
HW 3  

Problem 1


Proof that 
︎
 satisfies Bloch’s theorem:


Problem 2: 
a) Calculate band dispersion for a hydrogen like crystal in 2D:


For a = 10 ̊A, b = 5 ̊A, and γ(a) = 0.5 eV, γ(b) = 1 eV and εs = 2 eV. 


b) Plot 1st BZ of the 2D crystal , e.g. E(kx) and E(ky)

c) Plot color surface plot of kx vs ky where E(k)  is  marked by  color.

d)  What  is  the bandwidth of the crystal?

e) What is  the effect of overlap integral on band dispersion? Consider the case of  γ(a) 
= 0.5 eV  and  γ(b) = 0.5 eV and  γ(b) = 0 eV . 


Problem 3: 

Calculate band dispersion E(k)  for a face-centered 3D cubic crystal of size a (12 
nearest neighbors).


This gives a simple orthogonal tight-binding formalism but it is relatively
easy to generalise from this to more complex forms.
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Figure 1: Schematic of the atomic orbitals in a 1D crystal with atoms separated by a0.
The translation vectors are R = 0,±a0i,±2a0i,±3a0i, . . ., where i is a unit vector in the x
direction. One of the nearest neighbour vectors ⌧ = a0i is shown in the diagram and the
vertical dotted lines denote the edges of the unit cell which contains a single atom. The
solid curve shows an example atomic orbital centred on an atom at r = 0, while dashed
lines show orbitals centred on r+⌧ and r+3⌧ . The orbitals decay rapidly so the overlap,
�
⇤
i (r)�i(r + R), is small. Here we assume the overlap integral,

R
�
⇤
i (r)H�i(r + R)dr, is

only significant when |R| is close to the near-neighbour separation |⌧ |, and that the direct
overlap between orbitals on di↵erent lattice sites is zero (see Eq. (4)).

2.3 Bloch’s theorem

The single particle states must obey Bloch’s theorem,

 nk(r+R) = e
ik·R

 nk(r), (5)

where R is a real space translation vector of the crystal.

Clearly, a single atomic orbital does not satisfy Bloch’s theorem, but we can
easily make a linear combination of atomic orbitals that does,

 nk(r) =
1p
N

X

R

e
ik·R

�n(r�R), (6)

where there are N lattice sites in the crystal and the factor of 1/
p
N ensures

the Bloch state is normalised (see appendix A).
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This gives a simple orthogonal tight-binding formalism but it is relatively
easy to generalise from this to more complex forms.
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2.3 Bloch’s theorem

The single particle states must obey Bloch’s theorem,

 nk(r+R) = e
ik·R

 nk(r), (5)

where R is a real space translation vector of the crystal.

Clearly, a single atomic orbital does not satisfy Bloch’s theorem, but we can
easily make a linear combination of atomic orbitals that does,

 nk(r) =
1p
N

X

R

e
ik·R

�n(r�R), (6)

where there are N lattice sites in the crystal and the factor of 1/
p
N ensures

the Bloch state is normalised (see appendix A).
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3.3 s-band in a 2D crystal

A simple 2D rectangular crystal is shown in Fig. 3 (left). If s-orbitals from
each atom contribute to the states of the crystal we again have that

E(k) = ✏s +
X

⌧

e
ik·⌧

�(|⌧ |),

but now there are 4 vectors: ⌧ = ±ai and ⌧ = ±bj that take us to nearby
atoms where the overlap integral might be significant. The wavevector k

can also vary in both x and y directions, k = kxi+ kyj. Then,

E(kx, ky) = ✏s + 2�(a) cos(kxa) + 2�(b) cos(kyb). (16)

We can plot the dispersion relation as a function of kx and ky within one
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Figure 3: Left: unit cell of an
example rectangular 2D crystal
in real space, where filled circles
label the atom positions. Right:
unit cell in reciprocal space.

unit cell in reciprocal space (see Fig. 4). The cell lengths are 2⇡/a and 2⇡/b
(see Fig. 3) and the BZ extends from �⇡/a to ⇡/a and �⇡/b to ⇡/b. The
bandwidth is 4�(a) + 4�(b).
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Figure 4: Example dispersion relation E(kx, ky) for a 2D crystal with a = 10 Å, b = 5 Å,
�(a) = 0.5 eV, �(b) = 1 eV and ✏s = 2 eV. Left panel: E(kx,⇡/2b). Centre: E(⇡/2a, ky).
Right: Colour map of the full 2D dispersion relation E(kx, ky) within the first BZ. In this
case the bandwidth is 4�(a) + 4�(b) = 6 eV.
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