
Why parallelization?
Top 500 computers in the world: www.top500.org
Kilo 103

Meta 106

Giga 109

Tera 1012

Peta 1015

Exa 1018

Fast computers have several million cores, which
need to be used efficiently & simultaneously

my laptop: 8 cores, 2.4 GHz with 8 single-precision FLOPS’s per second
hence theoretical performance = 8*2.4GHz*8 = 38.4GFLOPS/s=0.0384TFLOPS/s
This is theoretical not actual speed, the list contains actual TFLOPS by running LINPACK benchmark

http://www.top500.org

Why parallelization?
Top 500 computers in the world: www.top500.org

Kilo 103

Mega 106

Giga 109

Tera 1012

Peta 1015

Exa 1018

co

re
s

rankThe number of cores is exploding in the list of top 500

http://www.top500.org

Why parallelization?
Processor’s speed increased linearly with small slope between 1980-1985 (1.25/year), and larger slope between 1985-2000 (1.52/year)
Processor’s speed plateaued in 2005 (people were predicting Moor’s law to break).
Instead of increasing the speed of single processor, number of processors and cores is now increasing exponentially

Moore’s law still works!

Quantum limit for single core,
it can not be too small, because
it stops behaving classically

Number of cores is exploding

Number of transistors is still
exploding, which defines
Moore’s law.

Why parallelization?
Also important is memory latency, which is improving slowly with 1.07/year.
Hence memory speed is substantially slower than processor speed, and it will
remain so for foreseeable future.

openMP and multicore execution

KH Computational Physics- 2018 Optimal use of hardware & software

open mp to speed up C++ and

Python code

• OpenMP is designed for multi-processor/core to run a program on several cores (using

several ”threads”)

• OpenMP programs accomplish parallelism exclusively through the use of threads.

Typically, the number of threads match the number of machine processors/cores.

Kristjan Haule, 2018 –8–

Usual serial execution

openMP multicore execution

• OpenMP is designed for multi-processor/core to run a program on several cores (using several ”threads”)
• OpenMP programs accomplish parallelism exclusively through the use of threads. Typically, the number of threads match

the number of machine processors/cores. However, the actual use of threads is up to the application.
• OpenMP is a shared memory programming model, most variables in OpenMP code are visible to all threads by default.
• But sometimes private variables are necessary to avoid race conditions
• OpenMP is an explicit (not automatic) programming model, offering the programmer full control over parallelization.
• Parallelization can be as simple as taking a serial program and inserting compiler directives.... Or as complex as inserting

subroutines to set multiple levels of parallelism, locks and even nested locks.

The simplest case of parallel mandelbrot calculation:

openMP and multicore execution

 #pragma omp parallel for
 for (int i=0; i<Nx; i++){
 for (int j=0; j<Ny; j++){
 double x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.);
 double y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.);
 mand[i*Ny+j] = Mandelb(complex<double>(x,y), max_steps);
 }
 }

The loop over i is parallelized. Each core is calculating different i term.
Note that mand array is shared across all cores, because all cores have access to the entire array, but each core is changing only
its own slice of the array.
Note that x and y must be different on each core. As they are declared inside the loop, compiler makes them private to each core.
In more general case, the omp parallel statement is

#pragma omp parallel shared(mand,ax,ay) private(beta,pi)

By default all variables are shared, hence shared statement is not really needed.

The same loop in fortran is:

openMP and multicore execution
 !$OMP PARALLEL DO PRIVATE(j,x,y,z0)
 do i=1,Nx
 do j=1,Ny
 x = ext(1) + (ext(2)-ext(1))*(i-1.)/(Nx-1.)
 y = ext(3) + (ext(4)-ext(3))*(j-1.)/(Ny-1.)
 z0 = dcmplx(x,y)
 mande(i,j) = Mandelb(z0, max_steps)
 enddo
 enddo
 !$OMP END PARALLEL DO

Note that in fortran all variables are declared at the top of the program, hence x, y, z0, j need to be declared
private. Also i is private, but the first loop counter does not need to be added to the private list, as compiler will
add it automatically.

The code is compiled by adding a flag -fopenmp:

g++ -fopenmp -O3 -o mandc mandc.cc

gfortran -fopenmp -O3 -o mandf mandf.f90

or

Also the environment variable OMP_NUM_THREADS should be set to the number of cores (threads) we want to use. We
can issue a command

export OMP_NUM_THREAS=4

Example of time for mandelbrot set on multiple cores for Intel Core i9 processor:

speed improves, but not close to theoretical (1/core) estimate. Why?

openMP and multicore execution

speed improves even beyond 8 threads, even though we have 8 cores. Why?

One more openMP example

1

⇡ =

Z 1

0

4

1 + x2
dx (1)

#include <iostream>
#include <ctime>
#include <cmath>
#include <omp.h>
using namespace std;

double f(double x){
 return 4.0/(1.0+x*x);
}
double calcPi(int n)
{
 const double dx = 1.0/n;
 double fSum = 0.0;
 #pragma omp parallel for reduction(+:fSum)
 for (int i=0; i<n; ++i){
 double x = (i+0.5)*dx;
 fSum += f(x);
 }
 return fSum*dx;
}

1/n is spacing for trapezoid rule

reduction: We not only make the loop parallel, but
we need to tell the compiler that fSum is neither
private not shared, but variable to be reduced.

reduction operators are:
+, -, *, min, max, &, |, ^, &&, ||

#include <iostream>
#include <ctime>
#include <cmath>
#include <omp.h>
using namespace std;

double f(double x){
 return 4.0/(1.0+x*x);
}

double calcPi_bad(int n)
{
 const double dx = 1.0/n;
 double fSum = 0.0;
 #pragma omp parallel for
 for (int i=0; i<n; ++i){
 double x = (i+0.5)*dx;
 double df = f(x);
 #pragma omp critical
 fSum += df;
 }
 return fSum*dx;
}

The alternative, but worse implementation:
We do not specify that fSum is obtained by
reduction, but we specify that a particular
line “fSum+=df” should be done without
parallelization.

