Ferni electrons in Magnetic field

 2018 Coud Mat. <u>by</u> Jar Charhalian

Lets Submerge our electron into ^a solid and ^g apply ^a external field ^B The eq. of motion is given by: $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ => the particle move $\frac{1}{2}$ velocity by spiral in FREE \bigcirc \bigcirc The condition that we can $8 = 7$ e B $div H$ use the quasiclassical approximation: 22 7 θ $\lambda = \frac{2\pi}{5}$ = $\frac{2\pi}{5}$ \Rightarrow $\frac{2\pi}{5}$ cc $\frac{1}{5}$ $\frac{1}{2\pi}$ x $\frac{1}{m}$ S_{ol}
called $\longrightarrow W_{cl} \equiv \frac{\hbar B}{m_0}$ << $\frac{P_{1}P}{2\pi m}$ the cyclotrone frequency Now recall , f inside the crystal cannot change unless we apply the external forces. ↳ $\frac{d\mathcal{L}}{dt}$ = - e $V \times P$ is still on if we assure p - is ^a quasi momentum $\frac{dP}{dt}$ = -e $\sigma \cdot (v \times B) = 0$ and $\left(6 \cdot \frac{1}{4!} \right) = \ldots =$

 $\left(\frac{dp}{dt}\right)$ = conservation o every $i.e.$ $\sigma z = \frac{\sigma c}{d\rho}$ and $\left(4\right)$ $\left(4\right)$ $\left(4\right)$ $\left(4\right)$ $\left(4\right)$ $\left(4\right)$ This mas the that the tip of the \bar{p} vector glides on the surface $E(p)$ = cons ECP) $\left(\frac{dP}{dt} \right) = 0$ v c ge $f = \frac{df_0}{dt} + \frac{df_1}{dt} + \frac{df_2}{dt}$ \Rightarrow $\left(\frac{B}{4t}\right)\left(\frac{dP_{1}}{dt}\right) = 0$ or $\left(\frac{dP}{dt}\right)_{1}/|B| = 0$ = $\left(\frac{dP}{dt}\right)_{1} = 0$ \Rightarrow a projection of the Moderntum on the direction of ^B is conserved $P_{II} = \frac{ \text{Cohsh}}{ \text{Fí}}$ the Connor sale to gives the cur which is the run $1 + of$ a cut of Eep by a plane which is \perp to the magnetic f ield $\begin{picture}(120,140)(-150,140)(-150,140) \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line$

Dependin oh topology of the F.S.
we may end up with a closed
or open trajectories. Here is the example of two types of trajectories : Irajectory in real space Statement: Trajectory of a questparticle in p -space defies its trajcctory in r-space. To show this I will project p on the plane \perp to β . $\frac{d\mu}{dt}$ = e V₁xB = e $\frac{dr}{dt}$ xB , $\frac{dr}{dt}$ ↳ $e(B|I_7| \t)$) ρ_1 scales with T_1 2) since $\sigma_L = \frac{d\mathcal{F}_L}{dE}$ in \mathcal{F} -space \perp to de \mathfrak{c}_i This means each element of projection in
r-space 1 each element in p-space, i.e. the trajectories are turned ⁹⁰⁰ wrt each other.

 $\begin{picture}(180,10) \put(0,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}}$

4

In short to see the trajectory in r-space otate the plane by 90° and scale it by $\frac{1}{eB}$ times. The direction of motion is the Same

Lets estimate ^a characteristic size of ^a trajectory in the xtal . $2ccl$ 16 $c²F$ P_F $v\frac{r}{a}$ l_8 ra

 t_{new} B $c < b_{\text{a}} = 1$ a^2 \sim -10 $\sqrt{ }$ In largest ac field \sim 50T! A condition for a cyclical motion in the field is $2 > r = \frac{r_1}{eB}$, or within \sqrt{a}
 $\frac{r_1}{eB}$, or within \sqrt{a}

 $u \cdot f \cdot f$ cast I turn must be completed. Now let $e^{i\theta a}$ ce $\theta e \sim \frac{\pi}{e}$; $\theta > \frac{\pi}{e}$ ea $\theta =$

 $B > E$ $\frac{1}{4}$ $\frac{1}{4}$ \approx $\frac{1}{4}$ \approx $\frac{1}{4}$ $(10^{4} - 10^{5})$ s_{inc} for pure metals $\epsilon \sim 10^{-3} \div 10^{-3} \cdot \alpha =$ The cyclical trajectory is found alterna at few Tesla !

Energy Spectrum of quasiparticles Ideal gas of electrons: free $rac{1}{2}$
 $rac{1}{2}$
 $rac{1}{2}$
 $rac{1}{2}$
 $rac{1}{2}$
 $rac{1}{2}$
 $rac{1}{2}$

 $rac{1}{2}$

 letis separate those $E = \frac{p_x^2 + p_y^2}{2h_0} + \frac{p_z^2}{2h_0} = E_y + E_y$ $\frac{R_{c}}{v^{2D}}\frac{f_{bc}}{cE}$ density of states for 20 is const (2)
 $v^{2D}(E) = \frac{mE}{J\hbar^{2}}$ $\frac{6}{2}$ + 2 E_{\perp} $B=0$ - Every energy level is degenerate for each E we have many $\begin{bmatrix} 8x & and & Py & such & as & \frac{1}{2}x^2+y^2= \end{bmatrix}$ for using n_k and $=$ $2n_k$ ϵ , ϵ in the plane 1 to 8 dectrons were on the
Circle of ro= <u>move</u> with we= 28
Is the energy is greatfited: $E = E_{\perp} + E_{y} = \frac{1}{2} \omega_{c} (1 + \frac{3}{2}) + \frac{\rho^{2}}{2m}$ $h = o_{(1)} 2 \cdots$

