of the things that will be discussed in this chapter
is the confinement potential, which plays an important role. Quantization of the
kinetic energy of a two-dimensional particle discussed with the Landau quantization,
has to be related to the quantization of the resistance. The background of the plateau
pattern will also be covered.

4.1 Electronic motion in an external electrostatic potential

When considering a current moving in a sample, one has to consider the particles
in that sample to effect the charge carriers in the current. This is described by
two kinds of potentials, confinement potential and an impurity potential. Since the
current is confined to the sample, the confinement potential varies only along the y-
direction, (Vconf (y)) and does not effect the particles moving along the sample in the
x-direction. The other potential that need to be considered is the impurity potential
caused by the impurities in the sample, Vimp(x, y), which effects the particles in both
directions. If one wants to describe a particle moving in this system, one has to use
the total potential in the Hamiltonian which is the sum of these potentials [1, p. 45],

V (~r) = Vconf (y) + Vimp(x, y). (129)

4.2 Semi-classical approach

In the presences of the potential V (~r) the Hamiltonian will be effected in such
away that it does not commute with R any longer. The consequence of this is that
V (~r) lifts the Landau degeneracy, which means that as the system is exposed to
the external field, the degeneracy is reduced since the energy levels are split. The
guiding center is translation invariant but the electrostatic potential, V (~r) breaks
this invariance.

When V (~r) is smooth on the length scale of lB it does not generate Landau
mixing, one can approximate the argument of the potential with the position of the
guiding center, V (~r) ' V (R). Since V (~R) and ~R do not commute, one may consider
the Heisenberg equation of motion [4],

dA

dt
=

1

i~

[
A,H

]
,
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Figure 6: This figure shows the potential landscape for the charge carriers. The
circular lines and the thin lines at the edge represents the equipotential lines where
the closed lines are localized states and the open lines are the extended states. The
charge carriers are confined in the region between ymin and ymax. µL and µR are the
chemical potential at each contact and the dimensions of the sample is assumed to
be L � W � ξ � lB, where W is the width and L the length and ξ the length
scale at which the electrostatic potential varies. [1]

which in this case can be written as

i~Ẋ = [X,H] = [X, V (~R)] =
∂V

∂Y
[X, Y ] = il2B

∂V

∂Y

i~Ẏ = [Y, V (~R)] = −il2B
∂V

∂X
. (130)

The guiding center component is moving along the equipotential lines since ~R is
perpendicular to V (~R). This corresponds to the Hall drift,

〈Ṙ〉 =
−∇V × ~B

eB2
=

~E × ~B

B2
= ~vD. (131)

Due to the potential V (~R) a landscape is formed with hills and valleys which
the charge carriers are moving through. The impurity in the sample changes the
landscape in such way that hills or a valleys are formed, depending on the charge of
the particle. These impurities causes the equipotential lines to close on them selfs
and this will cause the charge carriers to orbit the bulk/valley, counter-clockwise or
clockwise depending on the charge. This means that the charge carriers are localized
around this topological region and therefore may not contribute to the actual current
in the sample. One therefore call these charge carriers localized. Not only can a
very strong magnetic field localize the charge carriers in closed orbits, but so does
the impurities in the sample. At the edge, the equipotential lines are not closed, but
open because the confinement potential Vconf (y) increases at the edges such that it
confines the charge carriers to the sample. These states are then called extended
states and contribute to a current in the sample [1, p. 46].
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4.3 Electrostatic potential with translation invariance in the
x-direction

The assumptions made in the previous chapter has some constraints, since one as-
sumed that the confinement potential was smooth on a scale of lB, while confinement
potential varies significantly on the scale of lB at the edges (ymin, ymax) and therefore
one needs to treat it accurately while solving the Schrödinger equation. One choose
to work within the Landau gauge, since it is translation invariant in x-direction. In
this case the Hamiltonian becomes,

H =
p2y
2m

+
1

2
mωc(y − y0)2 + Vconf (y), (132)

where y0 = kl2B is the center of oscillation and k is the wave vector in the x-
direction. Then one can expand the potential around this point,

