^{30pt} **Problem 1**: From the general equation for momentum of an electron in the Drude model

$$\mathbf{p}(t+dt) = \left(1 - \frac{dt}{\tau}\right)\mathbf{p}(t)$$

- ^{10pt} 1) Solve for $\mathbf{p}(t)$
- ^{10pt} 2) Calculate the following quantity:

$$T = \frac{P(0) \int_0^\infty t e^{-t/\tau} dt}{P(0) \int_0^\infty e^{-t/\tau} dt}$$

^{10pt} 3) From 2 what is the physical meaning of T?

70pt Problem 2:

The Drude-Lorentz formula for the dielectric constant of a solid is

$$arepsilon(\omega) = 1 + rac{\omega_{
m p}^2}{(\omega_0^2 - \omega^2) - i\omega au^{-1}} \; .$$

Here ω_p is the plasma frequency, ω_0 is the energy gap for interband transitions and τ is the scattering time of the electron.

- ^{30pt} (a) At room temperature a reasonable value for Cu is $\tau = 10^{-14}$ sec. Give order of magnitude estimates of ω_p and ω_0 for this metal. You may want to make use of the characteristic "color" of the metal in determining ω_0 . Plot the real and imaginary parts of $\varepsilon(\omega)$ as a function of ω (in eV).
- ^{20pt} (b) At room temperature, calculate $\sigma(\omega)$, the complex frequencydependent conduction of Cu.

^{20p} (c) What is $\sigma(\omega)$ for perfectly pure, defect-free Cu at zero temperature? Hint: Color is a good measure of the energy gap in the interband transition

ω₀.

Hint for (b) and (c) - For any finite T τ is finite. However, at zero temperature τ goes to infinity.