
LATTICES & SYMMETRY	ប
LATTICES & SYMMETRY Ch. 3 MG&YK. Crystal and broken symmetry:	· · · ·
(new phase)	· · · ·
	· · · ·
In general the hamiltonian: $ \begin{aligned} H &= \frac{1}{2m} \sum_{j=1}^{N} P_j^2 + \sum_{\substack{i < j}} V(ir_i - r_i) \\ \end{aligned} $	5·1)
is invariant under: translation $\overline{r}_i \rightarrow \overline{r}_i + \overline{S}$	· · · ·
rotation; $\overline{r}_{i} \rightarrow \hat{R} \overline{r}_{i}$	· · ·
space inversion: $\overline{r} - \overline{R} \stackrel{=}{=} - (r \cdot \overline{r} - \overline{R})$ Are those synametries present in!:	- K)
Liquid Solib	

THE STATE OF XTAL 11 LESS SYMMETRIC!	
AND SYMMETRY is SPONTANEOSLY BROCKEN (see a movie of a Milk droght)	
Note Crystalization happens ble particles arrange then self in to special positions to minimize energy.	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
For specifics of symmetry breaking read to 21-24 MG & KY	
Bravais la Hices: SIMPLEST BL. is a VMATHE MATICAL OBJECT	
B.L. is a set opolats span by:	 . .<
$\vec{R}_{\vec{n}} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$ h = is an integer #. $\begin{bmatrix} \vec{a}_1, \vec{a}_2, \vec{a}_3 \end{bmatrix} = \text{primitive lattice v}$	'E<ጥ « J

Prim	tive lettice vector	
Simple cubic	FACE - CENTERED	BODY (C) CENTERED
\vec{a}_{3} \vec{a}_{2} \vec{a}_{2} \vec{a}_{3}	$a \overline{a_1}$ $a \overline{a_2}$ $a \overline{a_3}$ $a \overline{a_3}$ $a \overline{a_1} = (a \overline{a_2}) (\overline{y} + \overline{z}) a_1$	
those Are NOT at	an a	
- As you Can Fcc and can be o	see BCC	$\overline{a}_{1} = \frac{q}{2}(\overline{z} + \overline{x} - \overline{y})$ $\overline{a}_{3} = \frac{q}{2}(x + \overline{y} - \overline{z})$
as 76	d points are the le ord ginal of new primitive required	nes
- # of b the Co	nearcst neighb Do Roin A Toon nu	os is called MBER $\equiv Z$

R.g. Sc has Z=6
Fcc $z = 12$
BCC = 8
in the periodic table FCC and bCC are the most common
Larger coordination = greater Stability
Q: what elements has SC Lattice?
Another way to describe B. Lattice is to specify its premitive unit cell (P.U.C) with a fixed shape which when translated by primitive vectors translated by primitive vectors
translated by primitive vectors entirely <u>fills</u> up crystall space with out voids
Each Site is Shared
$a_3 \qquad a_2 \qquad \text{a Mong} \\ \textbf{g}_{p} \textbf{v.c.}$

- p. u.c. is a better idea as atoms, ions etc. are not point like.
- electron w.f. spreads over xtal and the whole u.c.
- p. u.c. is not Unique Wiegner - Seitz cell =
= Special kind of p. u.e. Mathematically its defined as:
$\overline{r} - insid \forall \overline{t} p. o. c.$ $(r1 \leq 1\overline{r} - Rn1 \Rightarrow)$ $F^{2} \leq \overline{r}^{2} - 2\overline{r} \cdot \overline{R}n + \overline{R}n \cdot \overline{R}n$ $\Rightarrow (\overline{r} - \frac{\overline{R}n}{2}) \cdot R_{n} < 0$
- Boundaries of WE are plans Bisecting lattice vectors
- We all has full point symmetry of the B.L. (i.g. a set of point symmetry transform. Which leaves the stal invariant)

In general there are more 7 than 1 atom per u.c.
=) General Lattice is
Constructed as: $\vec{R}_{\vec{h},s} = \vec{R}_{\vec{h}} + \vec{\tau}_{s}$ $S=1,2,,m$ $R_{\vec{h},s} = R_{\vec{h}} + \vec{\tau}_{s}$ $S=1,2,,m$ $A_{\vec{h},s} = R_{\vec{h}} + \vec{\tau}_{s}$ $S=1,2,,m$
- we attach a set of m inequivalent points to sites of a B.L. WE CALC THOSE = LATTICE WITH BASES e.g. G-RAPHENE:
A B B C C C C C C C C C C C C C
The Solution of the sector of

What kind of Raffice would you assish?