One more openMP example

omp critical can be used for any line that can
not be parallelized.

Memory access is slow. When several cores need to manipulate few MB of
data, several cores compete for the bandwidth/access to RAM and L3 cache.

openMP and multicore execution

CPU: ~3GHz ~ 0.3ns per tick ~ 0.04ns for floating point operation (8FP per tick)
L1 cache: latency~ 1ns, size ~16KB
L2 cache: latency~ 3ns, size ~256KB
L3 cache: latency~ 6ns, size ~2MB
RAM : latency~20ns, size ~GB, bandwidth~0.3GHz, corresponding to 3.3ns

Latency: Delay incurred when a processor accesses data
inside the memory (even when reading just one number)

Bandwidth: Rate at which data can be read from or stored
into memory by a processor

~32KB L1 cache per core
~256KB L2 cache per core
~2MB L3 cache per core, but shared by all cores
several GB RAM

More realistic multicore architecture

Since we write data into common variable, speed is limited by
memory access and not computation, hence we do not get
theoretical performance.

Why do we get speedup when using more threads than cores?

Design of modern CPU

Access to memory is arranged to be staggered:
some threads are doing computation and some
are writing, so we can squeeze out a bit of
performance by floading CPU with threads.
Notice that this is not necessary the case.
Sometimes the execution is slowed down when
number of threads exceeeds number of cores.

If you want to learn more about openMP, consult these resources
https://www.openmp.org
https://www.openmp.org/resources/tutorials-articles/
https://www.youtube.com/channel/UCtdrEoe46tD2IvJJRs_JH1A/videos

https://www.openmp.org
https://www.openmp.org/resources/tutorials-articles/
https://www.youtube.com/channel/UCtdrEoe46tD2IvJJRs_JH1A/videos

How to improve memory management?

To squeeze out best performance can be a very hard software engineering problem, which is handled by compiler, and user
does not have complete overview how memory access is handled.

However, there are some general ideas tips of how to access memory to allow compiler well optimize the code.

• Do not use hard-disc for data manipulation if possible. Keep data in RAM. If you need a lot of RAM, estimate
whether it fits into RAM. Rethink your algorithm before you start writing data to hard-disc.

• Try avoiding random access of data in RAM to reduce cache misses.
• The data which you need in the innermost loop should be stored in a way that the access is maximally continuous.

Why should we access memory continuously?
Because CPU does not load a single number, but a page, which is 64 byte (8 double’s).
We can use data already present.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

Accessing an element already loaded in cache is very
fast and does not cost extra cycles.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

If the cache is full and a new cache page should be
loaded, an old one must be dropped, which costs
several hundred cycles, and is called cache miss.

Accessing an element already loaded in cache is very
fast and does not cost extra cycles.

KH Computational Physics- 2018 Optimal use of hardware & software

This is because Fortran uses column major storage. The figure explains it all.

Remember: The innermost index j runs:

in C++ A[]...[j]

in Fortran A(j,....)

Scientific programs are usually very tuned for performance. This usually goes in expense of

portability and readability.

ADVICE: Newer optimize those parts of the program which are not very crucial for speed.

In typical applications, only 20% of the code spends 80% of the time. Optimize only those

20% of the code. Make the rest of the code more readable.

Remember: 80/20 rule

Kristjan Haule, 2018 –29–

This is because Fortran (C) uses column (row)
major storage. The figure explains it all.

Typical example is a matrix manipulation.
In C or C++, one needs to access multidimensional arrays in the following order for (int i=0; i<size; i++)

 for (int j=0; j<size; j++)
 A[i][j] = since the data is stored in a row major order.

In Fortran, the same loop should be written in the following way do i=1, size
 do j=1, size
 A(j,i) =
 enddo
enddo

How to improve memory management?

Multi-node parallelization : MPI

When parallel execution uses several nodes (not just several cores on a single node), we need to use MPI parallelization.
MPI requires one to call specialized MPI routines to communicate and exchange data. This is more technically involved programing.

Inter-node (2nd level interconnect) speed:
• InfiniBand: latency ~5𝜇s, bandwidth ~1Gb/s
• GigaBit Ethernet: latency 60𝜇s, bandwidth ~0.1Gb/s

Latency: Time required to send a message of size zero (time
to set up communication)

Bandwidth: Rate at which large messages (>=2Mb) are
transfered

Virtual box from past years (which should work if other installations fail):

If you do not want/succeed to install the necessary software, you should download the file :
http://hauleweb.rutgers.edu/downloads/509/509.ova
(warning: 4.8GB file, it might take a while)

Then you should install VirtualBox to run the provided virtual machine:
https://www.virtualbox.org

Finally, start the VirtualBox and navigate to File/Import Appliance, and choose the downloaded 509.ova file.

Then click Start and wait for the linux to start. Once linux is running, you can start a terminal Konsole
and start emacs in the terminal. You can navigate to

cd ~/ComputationalPhysics/mandelbroat

and examine the files we will discuss in the first lecture. If you need username, use student, and passwd student123.

http://hauleweb.rutgers.edu/downloads/509/509.ova
https://www.virtualbox.org

https://github.com/jrjohansson/scientific-python-lectures

Next learning python from the following lectures:

Learning Python

https://www.youtube.com/watch?v=xCKfR80E8ZA

If you prefer video, this might be very good one:

https://github.com/jrjohansson/scientific-python-lectures
https://www.youtube.com/watch?v=xCKfR80E8ZA

