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Second Quantization

• First quantization in physics refers to the property of particles that certain operators do

not commute

[x, px] = ih̄ (1)

[Lx, Ly] = ih̄Lz (2)

In the first quantization formalism, the wave function Ψ(r1, r2, · · · rN ) has fixed

number of the particles, N , and is c-number which is operated by other operators like

Hamiltonian.

• Second quantization quantizes particles. The basic idea is that all particles (electrons

and bosons mediating interaction) can be quantized and represented by operators

rather than c-numbers.

In the second quantization formalism, the number of particle is not fixed and the

information of the single particle bases are incorporated in the operators.
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Let us consider a system on N identical particles described in the Schroedinger

representation by the Hamitonian

H(x1, x2, · · · , xN ) =
∑

i

p2
i

2m
+
∑

i

Vexternal(xi) +
1

2

∑

i6=j
UCoulomb(xi, xj) (3)

Here xi incorporates position and spin of the particles (ri, si).

The many-body Schroedinger equation is

H(x1, x2, · · · , xN )Ψ(x1, x2, · · · , xN ) = ih̄
∂

∂t
Ψ(x1, x2, · · · , xN ) (4)

To get to the second quantized form of H , we will first introduce an ”intermediate”

representation - occupation number representation. Than it will become clear how to

simplify the notation by introducing operators for creating or destroying a particle.
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To solve one particle problem, we can expand the solution ψ(x) in certain complete set of

functions. For N body problem, we need a complete set of of N -particle wave functions

Φ(x1, x2, · · · , xN ).

We will constract these wave functions as a properly symmetrized product of one-particle

wave functions uk(x) which form a complete orthonormal set
∫
u∗k′(x)uk(x)dx = δkk′ orthonormality (5)

∑

k

u∗k(x′)uk(x) = δ(x− x′) completeness (6)

The function Φ is then given bt

Φk1,k2,···,kN = Suk1(x1)uk2(x2) · · ·ukN (xN ) (7)

where S = 1
n!

∑
P in Bose statistics and S = 1

n!

∑
(−1)pP in Fermi statistics and the

summation is over all n! possible permutations of the coorditanes x1, x2, · · ·xN and p is

the order of the permutation.
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Basic idea: Rather than labeling Φ by the quantum numbers {k1, k2, · · · , kN} we may

specify the state by stating how many times each single particle state enters the product -

how many times is occupied. Let this occupation number be nk for state k. The set of

numbers n1, n2, · · · , nk uniquely determines the symmetrized state Φn1,n2,···,nk .

Total number of particles in the system is clearly N =
∑
k nk .

The numbers nk are

• Fermions - nk is either 0 or one

• Bosons - nk is any positive integer number or zero

The functions Φn1,n2,···,nk(x1, x2, · · · , xk) form a complete orthonormal set of
N-particle functions. The orthohonality condition is

〈Φ
n′

1
,n′

2
,···,n′n

|Φn1,n2,···,nn 〉 = δ
n′

1
n1
δ
n′

2
n2
· · · δ

n′nnn
(8)

=

∫
· · ·

∫
dx1 · · · dxnΦ∗

n′
1
,n′

2
,···,n′n

(x1, x2, · · · , xn)Φn1,n2,···,nn (x1, x2, · · · , xn) (9)

(10)
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The total Schroedinger wave function may be expanded in the complete set of the functions

Φn1,n2,···,nk

Ψ(x1, x2, · · · , xn, t) =
∑

A(n1, n2, · · · , nn, t)Φn1,n2,···nn(x1, x2, · · · , xn) (11)

The coefficientsA(n1, n2, · · · , nn, t) are the wave function in the occupation number

representation. Their norm gives probability of finding nk particles in state k.

Now we are redy for the second quantization!
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In second quantization, we intoduce a set of operators ak and a†k defined by

a†kΦn1,···,nk,···(x1, · · · , xn) =
√
nk + 1Φn1,···,nk+1,···(x1, · · · , xn) (12)

akΦn1,···,nk,···(x1, · · · , xn) =
√
nkΦn1,···,nk−1,···(x1, · · · , xn) (13)

Operator a†k (creation operator) adds one particle in the state k and ak (destruction

operator) destroys a particle in state k.