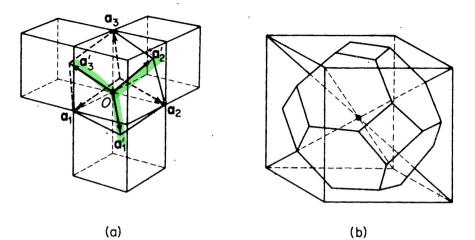


Figure 1.3 (a) Body-centered cubic lattice, showing generators of cubic and alternative (Bravais) unit cells. (b) Wigner-Seitz cell.

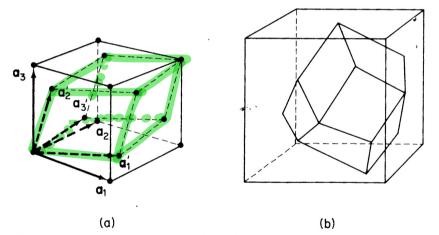


Figure 1.4 (a) Face-centered cubic lattice, showing cubic and alternative (Bravais) unit cells. (b) Wigner-Seitz cell.

S; (: con Θ graphene diamond · R.g. bermanium and 2 atom per U.C. all those are simple elements - b/c. 2 - atoms are the Jame. those Introduction to VESTA Software XX what is this lattice (fee) t is along tragonal of the cube with 1/4 $\mathcal{C} = \frac{a}{4} \left(\hat{x} + \hat{y} + \hat{z} \right)$ (of then called)

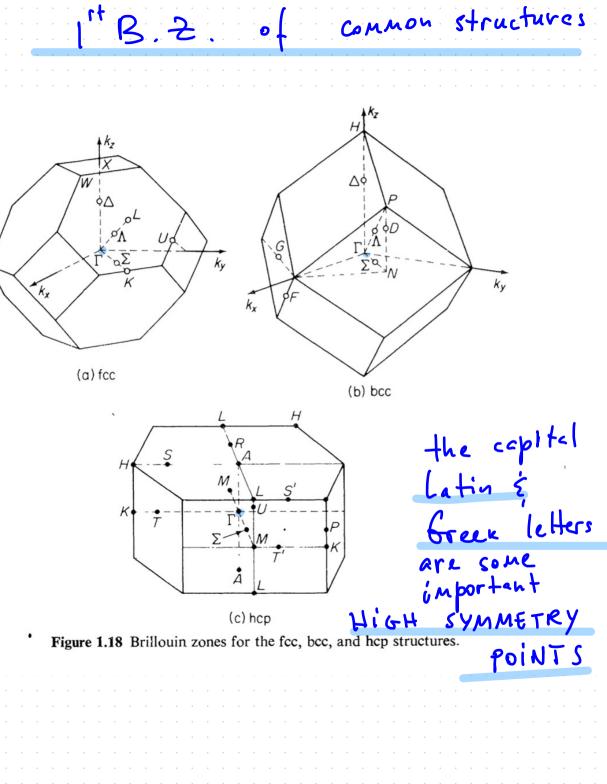
- Dianond is a 3D generalization of graphene.
$-\Delta lattice = 6$ it can be tiled as M with lattice sites
at the vertexes. - B sites sit at the center of each A triangle, and so
is A => honeeoub lattice has coordination Z = 3 - Similarly FCC lattice Z=12
can be tilled from regular tetrahetra with 2 different
-In diamond sublattice the 2" sublatt. is In the center of 1st tetrahedron.

=> diam	ond Rattice	10
has Z Q: Why JD Xt	do you think have sc	those ich Low?
A(hint): which f	Consider C m. 4 boads	= Y valent
e.g. in	grapheue E	JT bond 5 - bond
		TT 6.44
· ·	· · · · · · · · · · · · · · · · · · ·	. .

27 Na Cl: simple cubic and CI Contains Nat Rach U.C. and is FCC B.L Zinc Blend: ZuS is dimend lattice with 2 types of atom sitting in opposite corners: other examples: Ga A, Al As - they cannot form a B.L. as each U.C. contains more than one atom.

Conventional J.c. (C.J.c) 22
c.v.c. contains more than
c.v.c. contains more than one lattice site but has a simple geometrical shape
$V_{c,v,c} = n V_{p,v,c}$
of lettice sites in the c.v.c.
e we could use
Cubic C.C.c. for bcc or fcc.
SYMMEIRY
- translation symmetry is broken spontaneously to map xtal into itself:
to map xtal into itself:

Λοτη Που - /μ	3
axis ave h-fold axis	· · · ·
of rotation	
-Reflection about a plane (in 2D - line)	
- Inversion about a	· · · ·
special point - called an inversion center	· · · · ·
an inversion center	· · · · ·
an inversion = 11	· · · ·
some of a pota pota some some some some some	· · · · ·
Center)	· · · · ·
	· · · · ·
	· · · · ·
- Combination of all is a symmetry troup	· · · · ·