Vconf (y) = V (y0) +
∂V (y0)

∂y
(y − y0) +O

(∂2V
∂y2

)
=

= V (y0)− eE(y0)(y − y0) +O
(∂2V
∂y2

)
. (133)

and writing the Hamiltonian in terms of the expanded confinement potential and
excluding the second and higher terms one gets [1, p. 46],

H =
p2y
2m

+
1

2
mωc(y − y′0)2 + Vconf (y

′
0) (134)

where the harmonic oscillator is now shifted y0 → y′0 = y0 + eE(y0)/mω
2
c . The

energy levels given by this Hamiltonian are,

εn,y′0 = ~ωc
(
n+

1

2

)
+ V (y′0) (135)

which gives the same energy levels as before, but with an additional term that
solves the problem of large variation at the edges.

4.4 Landau levels and conductance

In this chapter one wants to calculate the conductance of a filled Landau level.
Consider all Landau levels up to the nth level to be occupied, then using the Landau
gauge one will find that the current going throw the nth Landau level in the sample
to be [1, p. 48],

Ixn = − e
L

∑
k

〈n, k|vx|n, k〉, (136)

where the wave vector k = 2πm/L and the current is only x-dependent.
The velocity vx can with the help of Heisenberg’s equation of motion be written

as

i~vx = [vx, H] =
∂H

∂px
[x, px] =

1

~
∂H

∂k
[x, px] =
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Figure 7: (a) show how the energy levels are bent upwards as one moves towards
the edge. (b) shows the filling factor jump that corresponds to the Hall drift and
chirality. [1]

=
i~
~
∂H

∂k
= i

∂H

∂k
=

1

~
∂ε

∂k

and for the state |n, k〉

⇒ 〈n, k|vx|n, k〉 =
1

~
∂εn,k
∂k

=
L

2π~
∆εn,m
∆m

. (137)

Solving for ∆m = 1 one get

〈n, k|vx|n, k〉 =
L

h
(εn,m+1 − εn,m) (138)

and inserting this into the equation (136) one get

In = − e
L

∑
m

L

h
(εn,m+1 − εn,m). (139)

All the terms in the sum cancel except for the edge terms

In = − e
h

(εn,mmin
− εn,mmax) = − e

h
(µmin − µmax), (140)

where µmin and µmax are the chemical potential corresponding to these energies
at the edges (see figure 6). The difference between these potentials corresponds to
the Hall voltage V across the sample,

In = − e
h

(µmin − µmax) =
e2

h
V. (141)

Then one can obtain the conductance in the nth Landau level, which is now
quantized,

G =
n−1∑
n′=0

Gn′ = n
e2

h
. (142)
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Figure 8: Here one can see the potential landscape and the left contact µL is in
thermodynamic equilibrium with the upper edge µmax, while the right contact µR
is in thermodynamical equilibrium with lower edge µmin. The red dots corresponds
to the hotspots, where the chemical potential suddenly drops as it gets in contact
with the other side. The Hall voltage is the voltage between these edges and the
resistance between the contacts are the Hall resistance. [1]

4.5 Edge states

What one wants to describe here is how the current is transported at the edges of the
sample. The confinement potential increases sharply at the edge which introduces a
perpendicular motion, because if the current is in the state n and the confinement
potential increases such that the state n reaches the maximal value µmax, it will jump
down towards the lower level n− 1 due to this bent(see figure 7). This is explained
by the Hall drift and is called chirality (see figure 7). The chirality is constant on the
edges and thus corresponds to no directional changes in the current. The chirality is
in the opposite direction at the opposite edge and as long as electrons cannot jump
between these two, they cannot backscatter [1, p. 50]. Since the edges are separated
by a macroscopic distance, the probability for that to happen is very low. Electrons
moving between different states on the same chirality will not change its direction.