From the above definition follows that the operator a†kak counts number of particles

a†kakΦn1,···,nk,···(x1, · · · , xn) = nkΦn1,···,nk,···(x1, · · · , xn) (14)

so that the total number of particles is N =
∑
k a
†
kak.

Φ is symmetric for bosons and antisymmetric for fermions. With this in mind, we can derive

the commutation relations for operators from the above definition. For bosons we have
[
ak, a

†
k′

]
= δkk′ [ak, ak′ ] = 0

[
a†k, a

†
k′

]
= 0 (15)

Similarly for fermions it follows

{ak, a†k′} = δkk′ {ak, ak′} = 0 {a†k, a
†
k′} = 0 (16)
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The power of the second quantization is in possibility to represent any operator in terms of

creation and destruction operator for particles (one can have however many types of

particles).

The above Hamiltonian can be shown to become (see standard text books, for example

Landau, Schrieffer, Abrikosov, ...)

H =
∑

kk′

〈k|H0|k′〉a†kak′ +
1

2

∑

k1,k2,k3,k4

〈k1k2|UCoulomb|k3k4〉a†k1
a†k2

ak4ak3 (17)

where

〈k|H0|k′〉 =

∫
u∗k(x)

{
p2

2m
+ Vext(x)

}
uk′(x)dx (18)

≡
∫
u∗k(x)

{
− h̄

2∇2

2m
+ Vext(x)

}
uk′(x)dx

〈k1k2|UCoulomb|k3k4〉 =

∫ ∫
u∗k1

(x)u∗k2
(x′)UCoulomb(x− x′)uk3(x)uk4(x′)dxdx′

One can prove the above identity by checking all possible matrix elements 〈Φ|H|Φ′〉
where Φ and Φ′ differ in occupation of k, k′, k1,...k4 as the above equation dictates.
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We will check only the diagonal elements, i.e., 〈Φ|H|Φ〉 because they are equivalent to

the Hartree Fock approximation. In another words, Hartree Fock approximation is ”the best”

approximation in the Hilbert subspace spanned by a single Slatter determinant.

What is 〈Φ|H|Φ〉?

〈Φn1···ni···|H0(xi)|Φn1,···,ni···〉 =

∫
dxui(x)∗

{
− h̄

2∇2

2m
+ Vext(x)

}
ui(x)dx (19)

〈Φn1···ni···nj ···|UC(xi − xj)|Φn1,···,ni′ ···nj′ ,···〉 =

∫
dx

∫
dx
′
u
∗
i (x)u

∗
j (x
′
)UC(x− x′)ui(x)uj(x

′
) (20)

−
∫

dx

∫
dx′u∗i (x)u∗j (x′)UC(x− x′)uj(x)ui(x

′) (21)

And the Hamiltonian in this ”single determinant” approximation or Hartree-Fock

approximation becomes

H =
∑

i

〈i|H0(xi)|i〉〈a†iai〉+
1

2

∑

i,j

〈ij|UCoulomb(xi − xj)|ij〉〈a†iai〉〈a†jaj〉 (22)
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−1

2

∑

i,j

〈ij|UCoulomb(xi − xj)|ji〉〈a†iaj〉〈a†jai〉 (23)

Finally, the field operator is the destruction operator in position base (r instead of k). The

field operator is usually written as ak → Ψ(r) and a†k → Ψ(r)†. The commutation

relation in this case are

{Ψ(r),Ψ(r′)} = δ(r− r′) (24)

and the Hamiltonian looks very simple

H =

∫
drΨ†(r)

{
− h̄

2∇2

2m
+ Vext(x)

}
Ψ(r) +

1

2

∫
drdr′Ψ†(r)Ψ†(r′)UC(r− r′)Ψ(r′)Ψ(r) (25)

This is many times the starting point of our derivation (approximation).
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