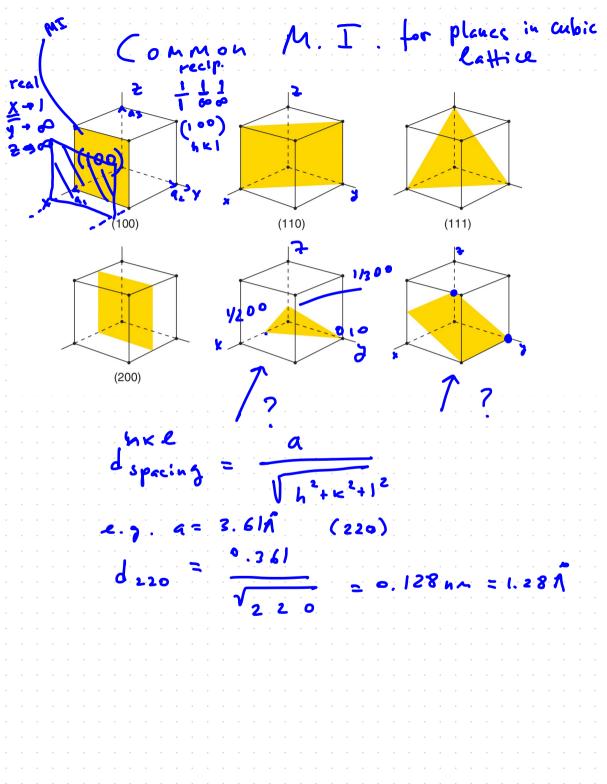

By specifying the symmetries 84 Crystals in 3D can be Classified by 32 groups. (tor more see Ashcrofz Mernin) Reciprocal Lattice Recal F.T. is a great way to describe persodic Re functions: p(R) = p(R + Rn) lets constant the Rettice like that: fhis: $\rho(R) = \sum_{h_1, h_2, h_3} f(R - h_1 \overline{A_1} - h_1 \overline{A_2} - h_3 \overline{A_2})$ electron deusity of basis atoms U.C. inside one

FT: $\rho(R) = \frac{2}{161}\rho_{\bar{G}}R$ 161
FI: P(K) = 2 FG K 161
P(K) = P(K)
$i\overline{6}(\overline{R} + n_1\overline{a_1} + h_2\overline{a_2} + n_3\overline{a_3})$
$\begin{array}{c} e \\ = \\ e \end{array} \stackrel{i \bar{G} \cdot \bar{R}}{=} 2 \begin{array}{c} e^{i \bar{G} \cdot R_{n}} \\ = \\ \end{array} = 1 \end{array}$
$= \begin{array}{l} \widehat{G} \cdot \widehat{a}_{j} = 2 \overline{n} m_{j} j = l, 2, 3 \\ \text{set of } 3 egn. M=0, l, 2 \\ \end{array}$
the set of such & vectors
the set of such & vectors also forms a B.L. in a hubble Speace = reciproce
Momentum Speace = recipions Space

Example: $-\frac{2\pi}{h_1} \hat{x}^2$	06
$b_2 = \frac{2\pi}{a_2}$	· · · ·
$b_1 = \frac{2\pi}{a_1} \qquad \qquad$	· · ·
letz check:	
$b_1 \cdot a_1 = 2 \pi$	• • •
$b_1, a_2 = 0$	· · ·
$b_2 \cdot a_1 = 0$ $b_2 \cdot a_2 = 2 \overline{11}$	• • •
hence G = m, b, + m2b2	· · · ·
since it satisfies: $\overline{G}.\overline{a}_{j} = 2\overline{n}m_{j}^{2}$	· · · · · · · · · · · · · · · · · · ·
But OFTEN R.L. is NOT THE SAME TYPE AS DIRECT LATTICE	 . .

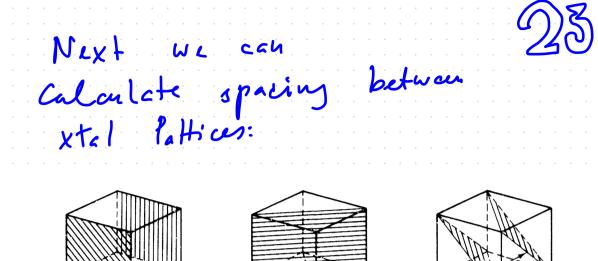
l.g. for 20:	17
$1 - C \cdot (2 \times \bar{a};)$	
where Z is a Unit where Z is a Unit direction	
of the Cattice P	
Eij = - Eji ant: symmetrie Levi - Civi	'ta
$\epsilon_{12} = -\epsilon_{21} = 1$	· · · · · ·
	· · · · · ·
$\Rightarrow \overline{a}_m \cdot b_j = \delta_{mj} \cdot 2\overline{n}$	1
W.Z. cell of the reciprocal	
space is the 1st B.Z. Bullowha	ohe
Brillouin a	
	· · · · ·

