
KH Computational Physics- 2015 Density Functional Theory (DFT)

Numerov algorithm

The radial equation is usually solved with Numerov algorithm which is designed for the

second order linear differential equation (DE) of the form

x′′(t) = f(t)x(t) + u(t) (1)

Due to a special structure of the DE, the fourth order error cancels and leads to sixth order

algorithm using second order integration scheme. If we expand x(t) to some higher power

and take into account the time reversal symmetry of the equation, all odd term cancel

x(h) = x(0) + hx′(0) +
1

2
h2x′′(0) +

1

3!
h3x(3)(0) +

1

4!
h4x(4)(0) +

1

5!
h5x(5)(0) + ...

x(−h) = x(0)− hx′(0) +
1

2
h2x′′(0)−

1

3!
h3x(3)(0) +

1

4!
h4x(4)(0)−

1

5!
h5x(5)(0) + ...

x(h) + x(−h) = 2x(0) + h2(f(0)x(0) + u(0)) +
2

4!
h4x(4)(0) +O(h6) (4)

If we are happy with O(h4) algorithm, we can neglect x(4) term and get the following

Kristjan Haule, 2015 –1–

KH Computational Physics- 2015 Density Functional Theory (DFT)

recursion relation

xi+1 − 2xi + xi−1 = h2(fixi + ui). (5)

But we know from the differential equation that

x(4) =
d2x′′(t)

dt2
=

d2

dt2
(f(t)x(t) + u(t)) (6)

which can be approximated by

x(4)
∼

fi+1xi+1 + ui+1 − 2fixi − 2ui + fi−1xi−1 + ui−1

h2
(7)

Inserting the fourth order derivative in the equation (4), we get

xi+1−2xi+xi−1 = h2(fixi+ui)+
h2

12
(fi+1xi+1+ui+1−2fixi−2ui+fi−1xi−1+ui−1)

(8)

If we switch to a new variable wi = xi(1−
h
2

12 fi)−
h
2

12ui we are left with the following

equation

wi+1 − 2wi + wi−1 = h2(fixi + ui) +O(h6) (9)

The variable x needs to be recomputed at each step with xi = (wi +
h
2

12ui)/(1−
h
2

12 fi).

The algorithm is surprisingly simple to implement as one needs only few lines of code. Here

Kristjan Haule, 2015 –2–

KH Computational Physics- 2015 Density Functional Theory (DFT)

is the example for u = 0 (usual Schroedinger equation):

Python implementation

def Numerov(f,x0,dx,dh):

x = zeros(len(f))

x[0] = x0

x[1] = x0+dh*dx

h2 = dh**2

h12 = h2/12.

w0 = x[0]*(1-h12*f[0])

w1 = x[1]*(1-h12*f[1])

xi = x[1]

fi = f[1]

for i in range(2,len(f)):

w2 = 2*w1-w0+h2*fi*xi

fi = f[i]

xi = w2/(1-h12*fi)

x[i]=xi

w0 = w1

w1 = w2

return x

Kristjan Haule, 2015 –3–

KH Computational Physics- 2015 Density Functional Theory (DFT)

// C++ implementation

template <class funct>

void Numerov(funct& F, int Nmax, double x0, double dx, std::vector<double>& Solution)

{// Numerov algorithm for integrating the SODE of the form x’’(t)=F(t)x(t)

// Solution[0] and Solution[1] need to be set (starting points)

double h2 = dx*dx; //square of step size

double h12 = h2/12; // defined for speed

double w0 = (1-h12*F(x0))*Solution[0]; // first value of w

double x = x0+dx;

double Fx = F(x);

double w1 = (1-h12*Fx)*Solution[1]; // second value of w

double X = Solution[1];

double w2;

for (int i=2; i<Nmax; i++){

w2 = 2*w1 - w0 + h2*X*Fx; // new value of w

w0 = w1;

w1 = w2;

x += dx;

Fx = F(x); // only one evaluation of F per step

X = w2/(1-h12*Fx); // new solution

Solution[i] = X;

}

}

Kristjan Haule, 2015 –4–