For every E_+ we have only
energies = $\hbar\omega_c$ $C_n + \frac{1}{2}$ separated For il we get $E_{ll} = \frac{P_2^2}{2m_0} = \frac{L^2}{2m_0} \left(\frac{2\pi\dot{\xi}}{2\dot{\xi}}\right)^2$ k_2^2
lunge # of states almost quazicontinions. See page 5
 E_1 $\frac{1}{2}$ $\frac{$ The # of e^- in the band of size 3w $N_L = \frac{120}{C_E} \cdot \frac{F_{NL}}{L} = \frac{S_{m0}}{m_b} \cdot \frac{F_{NL}}{L} = \frac{L_X L_Y m_b h_v}{\pi h^2}$

density be

of 20 states
 N_L defines the degree of degeneracy of Ex $for 8 \neq o.$ For descrite values of ϵ_i in the quazielay trajectory; which depends on the quantum # n. Then our condition λ_8 << r_8 , is equal $\hbar w_c$ << E_F

To find the radius T_{B_n} lets coupore -
Eclassical = move r Bn and B_{n} and B_{n} muchos Fron Huis we get $\Gamma_{\beta_n} = \sqrt{\frac{2\pi}{m_0 \omega_c} (h + \frac{1}{2})} = \sqrt{\frac{2\pi}{cB} (h + 1/2)}$ - So for the electron to go from the orbit
true, in to n+1 weeds to get a rice - For the same in e get the same rom
But nz and Pz can be tifferent LETS INCLUDE SPIN For each on with may noticent to = etc /2moc
1+5 energy in B = -jeB; with the spin we
split a Candar lave l into 2 sub lavels
dependin if n M B or n 7 b B
B (n, s, e₂) = $\hbar \omega_c$ (n+/2) + spB + $\frac{\hbar^2 k_c^2}{2m_0}$ $S = +1$ \Rightarrow "+" state of the lowest evel of Note: Spin remover the Landau degeneracy for the Same h we have $h, s = +1$ $h, s = -1$

 $\mathbb X$ $\frac{1}{\hbar\omega_c}$ $\frac{1}{4}$ $\frac{3}{2} \hbar \omega_c + \frac{p_z^2}{2m_0}$ $rac{5}{2}\hbar\omega_c\sqrt{n=2}$ $-1+2 \begin{array}{c|c}\n3 \\
2 \\
1\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n2 \\
\hline\n2\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n2 \\
\hline\n2\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\frac{1}{2} \\
\hline\n2m_0\n\end{array}$ $\frac{3}{2}\hbar\omega_c\left|n=1\right\rangle$ $-$ each stal $\hbar\omega_{\rm c}$ on the parabola $+$ 0+1is strongly degenerate $\frac{1}{2}\hbar\omega_c\left|\frac{n=0}{2}\right|$ $\hbar\omega_{\rm c}$ $\overbrace{n=0}^{n}$ $\frac{1}{2}$ 0- $\sqrt{\frac{2}{3}}$ note Vdegeneracy is only absent for 0 $\overline{}$. The contract of Since E continuously depends only on P_2 in Looks like we have a quasi- ID system! s TRIBUTION OF ELECTRONS in ρ -space a) p_y
B) p_y
B) p_y
B) p_y
B) p_y
B) p_z \overline{P} B=o $\left\Vert \tilde{p_{x}}\right\Vert$ here $P_{z=0}$ Assume for have ^a single zone metal . with a spherical Fermi surface . if Be all the States are inside the sphere ind occupy $\left(2\pi b\right)^3$. So we mark the by points separated by 255 . The maximum $r c/c$ is $p_F = \sqrt{2\pi^k \varepsilon_F}$. For any other X - section the States fill up the circle of $\rho_{\rho}^2 - \rho_{\rho}^2$; as $\rho_{\rho} \rightarrow \rho_{\rho}$ the radius gees $\rightarrow \infty$.

The uniform distribution of States with Px, Py P_2 corresponds to $E = E(p_1 p_2 p_2)$ where \circ c $|p|$ $<$ p F Now we turn on B: in the plane towe $(n + 1/2)$ for $p_2 = const$, to find the radius p_1 $\mathcal{F}_{\perp}^{(c)} = \frac{P_{\kappa}^{(c)} + P_{\mu}^{(c)}}{2m*} = \frac{P_{\mu}^{(c)}}{2m*}$

 $=$ $E_{\perp}^{Vexatum}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $P_{h} = \sqrt{2 \mu \hbar \omega_{c} (h + \frac{1}{2})}$ (see tig bin)

 T_n other words : all states $P^q 3 - 8$ $which we had computed inside the orbit with$ a radio P_n $a = 0, 1, 2, \ldots$, how collapse of the circles see fig. a vs. 6 in page 8

Vote the area in a) π (put, b_{μ}) =

 s tak: $s^2 \frac{2 \pi \mu^* h \omega_s}{h}$ $Exupf$ for o^- state: r

 $P_0^2 = \pi \omega^* \hbar \omega_c$ B

So for each allowed orbit we have $\frac{1}{n}$ same # of e $N_2 = \frac{n \times L_x L_y}{n} =$ degeneracy of those Pn orbits is the are as the descrete Landau leve

Note since Pn is independent of Pz aft

I with the Landau cylinders + - number of States filled up by **e** on eac y linder depends on its length within \int \int $\frac{1}{\pi}$ \overline{F} max - with increasing ph length ^t $rac{1}{2}\hbar\omega_c$ p_x - # of cylinder , I with increasing I $rac{5}{2}\hbar\omega_c$ $\frac{9}{2}\hbar\omega_c$ $rac{13}{2}\hbar\omega$ $E_{\rm F}$ $\left| \frac{E}{E} \right|$ T_o be cont / d