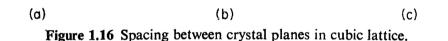
Now 12 3D:	5) 5
$\omega = \bar{a_1} \cdot (\bar{a_2} \times \bar{a_3})$	
a Volume of p. u. c	
Lets define:	· · · · · · · · · ·
$a = b_1 = \frac{2\pi}{\omega} a_2 \times a_3$	
$b_{1} = \frac{2\pi}{\omega} a_{2} \times a_{3}$ $b_{2} = \frac{2\pi}{\omega} a_{3} \times a_{1}$	
$b_3 = \frac{\omega}{\omega} a_1 \times a_2$	
$\int \overline{b}_j = \frac{1}{2} \frac{2\pi}{\omega} \epsilon_{jk} e^{ijk}$	(ān × qe)
and ām. b; = 215 Smj	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·



19 b, I to az and az Recall etc. Now we can think of any 3D xtals a a set of Lattices made of plane ZD atoms i∞ ‡ i K~G So we Can Lobel thes set of lattice places by this r. C. vector K bi + 1 bz + Mbs e. g. GKLM = from math: a plone is defined by a point and a vector 1 to the plane GKLM · F = D (hotice use hik, e)

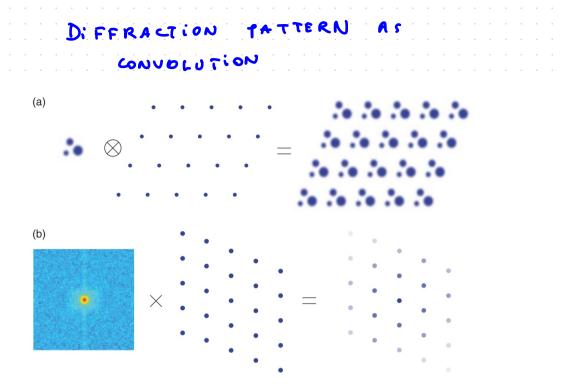
20 As G.R; = 271 mj for all Rattice points, there exist a set of parallel planes of atoms so that G_{KLM} . $\overline{r} = 0, \pm 2\overline{\sigma}, \pm \overline{\gamma}\overline{\eta}, \ldots$ Those planes are labeled by their MILLERINDECES (b.t.way I assume that G is the shortest vector I to the place) We can find M.I. in the real space. $\frac{R'n_1n_2n_3-h_1a_1+h_2a_2+h_3a_3}{a_1n_2n_3-h_1a_1+h_2a_2+h_3a_3}$ So $G_{KLM} \circ R_{n_1 h_2 h_3} = (K_{n_1} + L h_2) + M h_3) \cdot 2 \overline{n} = 2 \overline{n} \overline{T}$ I is some integer fixed.


we 21 Lets set h2 = h3 = 0 Solve for h, $\overline{h}_{i} = \frac{\overline{L}}{K}$ $\overline{n}_{2} = \frac{\Gamma}{\zeta}$ (K, L, M) = $=\left(\frac{\underline{T}}{\overline{h_1}}, \frac{\underline{T}}{\overline{h_2}}, \frac{\underline{T}}{\overline{h_3}}\right)$ 5 = <u>5</u> Consider examples. A Direction normal (1/e) à to a plane with Miller incelies (1/k) a_{L} is Labeled as [hk] Figure 1.13 Plane specified by the Miller indices (hkl). This a line passing through the point with coordinate (hkl) if the interrept is negative WR Say (KKI)


Alternetively, if we have I humbers intersections axis the miller. Ind. is the SMALEST integer •+ 1/h1: 1/h2: 1/h3 e.g. Euter say we got (3,21) $= \frac{1}{2}: \frac{1}{2}: 1 \text{ or } 2:3: 6 = 2$ so the M.I is (236). More examples: W.Z. cell Figure 1.14 Miller indices of major symmetry planes of the bcc lattice. (1100) hc.p Uses 4 symbols (hkil) where i= -(h+k) (0002) hexagonal close - packed