4.6 Integer quantum Hall effect and percolation

In this chapter one wants to explain why a plateau pattern is shown when measuring
the Hall resistance against the magnetic field. The approach that one needs to take
is the semi-classical localization of charge carriers. Consider that initially one have
n filled Landau levels, where the nth Landau level is unoccupied, then one will
measure a zero longitudinal resistance and a Hall resistance of RH = h/e2n. If one
then imagine a topological landscape with hills and valleys that the electrons or
holes are traveling through, then as the magnetic field decreases, the nth Landau
level start to fill up in a valley in the potential landscape. Because the filling factor
is defined as equation (108). The electrons start to fill up a valley and are therefore
in a localized state and do not contribute to any current and the Hall resistance
remain constant (see figure 9).

If one decreases the magnetic field even more, the valley of occupied states be-
comes larger and may in fact become so large that it overwhelms the valley and
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Figure 9: At the top row is the density of states shown with the Fermi energy EF
placed out. The middle row shows the potential landscape with the equipotential
lines. The lowest row show the Hall and longitudial resistance plotted against the
magnetic field. One can see how the valleys in the closed lines starts to get filled up
and grow as the filling factor increases. [1]

connect the two opposite edges to each other. This enables the electrons to travel
from the upper edge to the lower edge and since the chirality is the opposite on the
other edge, the electrons backscatter. This leak of electrons will cause the voltage
to decrease between the left and right contacts and cause the longitudinal resistance
to be non zero. The Hall resistance will not be quantized anymore and undergo
a plateau transition, jump to the next plateau. This is the reason why there is a
plateau pattern when one measures the Hall resistance against the magnetic field.
Same arguments can be applied for holes, but they will see the potential landscape
in the opposite way, since they have opposite charge.

One may also note that the plateau transitions are second-order quantum phase
transitions that is described by universal laws. At some critical magnetic field the
phase transition occurs,

ε ∼ |B −Bc|−ν (143)

where ν is a critical exponent.

5 Relativistic Quantum Hall Effect in Graphene

Relativistic quantum Hall effect in graphene will be discussed in this chapter, where
subjects like confinement potential, energy dispersion relation and filling factors
will be covered. Relativistic quantum Hall effect is a newly discovered phenomena
discovered in 2005 and is a very interesting subject. The way to approach it is
similar to how integer quantum Hall effect was introduced. But before talking
about Relativistic Hall effects, one may start to introduce graphene.
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Figure 10: Honeycomb lattice with sublattices A and B [1]
.

5.1 Graphene

Graphene is one layer of carbon atoms in a honeycomb lattice (see figure 10) and it
is a material with some extraordinary properties. It is both light weight and at the
same time very strong, but not only that, it also conducts electricity just as good
as copper [9][10]. These combined properties makes graphene an excellent choice
for applications in a wide range of fields such as tissue engineering within medicine
[11], components to improve Li-ion batteries [12] and composite materials to con-
struct satellites, aircraft and cars [10]. Another interesting aspect of graphene is the
dispersion relation for electrons and holes. The dispersion relation is linear at the
Dirac points, which means that the effective mass for the electrons and holes is zero
[10]. This will be described in this chapter in the picture of the tight binding model.

By using the tight binding model one can calculate the band structure [1, p. 105].
The tight binding model is based on the assumption that one have isolated atoms
located at every lattice point. One also assumes that the amplitude of the electron
wave functions to decay fast enough as one move away from the atom. Then one
reduce the lattice constant such that the atomic wave functions from each neighbor-
ing atom starts to overlap each other. Then one can make an ansatz to the wave
function inform of a Bloch function, which has to satisfy the Schrödinger equation.

In order to describe the honeycomb lattice, one has to divide it into two sub-
lattices A and B. Then the wave function becomes a superposition of the wave
function for each sublattice,

ψk(~r) = akψ
(A)
k (~r) + bkψ

(B)
k (~r), (144)

where ψ
(A)
k (~r) and ψ

(B)
k (~r) are Bloch functions,

ψ
(j)
k (~r) =

∑
Rl

ei
~k· ~Rlφ(j)(~r + ~δj − ~Rl) (145)

and φ(j)(~r + δj − ~Rl) are the atomic wave function centered at ~Rl − δj, where
~Rl is the vector pointing towards the elementary cell and ~δj is the vector defining
positions of B atoms inside the unit cell. Then one wants the find the solution to
the Schrödinger’s equation Hψk = εkψk, which can be done by multiplying it with
ψ∗k,
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ψ∗kHψk = εkψ
∗
kψk. (146)