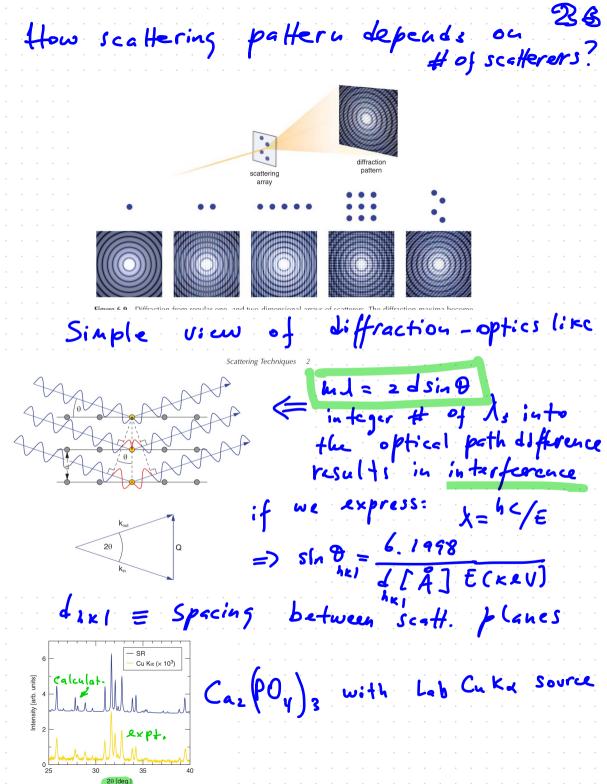
· · · · · · · · · · · · · · · · · · ·
<pre></pre>
· · · · · · · · · · · · · · · · · · ·
Example. Let's compute some interesting humbers for NaCl.
Nall constatizes in a cubic structure
Moleaular weight of NaCe = 56.46 22.989+35.453
22.969 + 35.453
and density at R.T. 2.167 8/cm ³
Q: what is the Rattice constant of
NeCl?
M Nace moleenle = 58.46 $\frac{9}{mole} \cdot \frac{1}{6.02 \cdot 10^{23}}$
of Nace = 7.1.10 0. # of Nace = 21(7. g. # Molecule
$\frac{4}{2} = 2.23 \cdot 10^{22}$ $= 2.23 \cdot 10^{22}$
= 2. 23° 10 ²² robere les / C4

b/c NaCl	is diator	nic 22	
# of at	-045 2a	toms · 2.23.60 A le lule C	2
= 4.5	- 10 ²² atoms	CM ³	7
Let a d along the "h" hube the e	to be dirtained by the of the atoms of atoms dye of Ica	ace masured abe a clons n x 1 CM x 1 cm Cubz 3 3	
$L_{edge} = h \cdot a$ $h^{3} = #$	$= 3 V =$ $ators in$ $\frac{22}{10^{2} \cdot a^{3}} =$ $= 2.82 \cdot 10^{-8}$	hа 1 см ² =)	· · · · · · · · · · · · · · · · · · ·
Nace Na			



d₁₁₁

a110


As you c	an see	¢=	La Hice constant	· ·
				· ·
d ,1 0 =	4100 V2	= 1.99		· ·
and d111 =	d100	= 1.6	3 A	· ·
	V 3		· ·	· ·
· · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	• •

24 X RAY SCATTERING from XTALS Recall in the Born approx. 252 ~ (F(j))2 with $\overline{y} = \overline{k} - \overline{k}'$ at T=ok: $p(r) = \sum_{i=1}^{n} f_a(r-R_i)$ $\Rightarrow F(\gamma) = w(\gamma) \cdot f(\gamma)$ $\Rightarrow Ze^{i\gamma Ri}$

Figure 6.18 Diffraction-pattern intensities explained using the convolution theorem. (a) An infinite crystal can be thought of as the convolution of the electronic distribution within the unit cell with the Bravais lattice. (b) Using the convolution theorem, it becomes apparent that the diffraction pattern is the product of the FT of the electronic distribution in the unit cell (called the 'structure factor') and the FT of the Bravais lattice, which, like the Bravais lattice itself, is another infinite 3D comb function (see text).

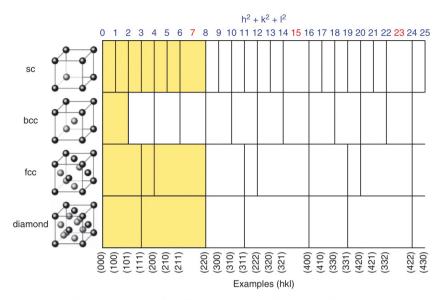
Letre go back to our original discussion $f(r) = \frac{2}{i} f_a(r - R_i) =$ $F(q) = \int d^{3}r e^{-iqr} \sum_{i} p_{e}(r-R;)$ **w(1)** +(1) Now noteice if q = k - k' is not an element of G (recipr. l.t.) $\Rightarrow W = 0!$ if however $\overline{q} = G$ ⇒ w =• ! then e^{-i6.}R; =1 => W > Ø $W(\gamma) = Z_{\mu,\eta} e^{-i\overline{q}} Ca(l + \overline{a_2} m + \overline{a_3} n)$ or by using Pousson surretion = N Z Sq, 6 $= \sum_{\substack{K_1 L_1 M \\ \delta(2\pi M - \overline{q} \cdot \overline{a}_5)}^2 \delta(2\pi K - \overline{q} \cdot \overline{a}_1) \delta(2\pi L - \overline{q} \cdot \overline{a}_2)$ $= \frac{1}{a_1 \cdot (a_2 \times a_3)} \frac{1}{6} \sum_{\substack{K_1 L_1 M \\ \delta(q - \overline{q})}^3 \delta(q - 6)}$ finally $F(q) = f(q) \frac{(2\pi)^{2}}{V} \frac{1}{2} 5^{3}(\overline{q} - \overline{c})$

Ewalds construction	22
In reclurocal space	· · · · ·
(hki) - When yoo ase ran	d or a d a d a d a d
Ewald sphere Ein, Kin, Ø	
you see no sceller	red
intensity.	
(000) X-ray scatter of	7:::::
with random phas	5 ~~ 3
$F(\gamma) = 0$	· · · · ·
-iF DK = q = 6, e.e. the Kin end	5
in (000) and Kout ends in the site	
of the reciprocal Lattice 6 - Kout diffraction Maximum.	
$Q = 2 k \sin \theta = \frac{\sqrt{\pi}}{\lambda} \sin \theta \Longrightarrow$ $k:n$ $= \sum_{i=1}^{\infty} Q = \frac{2\pi}{\lambda} \text{which is indep}$	
$m\lambda = 2dsln\theta$ Kin	· · · · ·
=) [Q]= 211 which is indep AKI dhk] which is indep	er den t
AKI CAR) on incoming	
and a second	
But it all was about lattice	· · · · · ·
symmetry what's the role of	
basis?	
(atous?)	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	

Periodic functions and factor. Geonetric structure f sealtiply A generalization Veriotic function: $p(r+R_n) = p(r)$ where $p(r) = \sum_{R_{n}} \sum_{\alpha=0}^{s-1} \delta(r - R_{n} - E_{\alpha})$ Rn $\alpha = 0$ R.g. for $(\alpha - 2n)$ alloy we take $\nabla o = 0$ to be the coortinate of (in bcc cubic) and $T = \frac{1}{2} \in (1, 1, 1)$ for Z atoms or for BaTiD3 - the nest famouls fenoelectric , B_{α} $\mathcal{L}_{i} = \frac{1}{2} \mathbf{Q}((1))$ T, ⇒ ℃_= ° $v_{2} = \frac{1}{2} c (1, 0, 0)$ and O β-brass = = Gu-Zn alloy °Cu ·Zn - Ti ·Ba ∘O

Based on the result
$Fcq) = \frac{\omega(q)}{\omega(q)} \cdot fcq)$ Fcq) = $\frac{\omega(q)}{\omega(q)} \cdot fcq)$ faces
we can say that BZ faces are bounded by planes whose M.I. are such that
$W(q) \neq 0$
R.J. Consider f.c.c cubic structure
Atoms Located at $v_1 = a(1/2 1/2)$
$ \overline{t}_{2} = e\left(\begin{array}{ccc} 0 & 1/2 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) \overline{t}_{3} = a\left(\begin{array}{ccc} 1 & 0 & 1/2 \end{array}\right) $ From this w(g) or often Labeled
From their W(g) or often Kebered as S(q): <u>1</u> = 3 = i b. Tm Hatom Z & where v.thin U.c. m=0
villing v.c. m=0 G=Znibi and bi · aj= 2Tdij

for b.c.c atomic coordinates $a'_{1} = \frac{1}{2} a (1 1 - 1)$ ave expressed as fraction of basis vectors a' = 2 a (-111) $a_{3} = \frac{1}{2} \in (1 - 1 - 1)$ I aton per u.c. with a: primitive vectors: 63 From this set of ai a a ve can generate the set of reciprocal vectors $b_i = 2\pi (a_j \times a_k)$ $b_i \cdot a_j = 2\pi \delta_{ij}$ => a,. (a2×a3) /2 93 $i_{1}i_{1}K = 1, 2, 2$ $b_1 = \frac{2\pi (a_2 \times a_3)}{1/2 a^3}$ $=\frac{2\pi}{a}(1/2)/2$ 0r $= \frac{2\pi}{\alpha} \left(\circ \frac{1}{2} \frac{1}{2} \right)$ b 2 $=\frac{2\pi}{3}\left(\frac{1}{2}\circ\frac{1}{2}\right)$ 63 g=Znibi => g.2 = (hib, + hib, + hib) $(\overline{v}, + \overline{v}_{L} + \overline{v}_{3} + \overline{v}_{4}) =)$