Then plugging in equation (144) and multiplying out and writing it in matrix
form for simplicity one get,

(a∗k, b
∗
k)Hk

(
ak
bk

)
= εk(a

∗
k, b
∗
k)Sk

(
ak
bk

)
(147)

where

Hk =

(
ψ

(A)∗
k Hψ

(A)
k ψ(A)∗Hψ

(B)
k

ψ
(B)∗
k Hψ

(A)
k ψ

(B)∗
k Hψ

(B)
k

)
(148)

is the Hamiltonian matrix and

Sk =

(
ψ

(A)∗
k ψ

(A)
k ψ(A)∗ψ

(B)
k

ψ
(B)∗
k ψ

(A)
k ψ

(B)∗
k ψ

(B)
k

)
(149)

is the overlap matrix.
One can calculate the energy bands by calculating the eigenvalues to the Schrödinger

equation, found in the usual way by [1, p. 106]

det[Hk − ελkSk] = 0. (150)

Now one ignores the overlap of ψ(A) and ψ(B) wave functions which results in
the overlap matrix being equal to the unit matrix times N , the number of particles.
What one pays attention to is the off-diagonal terms in the Hamiltonian matrix,

HAB
k = ψ

(A)∗
k Hψ

(B)
k = NtABk , (151)

where tABk is the hopping term,

tABk =
∑
Rl

ei
~k· ~Rl

∫
d2rφ(A)∗(~r − ~Rk)Hψ

(B)(~r + δAB − ~Rm) (152)

and δAB is a connecting vector, that connects a lattice site in sublattice A to a
lattice point in sublattice B. The hopping term tells how the electrons interact with
their neighbors [7, p. 222].

The goal is to descibe the band structure of graphene and to do that one only
needs to consider hopping between the nearest neighbor. If one pick any lattice site
on for example A, then it will have three neighbors B1, B2 and B3 all with the same
hopping amplitude given by

t =

∫
d2rφA∗(~r)HφB(~r + ~δ3). (153)

B3 do not correspond to any phase shift, since the vector ~δ3 that corresponds
to a shift is the same as the one to describe the location of B3, hence they cancel.
Then the other lattice sites have a shift that is

~a2 =

√
3a

2
(~ex +

√
3~ey) (154)
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~a3 = ~a2 − ~a1 =

√
3a

2
(−~ex +

√
3~ey). (155)

Then the hopping term can be written as

tABk = tγ∗k = (tABk )∗, (156)

where γ∗k = 1 + eika2 + eika3 and the exponentials are phase factors. Then one
find the dispersion relation, which in turn gives the band structure,

ελ(~k) = λ|tABk | = λt|γk|. (157)

One interesting thing with graphene is that the valence band and the conduction
band touch each other at [1, p. 107]

± ~K = ± 4π

3
√

3a
~ex. (158)

To find the relativistic Hamiltonian one can expand the phase factor, γ∗k, around
the points K and K ′,

γ±p ≡ 1 + e±i
~K·~a2ei~p·~a2 + e±i

~K·~a3ei~p·~a3 (159)

' 1 + e±2πi/3[1 + i~p · ~a2] + e∓2πi/3[1 + i~p · ~a3] (160)

= γ±(0)p + γ±(1)p . (161)

The first term γ
±(0)
p is equal to zero in the Dirac points K and K ′ and the

expansion of γ
±(1)
p to the first order term becomes,

γ±(1)p = i

√
3a

2

[
(px +

√
3py)e

±2πi/3 + (−px +
√

3py)e
∓2πi/3

]
= ∓3a

2
(px ± ipy). (162)

This gives the Hamiltonian

Hξ
p = ξv(pxσ1 + ξpyσ2), (163)

where v = 3ta/2~ and ξ = ± represents the different valleys K and K ′. The
relativistic Hamiltonian can then be written in a more compacted form [1, p. 108],