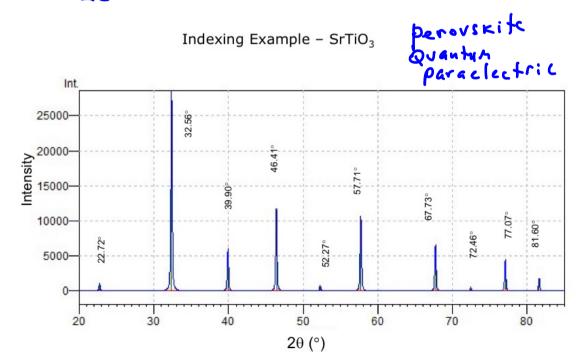

Now recall: ATOMic coordinates
very generally Um = xm a, +
Ym az + 2m az
= (x m , y - , 2 m)
Reciprocal Laffrice vectors: RLV -
$G = h \overline{b_1} + k \overline{b_2} + l \overline{b_3} = (h, k, l)$
=> $G \cdot \overline{U}m = h \times m + k \cdot Ym + l \cdot \epsilon_m$
and hence
and hence $F(h_1 k_1 l) = Z f_n C$ $m atons$ $T (h_1 k_1 l) = 2 f_n C$
m atons
$= 2 f_m e^{2\pi i (h \times m + k \cdot y_m + k \cdot z_m)}$
$= \sum_{m} f_m e^{2\pi i (h \times m + k \cdot y_m + l \cdot z_m)}$
Luis practice.
· · · · · · · · · · · · · · · · · · ·

Cubi	c lattice - st	mple:
basis :	ai = ax dz = Letis assume w	ay az = 02 have
2 Fri	2 64	sis atoms
	C , = (0, 0, 0) C z = (x, y, t)	
fB C) (L		
Calou(at F((h K) =	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · ·	

· · · · ·	BCC	with 2 besis ators	· · · ·
	$T_1 = (0, 0, 0)$ $T_2 = (1/2 1/2)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · · ·
· · · · · · · · · · · · · · · · · · ·	F (hkl) =	.?	
· · · · · ·	. .		· · · ·
· · · · ·	· ·		· · · ·
 			· · · ·
· · · ·	· · · · · · · · · · · · · · ·		

FCC with 4 atoms basis	
$ \begin{array}{c} \overline{z}_{1} (0, 0, 0) \\ \overline{z}_{2} (0, 1/2) \\ \overline{z}_{3} (1/2 0, 1/2) \\ \overline{z}_{4} (1/2 1/2 0) \\ \end{array} $	
F(h ~ l) =	
	0
· · · · · · · · · · · · · · · · · · ·	

Summary:


Figure 6.13 Allowed reflections as a function $h^2 + k^2 + l^2$ for the four unit cell types simple cubic (sc), body-centred cubic (bcc), face-centred cubic (fcc), and diamond. Notice that no reflections exist even in principle if $h^2 + k^2 + l^2 = 8m - 1$, where *m* is an integer greater or equal to unity (shown here in red font). The repeat pattern unit for each cell type is highlighted in yellow.

Convolution theorem (u)=f(x)@g(x) = Jf(x)g(u-x)dx, elso f(x)@g(x) F(u)G(u) detector beam profile D recorded profile

	00 01 1		ier euble er,	otulo	
ers Prim	nitive, P	Face Centered, F	Body Centered, I	Corresponding hkl	
	1			100	
	2		2	110	
	3	3		111	If the observed
	4	4	4	200	
	5			210	$\sin^2(\theta)$ follows
	6		6	211	in a ratio of 1,
					2,3,4,5,6, 8,,
	8	8	8	220	then the unit
	9			221, 300	cell is likely
	10		10	310	primitive cubic.
	11	11		311	-the common
	12	12	12	222	factor is $\lambda^2/4a^2$
	13			320	
	14		14	321	
	16	16	16	400	

Allowed list of $h^2 + k^2 + l^2$ for cubic crystals

Letis do real "experiment"

Look for a common factor, Z, which can be divided into each value to give an integer quotient. Let Z =0.0654 in this example.

Peak #	2θ (°)	θ (°)	d (Å)
1	22.72	11.36	3.910
2	32.56	16.28	2.765
3	39.90	19.95	2.257
4	46.41	23.20	1.955
5	52.27	26.14	1.749
6	57.71	28.36	1.596
7	67.73	33.86	1.382
8	72.46	36.23	1.303
9	77.07	38.54	1.236
10	81.60	40.80	1.179

Using Bragg's Law, $\lambda = 2d_{hkl}\sin\theta$

Peak #	2θ (°)	θ (°)	d (Å)	1/d ²	(1/d ²)/Z
1	22.72	11.36	3.910	0.0654	1
2	32.56	16.28	2.765	0.1308	2
3	39.90	19.95	2.257	0.1963	3
4	46.41	23.20	1.955	0.2616	4
5	52.27	26.14	1.749	0.3269	5
6	57.71	28.85	1.596	0.3926	6
7	67.73	33.86	1.382	0.5236	8
8	72.46	36.23	1.303	0.5917	9
9	77.07	38.54	1.236	0.6546	10
10	81.60	40.80	1.179	0.7194	11

Sin² $\Theta_{hkl} = \left(\frac{h}{2d}\right)^2 \left(\frac{h}{2} + \frac{k}{2} + \frac{k}{2}\right)^2$ Note that in this example, we obtain all integers and all the

quotients are integers that indicate a primitive unit cell.

Peak #	2θ (°)	θ (°)	d (Å)	1/d ²	(1/d ²)/Z	h	k	l
1	22.72	11.36	3.910	0.0654	1	1	0	0
2	32.56	16.28	2.765	0.1308	2	1	1	0
3	39.90	19.95	2.257	0.1963	3	1	1	1
4	46.41	23.20	1.955	0.2616	4	2	0	0
5	52.27	26.14	1.749	0.3269	5	2	1	0
6	57.71	28.85	1.596	0.3926	6	2	1	1
7	67.73	33.86	1.382	0.5236	8	2	2	0
8	72.46	36.23	1.303	0.5917	9*	3 2	0 2	0 1
9	77.07	38.54	1.236	0.6546	10	3	1	0
10	81.60	40.80	1.179	0.7194	11	3	1	1

Assignment of Miller indices

The (300) and (221) peaks fall at the same location, both give $h^2 + k^2 + l^2 = 9$.

 $\lambda = \frac{2a\sin(\theta)}{\sqrt{(h^2 + k^2 + l^2)}}$

The lattice parameter, *a*, is 3.91 Å

28 Diffraction of electrons 1927 Davisson & Germar Showed e also diffract. New you know that brishtness of the Bragg stots is defined by the number of factors, R.g. X-rap: electron density at the lotice e beam: potential energy of e in the field of the lattice of atoms. + T of stal and conshheis of surface and of course the geometrical structure factor 507) Electron scattering form factor Yers Y Y periodic potential V(r) v(r+1) Va (r - Rn - Ta) basis T basis Rettice silves $v(r) = \Sigma$ k L' We can measure 6(0, q) v given by the scattering rate into the interval d K' = K'2 d K' sho d B d \$\$ per of time

According to the Fermi Golden rule 2 $R_{k \rightarrow k'} = \frac{2\pi}{\hbar} \frac{Z}{k'} \left| \zeta k' | V | k \right|^{2} \delta(\varepsilon_{k'} - \varepsilon_{k})$ Tsummed over the final state momenta the beam energy Now let's introduce per $e^{-1} = \frac{\hbar^2 \kappa^2}{2m}$ and assuming that 152 = slasdedy we K=K and can write down: $\frac{2\pi}{t}\frac{(CK)VIK}{(2\pi)^{3}}$ $G(\Theta, \varphi) dE dR$ $= \frac{2\pi}{5} \frac{|\langle \kappa'| V| \kappa |^2}{V_k}$ K12 dK Sten 0 de de $(dE = \frac{\hbar^{L} \kappa d\kappa'}{2m})$ MK dE dSL $(8 \pi^{3} \hbar^{2})$ 1 dre -ik'r tint = Consider < " 1 V 18> = $\frac{1}{v} \int dr e^{-i(k'-k')r}$. 5 (r - Kn - Ta) = Z Sz (q). Wcq) with g=k-k a reconctric structure factor

where wegg as for x-rays
volume = Vo dr e -igr v(r) of x+cl. is F.T. of the (potentia)
Co les electrons
e.g. if a free & scatters -1
$U(r) = \begin{cases} -U & r \in R \\ 0 & r > R \end{cases}$ Figure 2.7 Geometry for elastic electron scattering.
$U(q) = \frac{1}{V_0} \int dr e^{i q^2} \sigma(r) =$
- 4TT U SINGT r2 dr
$= -\frac{4\pi}{V_0} \frac{U_0}{q^3} \left(shgR - qR Con(qR) \right)$
where $q = 2k s/n\theta = \frac{y\pi}{\lambda}$
THE END OF Lecture