Hξ
D = ξv~p · ~σ. (164)
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Figure 11: (a) shows the mass confinement for the relativistic Landau levels. As
one moves closer to the edge the energy levels starts to diverge, for electrons is the
energy bending upwards to ymax, while for holes its going downwards towards ymin.
The evolution of the n = 0 level depends on the landscape. (b) shows how the hole
states are completely filled while the n = 0 is partially filled and the electrons are
unoccupied. [1]

5.2 Relativistic Quantum Hall effect

The relativistic quantum Hall effect in graphene can be analyzed in the same was as
before in the Landau quantization picture, but here one need to take into account
different charge carriers, electrons and holes, unlike before when only one charge
carrier was considered. The problem here is the confinement potential in which one
cannot use the same approach as one did for the usual integer Hall effect. If one
would take the limit as the confinement potential goes to infinity, one would then
confine the electrons, but the holes, which has opposite charge will not be confined
or the other way around, if the confinement potential went to minus infinity [1,
p. 61]. The solution to this is to use the mass confinement potential, in terms of
Pauli matrices,

Vconf (y) = V (y)σ3 =

(
V (y) 0

0 −V (y)

)
. (165)

The reason it is called mass confinement is that it acts as if it would be a mass
for constant V (y). The term Mσ2

3 is added to the relativistic Hamiltonian

Hm
D = v~p · ~σ +Mσ3 =

(
M v(px − ipy)

v(px + ipy) −M

)
(166)

this gives the energy spectrum

ελ(~p) = λ
√
v2|p|2 +M2 (167)

which is the dispersion relation for a relativistic particle with mass m. One can
write the massive Dirac Hamiltonian in terms of ladder operators

Hm
D =

(
M v(Πx − iΠy)

v(Πx + iΠy) −M

)
=

(
M

√
2hv
lB
a√

2hv
lB
a† −M

)
(168)

and find the eigenvalues which is shown in figure 11,
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ελn = λ

√
M2 + 2

~2v2
l2B

n. (169)

Electrons and holes behaves like Dirac fermions, massless relativistic particles at
the Dirac point in the Brillouin zone. This model is physical on length scales that
is large in compared with the lattice constant. In this way electrons are confined to
the sample [1, p. 62].

Another important property of relativistic quantum Hall effect is the filling fac-
tor, ν. The filling factor for relativistic Hall effect is

ν = ±2(2n+ 1). (170)

This is different compared to the integer quantum Hall effect. Because in rela-
tivistic Hall effect the Landau levels are four-fold degenerate. There is a two-fold
degeneracy of hills and valleys and another two-fold from spin degeneracy. This spin
degeneracy should not be confused with the spin of the particle, but rather its due
to the different lattices used to describe graphene. The extra term ±2 comes from
the fact that the energy levels are half filled at n = 0.

6 Conclusions

In this review many different theoretical subjects were mentioned. In order to get an
understanding of quantum Hall effect, Landau quantization had to be introduced.
The reason is that one has to explain the quantized cyclotron orbits that one observe
during the experiment. No classical theory can explain the plateau pattern and why
the longitudinal resistance disappear at these plateaus. One also had to analyze
how particles behaves in very strong magnetic fields and treat them with quantum
mechanics in order to get a good description. The quantized resistance also defines
a new standard to resistance and the quantization is independent of the material
used and only depend on the electron charge and Planck’s constant, two fundamental
constants of nature. Other applications to the quantum Hall effect is that one can use
it to determine the fine structure constant, which is another fundamental constant.
The field of quantum Hall effect is still a very active field of research, which provide
deeper studies into this field. Classical Hall effect was discovered back in 1879 and
integer quantum Hall effect was observed in 1980 and as late as 2005 the relativistic
Hall effect was observed experimentally. The reason that the quantum Hall effects
are discovered so late is probably because one need very sophisticated technology
to achieve these conditions in a laboratory. Another recently observed quantum
Hall effect which is not mentioned in this review is the Fractional Quantum Hall
Effect (FQHE). Instead of the resistance taking values of integers, it takes values of
fractions of e2/h. There is still no theoretical description for experimentally observed
results regarding the fractional quantum Hall effect.
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